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Abstract: Cybersecurity has gained increasing interest as a consequence of the potential
impacts of cyberattacks on profits and safety. While attacks can affect various components
of a plant, prior work from our group has focused on the impact of cyberattacks on control
components such as process sensors and actuators and the development of detection strategies
for cybersecurity derived from control theory. In this work, we provide greater focus on actuator
attacks; specifically, we extend a detection and control strategy previously applied for sensor
attacks and based on an optimization-based control technique called Lyapunov-based economic
model predictive control (LEMPC) to detect attacks impacting the control action applied by
the actuators when the state measurements provided to the controller are accurate. Closed-loop
stability guarantees are rigorously derived. A continuous stirred tank reactor is simulated to
elucidate aspects of the detection strategy proposed.
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1 Introduction

Smart/next-generation manufacturing, which can lead to
an increase in automation, enhanced safety, and greater
operational efficiency, has received increasing attention in
recent years. Due to its criticality, cybersecurity of control
systems has been an active research area, with research
covering topics ranging from control for linear systems in
the presence of actuator or sensor attacks Fawzi et al.
(2014) to using optimization to predict attack behav-
ior Vamvoudakis et al. (2013). One of the topics that has
received attention is active cyberattack detection schemes
which attempt to force cyberattacks to become visible
through changes to the system or operating policy. Exam-
ples of strategies in this category have included dynamic
watermarking Satchidanandan and Kumar (2016), adjust-
ing process dynamics Teixeira et al. (2012), or watermark-
ing measurement and input signals Ghaderi et al. (2020).

This work uses a type of model predictive control (MPC)
design called Lyapunov-based economic model predictive
control (LEMPC) Heidarinejad et al. (2012), which is a
formulation with strong closed-loop stability and feasibil-
ity properties in the presence of sufficiently small bounded
disturbances and measurement noise. Other formulations
that use LEMPC include machine learning detection
strategies combined with LEMPC and implemented in
both centralized Chen et al. (2020) and distributed Chen
et al. (2021) fashions for maintaining closed-loop stabil-
ity during normal process operation, with the possibility
of maintaining closed-loop stability after an attack. Our
group has analyzed cybersecurity for control systems from
a nonlinear systems perspective Durand (2018). This led

to the development of detection strategies for handling
sensor measurement cyberattacks with safety guarantees
for scenarios when process dynamics are constant Oyama
and Durand (2020) as well as when they are changing over
time Rangan et al. (2021); Oyama et al. (2021). While
our recent work Oyama et al. (2022) addressed multiple
detection strategies to handle simultaneous cyberattacks
on both process sensors and actuators, this work did not
provide a thorough discussion of attack detection for the
case of actuator attacks only. Motivated by this gap, this
work will provide details with an in-depth discussion of an
LEMPC-based strategy for handling actuator attacks on
nonlinear systems with guaranteed safety in the presence
of undetected attacks.

2 Preliminaries

2.1 Notation

The Euclidean norm of a vector x is denoted by | · |, and
the transpose of x is denoted by xT . A class K function
α : [0, a) → [0,∞) is strictly increasing with α(0) = 0.
Set subtraction is signified by “ / ” such that x ∈ A/B :=
{x ∈ Rn : x ∈ A, x /∈ B}. A level set of a positive definite
function V is denoted by Ωρ := {x ∈ Rn : V (x) ≤ ρ}.
R+ signifies the set of non-negative real numbers. A state
measurement is available at every tk := k∆, where k =
0, 1, . . ., where ∆ is the sampling period.

2.2 Class of Systems

This work addresses systems of the form:
ẋ(t) = f(x(t), u(t), w(t)) (1)



where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm, and w ∈ W ⊂ Rz

are the state, input, and disturbance vectors, respectively,
and f is locally Lipschitz on X ×U ×W , and W := {w ∈
Rz : |w| ≤ θw, θw > 0}. It is assumed that there exists
a sufficiently smooth Lyapunov function V : Rn → R+,
functions αj(·), j = 1, . . . , 4, of class K, and a controller
h(x) = [h̄1(x) . . . h̄m(x)]T capable of asymptotically
stabilizing the closed-loop system to the origin of Eq. 1
in the absence of disturbances such that the following
inequalities are satisfied:

α1(|x|) ≤ V (x) ≤ α2(|x|) (2a)
∂V (x)

∂x
f(x, h(x), 0) ≤ −α3(|x|) (2b)∣∣∣∣∂V (x)

∂x

∣∣∣∣≤ α4(|x|) (2c)

h(x) ∈ U (2d)

∀x ∈ D ⊂ Rn and D is an open neighborhood of the
origin. Ωρ ⊂ D is considered to be the stability region of
the nominal closed-loop system under the controller h(x)
where x ∈ X, ∀x ∈ Ωρ. Furthermore, we consider that the
components of h(x) satisfy:

|h̄i(x)− h̄i(x̂)| ≤ Lh|x− x̂| (3)
for all x, x̂ ∈ Ωρ, i = 1, . . . ,m, and Lh > 0. The
smoothness of V and local Lipschitz property of f give:

|f(x1, u1, w)− f(x2, u2, 0)|
≤ Lx|x1 − x2|+ Lu|u1 − u2|+ Lw|w| (4a)∣∣∣∣∂V (x1)

∂x
f(x1, u, w)−

∂V (x2)

∂x
f(x2, u, 0)

∣∣∣∣
≤ L′

x|x1 − x2|+ L′
w|w| (4b)

|f(x, u, w)| ≤Mf (5)
∀x1, x2 ∈ Ωρ, u, u1, u2 ∈ U and w ∈ W , where
Lx, L

′
x, Lu, Lw, L

′
w, and Mf are positive constants.

2.3 Lyapunov-Based Economic Model Predictive Control
(LEMPC)

In this work, we utilize an optimization-based control
design known as LEMPC Heidarinejad et al. (2012), which
is formulated as follows:

min
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ)) dτ (6a)

s.t. ˙̃x(t) = f(x̃(t), u(t), 0) (6b)
x̃(tk) = x(tk) (6c)
x̃(t) ∈ X, ∀ t ∈ [tk, tk+N ) (6d)
u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (6e)
V (x̃(t)) ≤ ρe, ∀ t ∈ [tk, tk+N ),

if x(tk) ∈ Ωρe
(6f)

∂V (x(tk))

∂x
f(x(tk), u(tk), 0)

≤ ∂V (x(tk))

∂x
f(x(tk), h(x(tk)), 0),

if x(tk) ∈ Ωρ/Ωρe
(6g)

where u(t) ∈ S(∆) signifies that the optimal solution is a
piecewise-constant input vector. N represents the length
of the prediction horizon in terms of sampling periods,

where each sampling period is of length ∆. The objective
function is the time-integral of the economic stage cost Le

of Eq. 6a, evaluated throughout the prediction horizon.
The predictions x̃(t) are obtained from the nominal model
of Eq. 6b. The state and input constraints are given by
Eqs. 6d-6e respectively. The two Lyapunov-based stability
constraints are given by Eqs. 6f and 6g.

3 Detecting and Handling Actuator Cyberattacks using
LEMPC

Cyberattacks on control systems pose a threat due to their
ability to directly manipulate physical systems resulting
in effects ranging from reduced profits to loss of life.
In our prior works Oyama and Durand (2020); Rangan
et al. (2021), three strategies were developed to detect
cyberattacks on sensor measurements. Oyama et al. (2022)
extended these to handle attacks on actuators and on
sensors and actuators at the same time. Because the
focus of Oyama et al. (2022) was on this simultaneous
actuator and sensor attack case, less attention was given
to discussing handling of attacks on process actuators
alone. In this manuscript, we provide further details on
a detection strategy for the case that only actuators are
attacked.

The strategy that will be analyzed in the subsequent
sections is inspired by the first detection strategy presented
in Oyama and Durand (2020) (developed for sensor mea-
surement cyberattacks). In Oyama and Durand (2020), a
detection strategy was developed that probes for attacks
on sensors by modifying the control design in Eq. 6 at
random times. Specifically, at random times, a new steady-
state is selected around which the LEMPC of Eq. 6 is
designed (creating new Lyapunov functions around this
steady-state designated by Vi to reflect that they are
designed with respect to the i-th steady-state), and then
the constraint of Eq. 6g is enforced throughout the subse-
quent sampling period (without Eq. 6f being considered) to
drive the closed-loop state toward that steady-state. The
motivation for this is that when Eq. 6g is enforced, under
sufficient conditions, the closed-loop state moves toward
the i-th steady-state and Vi decreases over the sampling
period. If it does not, an attack could be flagged.

When this strategy is extended to the case that actuators
are attacked, we will no longer consider probing randomly,
but instead will consider probing for attacks at every
sampling time. In the absence of an attack, this will cause
Vi to decrease, and the closed-loop state will be main-
tained within the stability region corresponding to the i-
th steady-state. However, unlike in the sensor cyberattack
case, the sensor measurements are now considered to be
accurate; this means that if Vi does not actually decrease,
an attack will be flagged. Though there is no guarantee
that an attack cannot cause Vi to decrease (i.e., an attack
may be “stealthy” in the sense that it evades the detection
mechanism based on V̇i being negative), a decrease in the
value of Vi over a sampling period following the activation
of the i-th LEMPC formulation under a rogue actuator
signal sent to the process would still maintain the closed-
loop state inside the i-th stability region under sufficient
conditions. This discussion implies that the i-th LEMPC
formulation detection strategy holds particular value for



handling actuator attacks when sensor measurements are
not falsified. Specifically, though a major drawback of the
detection strategy presented in Oyama and Durand (2020)
for state measurement cyberattacks is that it did not guar-
antee safety when a falsified state measurement is provided
to the i-th LEMPC (because even if the falsified state
measurements decrease Vi, it does not imply that these
false sensor measurements are translated by the controller
into stabilizing control actions), safety is maintained in the
presence of actuator attacks under this strategy. This is be-
cause the decrease in Vi (which is based on the state mea-
surements) is “real” in the case of the actuator attack (since
the state measurements are not falsified), resulting in the
actual closed-loop state remaining within a characterizable
region Ωρi

(a level set of Vi around the i-th steady-state)
of state-space over a sampling period when the attack is
not detected. A consideration that must be made, however,
is the impact that the constant probing for attacks could
have on profits, since it causes the operating strategy to
deviate from what would otherwise be observed. One idea
for attempting to handle this would be to make use of an
auxiliary LEMPC with the form of Eq. 6. This LEMPC
could be used at the start of every sampling period to
predict the economically-optimal state at the end of the
current sampling period (in the absence of plant-model
mismatch, and subject to the prediction horizon length). If
this state is a steady-state for the process with the input in
the input bounds (and meeting other sufficient conditions
to be described below), it could be used as the i-th steady-
state. Though this may sound attractive as a means for
attempting to reduce profit loss while handling actuator
cyberattacks, profit guarantees cannot be made in the
presence of plant/model mismatch, and if the closed-loop
state does not reach this i-th steady-state in a sampling
period, the state prediction from the LEMPC of Eq. 6 will
be different than it would have been if the i-th steady-
state had been reached. The transient behavior over the
sampling period also may not be the same during the
probing as under the LEMPC of Eq. 6. This indicates that
the use of the auxiliary LEMPC is unlikely to cause the
profits during the probing to match those which would
have been obtained without the cyberattack-probing.

3.1 Probing for Actuator Cyberattacks Using LEMPC:
Formulation

The LEMPC formed around the i-th steady-state (referred
to as the i-th LEMPC) has the following form:

min
ui(t)∈S(∆)

∫ tk+N

tk

Le(x̃i(τ), ui(τ)) dτ (7a)

s.t. ˙̃xi(t) = fi(x̃i(t), ui(t), 0) (7b)
x̃i(tk) = xi(tk) (7c)
x̃i(t) ∈ Xi, ∀ t ∈ [tk, tk+N ) (7d)
ui(t) ∈ Ui, ∀ t ∈ [tk, tk+N ) (7e)
∂Vi(x̃i(tk))

∂x
fi(x̃i(tk), ui(tk), 0)

≤ ∂Vi(x̃i(tk))

∂x
fi(x̃i(tk), hi(x̃i(tk)), 0) (7f)

where xi(tk) represents the state measurement in deviation
variable form from the i-th steady-state, and fi represents
the right-hand side of Eq. 1 when it is written in deviation

variable form from the i-th steady-state. ui represents the
input vector in deviation variable form from the steady-
state input associated with the i-th steady-state. Xi and Ui

represent the state and control constraint sets in deviation
variable form from the i-th steady-state. When an actuator
attack is performed, the control action computed by Eq. 7
is not the one which is actually applied to the process.
Rather, it is replaced by a rouge control action.

3.2 Probing for Actuator Cyberattacks Using LEMPC:
Implementation Strategy

The implementation strategy for the detection concept of
Section 3.1 is described below (in the case that an attempt
is made to use the auxiliary LEMPC of Eq. 6 to compute
the i-th steady-state at every sampling time as described
above):

(1) An auxiliary LEMPC (“A-LEMPC”) with the form
in Eq. 6 receives the state measurement x̃(tk) and is
used to determine the steady-state to be used for the
subsequent sampling period. Go to Step 2.

(2) Verify that the i-th steady-state determined in Step 1
satisfies several conditions: 1) The i-th region Ωρi

must be a subset of the safe operating region Ωρ,
designed to contain several level sets of Vi to be
described in the following section; 2) The steady-state
input required to maintain the closed-loop state at the
i-th steady-state must be within the input bounds;
3) The state measurement x̃(tk) must be contained
within Ωρi (specifically, it must be within a subset
Ωρ′

i
to be defined in the following section; and 4)

x̃(tk) must not be in a neighborhood Ωρs,i of the
i-th steady-state. If these requirements are not met
for the steady-state determined in Step 1, select an
alternative steady-state meeting these requirements.
Go to Step 3.

(3) The control action computed by the i-th LEMPC of
Eq. 7 for the sampling period from tk to tk+1 is used
to control the process according to Eq. 7. Go to Step
4.

(4) Evaluate the Lyapunov function value at the end of
the sampling period. If Vi does not decrease between
the beginning and end of a sampling period, flag a
potential cyberattack and apply mitigating actions.
Go to Step 5.

(5) (tk ← tk+1). Go to Step 1.

3.3 Probing for Actuator Cyberattacks Using LEMPC:
Stability and Feasibility Analysis

For the time period until an actuator attack is detected,
this section will prove recursive feasibility of the A-
LEMPC and the i-th LEMPC’s for the process of Eq. 1
under the implementation strategy of Section 3.2 in the
presence of bounded process noise. Because the state
measurements are assumed not to be impacted by the
attacks, the sensor measurements are impacted only by
noise, where the maximum bound on the norm of the
difference between the measured state and the actual state
is θv. The theorem below also provides a guarantee of
safety of the process of Eq. 1 under the implementation
strategy of Section 3.2 before an actuator cyberattack is
detected (i.e., even if a stealthy attack is occurring). In



the following theorem, subscripts are added to some of the
prior notation (e.g., the functions αj , j = 1, 2, 3, 4, and
h, or the constants Mf , L′

x, and L′
w) to indicate that the

functions and parameters are considered for the model and
Lyapunov functions corresponding to the i-th steady-state
or a steady-state of the A-LEMPC.
Theorem 1. Consider the closed-loop system of Eq. 1
under the implementation strategy of Section 3.2 where no
cyberattack is detected, and each control formulation, i.e.,
the A-LEMPC and the i-th LEMPC, use controllers hA(·)
and hi(·), i ≥ 1, respectively, that satisfy the inequalities
in Eqs. 2a-2d and 3. Let ϵWi

> 0, ∆ > 0, N ≥ 1, Ωρi
⊂

Ωρ′
A
⊂ ΩρA

⊂ XA for i ≥ 1, ρi > ρ′i > ρmin,i > ρs,i > 0,
where Ωρ′

i
is defined as a level set of Ωρi that guarantees

that if Vi(x̃i(tk)) ≤ ρ′i, then Vi(xi(tk)) ≤ ρsamp,i, for i = A
or i ≥ 1. Additionally, ρ = ρA > ρ′A > ρe,A > ρmin,A >
ρs,A > 0. Let the following inequalities be satisfied:
− α3,i(α

−1
2,i (ρs,i)) + L′

x,iMf,i∆+ L′
x,iθv + L′

w,iθw

≤ −ϵ′w,i/∆, i = A, 1, 2, . . .
(8)

ρmin,i = max{Vi(xi(t)) : xi(tk) ∈ Ωρs,i
, t ∈ [tk, tk+1),

w ∈W}, i = A, 1, 2, . . .
(9)

ϵ′w,i > max
x̃i(tk)∈Ωρ′

i
/Ωρs,i

∣∣∣min{Vi(x̃i(tk)) : x̃i(tk) ∈ Ωρ′
i
/Ωρs,i

}

−max{Vi(x̃i(tk+1)) : x̃i(tk) ∈ Ωρ′
i
/Ωρs,i

, ui ∈ Ui,

w ∈W, |xi(tp)− x̃i(tp)| ≤ θv, p = k, k + 1}| , i = A, 1, 2, . . .
(10)

ρsamp,i = max{Vi(xi(tk)) : x̃i(tk) ∈ Ωρ′
i
, i = A, 1, 2, . . . ,

|xi(tk)− x̃i(tk)| ≤ θv}
(11)

ρh,i = max{Vi(x̃i(tk+1)) : xi(tk) ∈ Ωρsamp,i
, i = A, 1, 2, . . . ,

ui ∈ Ui, w ∈W}
(12)

ρi = max{Vi(xi(tk+1)) : x̃i(tk+1) ∈ Ωρh,i
,

|xi(tk+1)− x̃i(tk+1)| ≤ θv}
(13)

If x̃i(t0) ∈ Ωρ′
i
/Ωρs,i

, xi(t0) ∈ Ωρi
⊂ Ωρ′

A
, |x̃i(t0) −

xi(t0)| ≤ θv, and steady-states meeting the conditions
in Step 2 of the implementation strategy are able to
be found at every sampling time, then the closed-loop
state and state measurement are maintained in ΩρA

at
all times before an attack is detected. Furthermore, if
x̃i(tk) ∈ Ωρ′

i
/Ωρs,i

and no attack occurs, Vi decreases along
the measured state trajectory.

The proof consists of three parts. In the first part, recursive
feasibility of both Eq. 6 and Eq. 7 at every sampling time
under the implementation strategy is demonstrated. In the
second part, we demonstrate that the state measurement
remains within Ωρi ⊂ ΩρA

under the implementation
strategy in Section 3.2 before an attack occurs or if an
attack will not lead to detection at the next sampling time
(allowing feasibility of the A-LEMPC and i-LEMPC’s at
each sampling time before an attack is detected), assuming
that steady-states meeting the requirements in Step 2
of the implementation strategy can be located at every
sampling time. We also demonstrate that Vi is decreasing
for t ∈ [tk, tk+1) under the implementation strategy either
in the absence of actuator attacks or in the presence of
actuator attacks that do not lead to detection at the next
sampling time. The third part of the proof demonstrates

that if detection will occur at the next sampling time, then
the closed-loop state and state measurement will still be
within ΩρA

at that time.

Part 1. At each sampling time, the A-LEMPC is solved
followed by the i-th LEMPC. Feasibility of the A-LEMPC
at every sampling time is guaranteed when the state
measurement is within ΩρA

(to be demonstrated in Part
2 ), with the feasible control action as hA implemented
in sample-and-hold throughout the prediction horizon.
Specifically, hA(x̃A(tj)), j = k, . . . , k + N − 1, for t ∈
[tj , tj+1), is a feasible solution to the A-LEMPC of Eq. 6
because it trivially satisfies Eq. 6g, satisfies Eq. 6d when
ΩρA

⊂ XA, and satisfies Eq. 6e by Eq. 2d. Similarly,
this control action satisfies Eq. 6f by the properties of
the Lyapunov-based controller Muñoz de la Peña and
Christofides (2008) where, if the conditions of Eqs. 8 and
9 are met, then if x̃A(tj) ∈ ΩρA

/Ωρs,A
, VA(x̃A) decreases

throughout the following sampling period (keeping the
closed-loop state in ΩρA

), or if x̃A(tj) ∈ Ωρs,A
, then

x̃A(t) ∈ Ωρmin,A
⊂ ΩρA

for t ∈ [tj , tj+1). By the same
arguments, hi(x̃i(tj)), j = k, . . . , k +N − 1, t ∈ [tj , tj+1),
is a feasible solution to Eq. 7 at every sampling time.

Part 2. To demonstrate that the closed-loop state and
state measurement are always maintained within Ωρi

⊂
ΩρA

under the conditions of the theorem until a sampling
time where an attack is performed that will be detected
at the subsequent sampling time, we begin by examining
t0. At t0, from the statement of the theorem, x̃i(t0) ∈ Ωρ′

i

(so that x(t0) ∈ Ωρsamp,i
⊂ ΩρA

from the implementation
strategy and definition of Ωρ′

i
). Eqs. 7f and Eq. 2b give:

∂Vi(x̃i(t0))

∂x
fi(x̃i(t0), ui(t0), 0) ≤ −α3,i(|x̃i(t0)|) (14)

Furthermore, defining:

V̇i(xi(τ)) =
∂Vi(xi(τ))

∂x
fi(xi(τ), ui(t0), w(τ)) (15)

for τ ∈ [t0, t1), and adding and subtracting
∂Vi(x̃i(t0))

∂x fi(x̃i(t0), ui(t0), 0) from the right-hand side
of Eq. 15, applying the triangle inequality, Eq. 14, Eq. 5,
Eq. 2a and x̃i(t0) ∈ Ω′

ρi
/Ωρs,i gives:

V̇i(xi(τ)) ≤ −α3,i(α
−1
2,i (ρs,i))

+ L′
x,iMf,i∆+ L′

x,iθv + L′
w,iθw

(16)

for τ ∈ [t0, t1). When Eq. 8 holds, this indicates that the
Lyapunov function value for the actual closed-loop state
will be less at the end of the sampling period than at the
beginning, and thus xi(t1) ∈ Ωρsamp,i ⊂ ΩρA

. However,
because of measurement noise at the beginning and end
of the sampling period, it does not guarantee that the
measurement will decrease. This is ensured, however, if
Eq. 10 holds, which enables the measured value of Vi to
decrease between two sampling periods and therefore to
be used in detecting whether an attack occurs. This also
ensures that x̃i(t1) is within Ωρ′

i
⊂ ΩρA

.

Applying this recursively, it is demonstrated that when
an attack will not be detected at the next sampling time,
the closed-loop state measurement at the next sampling
time will be within Ωρ′

i
and the closed-loop state will be

within Ωρsamp,i
. Specifically, at t1, a new steady-state will

be generated. By the assumption of the theorem that it
is possible to generate a new steady-state meeting the



requirements of Step 2 of the implementation strategy,
x̃i(t1) ∈ Ωρ′

i
/Ωρs,i for the new value of i (and by the

definition of Ωρsamp,i , xi(t1) ∈ Ωρsamp,i). The same ar-
guments as were applied at t0 then continue to hold so
that the closed-loop state is maintained within Ωρsamp,i

throughout the next sampling period, while the next state
measurement is in Ωρ′

i
. Finally, because the closed-loop

state is maintained within each Ωρi
before an attack that

would be detected at the next sampling time occurs, it
is also maintained in ΩρA

, guaranteeing feasibility of the
A-LEMPC at every sampling time before an attack is
detected. Finally, without an attack detected at the next
sampling time, Vi must decrease or else the attack would
be detected.

Part 3. Because an attack can only be detected at the
end of a sampling period using the method in Section 3.2
because it is based on evaluating whether Vi for the
measurement at tk+1 decreased compared to its value for
the measurement at tk, it is possible that an attack is
not detected over the sampling period before an increase
in Vi is detected. Eqs. 11-13 ensure that the closed-loop
state and measurement are within Ωρi

⊂ Ωρ′
A

when the
attack is detected. Specifically, Eqs. 11-12 ensure that
if the measurement at tk is within Ωρ′

i
, then the state

measurement is within Ωρsamp,i
so that the measurement

by tk+1 could in a worst-case be within Ωρh,i
. Since this

measurement can have noise, Eq. 13 dictates that the
farthest that the actual closed-loop state could be at tk+1

when the measurement is within Ωρh,i
is Ωρi , and thus the

actual and measured states are within ΩρA
.

3.4 Probing for Actuator Cyberattacks Using LEMPC:
Chemical Process Example

In this section, we present a process example to illustrate
the concepts described above, but without ensuring that
control-theoretic conditions are met (i.e., the designs are
not verified to be resilient to cyberattacks, but serve to
demonstrate aspects of the implementation strategy apart
from the theory). The example used is a continuous stirred
tank reactor (CSTR) in which a second-order, irreversible,
exothermic reaction A → B occurs. The dynamics of the
CSTR are as follows:

ĊA =
F

V
(CA0 − CA)− k0e

− E
RgT C2

A (17)

Ṫ =
F

V
(T0 − T )− ∆Hk0

ρLCp
e
− E

RgT C2
A +

Q

ρLCpV
(18)

Here, the state of the system is given by the reactant
concentration of species A, CA and temperature in the
reactor, T . The manipulated inputs are the reactant feed
concentration of species A, CA0, and the heat rate Q.
The values of the parameters used in the simulation are
V = 1m3, T0 = 300K, Cp = 0.231kJ/kg ·K, k0 = 8.46 ×
106m3/h·kmol,F = 5m3/h, ρL = 1000kg/m3, E = 5 ×
104kJ/kmol, Rg = 8.314kJ/kmol · K, ∆H = −1.15 ×
104kJ/kmol. The vectors of the state and input of the
process in deviation variable form are given by, x1 =
[x1,1 x1,2]

T = [CA−CAs T −Ts]
T and u1 = [u1,1 u1,2]

T =
[CA0 − CA0s Q − Qs]

T where the steady-state values are
x1s = [CAs Ts]

T = [1.22 kmol/m3
438.2 K]T , [CA0s Qs]

T =

[4.0 kmol/m3
0 kJ/h]T . The Explicit Euler method is used

to numerically integrate the process model, Eqs. 17-18, by
using an integration step of 10−4 h. The economic cost
function is selected to be Le = k0e

−E/(RT )C2
A.

We first demonstrate the concept that attacks can be
undetected while decreasing the Lyapunov function when
a constraint inspired by that in Eq. 7f is used. We
consider a case with no noise or disturbances (i.e., no
plant/model mismatch). For these simulations, Ωρ1

was
developed using the Lyapunov function V1 = xT

1 Px1,
where P = [1200 5; 5 0.1], the Lyapunov-based controller
h1(x1) = [h̄1,1(x1) h̄1,2(x1)]

T with components h̄1,1(x1) set
to 0 kmol/m3 and h̄1,2(x1) designed via Sontag’s control
law Lin and Sontag (1991), ρ1 = 300, and ρe,1 = 225.
A second stability region Ωρ2

was also developed that is
contained within Ωρ1

. A variety of methods could be used
to obtain an alternative steady-state; here, no attempt was
made to optimize economics, and a random alternative
steady-state x2s = [1.22 kmol/m3 450 K]T was selected for
the design of Ωρ2 , where V2(x) = xT

2 P2x2, with x2 = x1 +
x1s − x2s, P2 = [2100 10; 10 0.25], and ρ2 = 100. The i-th
LEMPC design using Ωρ2 was designed using a Lyapunov-
based controller with components h2,1(x2) = 0 kmol/m3

and h2,2(x2) selected using Sontag’s control law with re-
spect to V2(x2). In each LEMPC, N = 10 and ∆ = 0.01
h, and the value of the decision variable corresponding
to Q was scaled down by 105. The LEMPC optimization
problems were solved in MATLAB using fmincon.

The process was initialized at the state x1,init =
[x1,1(t0) x1,2(t0)]

T = [−0.21 kmol/m3 28.89 K]T (in devi-
ation variable form from x1s) and simulated over 0.1 h of
operation under four different cases: 1) at t0, the LEMPC
used for probing was designed using the i = 1 steady-state
and Ωρ1 (i.e., the LEMPC of Eq. 7 was used with i = 1
and implemented by enforcing Eq. 7f at the end of the
first sampling period), but the falsified input applied to
the process in place of the LEMPC’s input was a constant
actuator output of u1,1 = 0 kmol/m3 and u1,2 = 0 kJ/h
(“Attack 1”); 2) at t0, the LEMPC used for probing was
designed using the i = 2 steady-state and Ωρ2 with the
falsified input of Attack 1; 3) at t0, the LEMPC used for
probing was designed using the i = 1 steady-state and
Ωρ1 , but the falsified input applied to the process in place
of the LEMPC’s input was a constant actuator output
of u1,1 = 1.657 kmol/m3 and u1,2 = −1.141 × 105 kJ/h
(“Attack 2”); and 4) at t0, the LEMPC used for probing
was designed using the i = 2 steady-state and Ωρ2 with the
falsified input of Attack 2. It can be observed in Fig. 1 that
under Attack 1, whether the value of V1 or V2 is evaluated
over time, the attack would be flagged as the Lyapunov
function increases over the subsequent sampling period.
However, Attack 2 would not be detected by either of the
two LEMPC formulations in that sampling period.

We now consider attempting to use a control law in the
spirit of LEMPC for developing the steady-state to track
(instead of random steady-state selection). In this case,
the closed-loop system is again initialized from x1,init, but
a controller with a form inspired by Eq. 6 with x̃(tk)
set to x1,init is solved. The first control action is then
used to simulate the closed-loop system in open-loop to
investigate whether the state prediction at tk+1 would
serve as a suitable x2s. Even for this case where the control
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Fig. 1. V1 (top plots) and V2 (bottom plots) profiles over
0.1 h of operation for the process example in the
presence of different actuator cyberattack policies,
with no plant/model mismatch.

theory is not rigorously met, it would be required that
for driving the closed-loop state to a neighborhood of a
steady-state, that steady-state must be able to be reached
with inputs within the input bounds. In this case, however,
the predicted state after a single sampling period is at
CA = 1.016 kmol/m3 and T = 491.52 K, which would
require an input outside of the input bounds to maintain
the closed-loop state at this condition. Therefore, though
the closed-loop state prediction might pass through this
condition, it would not be able to remain at it. Various
strategies might be considered at this point for selecting
a new steady-state, such as exploring whether there are
steady-states within a ball around the predicted state from
the LEMPC that have the largest steady-state profit while
meeting the input constraints. However, as noted above, it
would be challenging in general to make profit guarantees.

4 Conclusion

This work discusses an actuator cyberattack-handling pro-
cedure for next-generation manufacturing systems in the
context of economic model predictive control. Using a
Lyapunov-based formulation of this control framework
with guarantees on the decrease of the Lyapunov function
over a sampling period following activation of a constraint
in the controller, we developed a strategy for detecting
actuator attacks. The reformulation of the controller is
performed in a manner that guarantees feasibility of both
an auxiliary and reformulated LEMPC’s at every sampling
time, and also maintains the closed-loop state and state
measurement within a characterizable region at all times
when an attack is not detected (even in the presence of
bounded measurement noise).
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