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Abstract:  Therapeutic protein productivity and product quality highly rely on cell metabolism of the fed-

batch process, which is a costly, time-consuming and lack of intracellular analytical diagnostic tools. Cell 

culture medium composition and feeding strategy is critical to regulate cell metabolism. In this study, we 

present an unorthodox approach to optimize CHO bioprocess by integrating conventional design-of-

experiments (DOE) methodology with genome scale model (GEM) flux analysis. Generic CHO-K1 

metabolic model was tailored and further integrated with CHO fed-batch metabolomic data to obtain a cell 

line- and process-specific model. In silico metabolic flux analysis was conducted via GEM to identify the 

critical medium components toward cellular growth and further evaluate their optimized flux values from 

thirty five simulated fed-batch DOE conditions. Glucose and valine were projected as the most critical 

nutrients in the process from the flux simulation analysis. Using this approach, previously identified 

metabolic inhibitor cytidine monophosphate accumulated in extracellular environment was found to be 

regulated by glucose, glutamine, aspartate, and alanine and further experimentally validated through dose-

dependent amino acid spiking study. A process diagnostic and control model was constructed from network 

topology modeling constructed through GEM and pathway enrichment analysis, which allowed 

optimization of medium components utilized in a fed-batch feeding process to better support cell 

metabolism and mitigate accumulation of metabolic inhibitors. 

Keywords: Therapeutic protein production, Fed-batch bioprocess, in silico model, FBA, Culture medium 

development, Metabolism shift

1. INTRODUCTION 

Biotherapeutics have emerged as one of the most effective 

treatment options for many diseases including cancers and 

autoimmune disorders. Chinese hamster ovary (CHO) cells 

represent the most widely used host cell for therapeutic 

recombinant protein production (Aggarwal, 2011). CHO 

expression hosts are characterized by their high nutrients 

uptake rate during cellular expansion and stationary phase. 

However, inefficient intracellular metabolism often prevents 

cells to fully utilize nutrients to support growth and protein 

production. Instead, significant fraction of fed glucose and 

amino acids are diverted into generation of toxic metabolites 

(Cruz et al., 2000, Lao and Toth, 1997).  Owing to this, tandem 

liquid chromatography-mass spectroscopy (LC-MS/MS) has 

emerged as one of the most powerful set of tools for various 

metabolomic studies due to its capability of analyzing 

countless of metabolites and medium additives from a single 

sample (Mohmad-Saberi et al., 2013, Hoang et al., 2021). 

These advances in metabolomics have enabled identification 

of additional cell generated inhibitory metabolites, other than 

lactate and ammonia (Mulukutla et al., 2017). In our most 

recent work, it has been shown that untargeted global 

metabolomics coupled LC-MS/MS can be applied to batch and 

fed-batch CHO bioprocess to identify six growth and titer 

production metabolic inhibitors generated from CHO 

metabolism (Kuang et al., 2021). 

Constraint-based flux balance analysis (FBA) is a 

computational approach to study metabolic networks with a 

well-established literature (Feist et al., 2009, Bordbar et al., 

2014). Coupled with a genome-scale model (GEM) network 

comprising of biochemical reactions capable of composing 

cellular metabolism, FBA can be employed to examine 

metabolic systems of various organisms. As such, a recent 

study showed the capability of tailoring the generic CHO GEM 

into host and recombinant cell-specific model to understand 

the genotypic and phenotypic traits differences between wild-

type and recombinant cells (Yusufi et al., 2017). Others 

successfully combined in silico modeling and metabolomic 

analysis to characterize fed-batch of CHO cultures (Selvarasu 

et al., 2012). Despite contributing to the overall fundamental 

understanding of CHO cell metabolism, these studies often 

remain singular, and the mechanisms underlying cellular 

metabolic shift under different process conditions, as well as 

the metabolic relationships between toxic by-products and 

their nutrient precursors in CHO intracellular network are not 

yet fully understood. In this study, we present an unorthodox 

approach to optimize CHO bioprocess by integrating 

conventional design-of-experiments (DOE) methodology with 

GEM flux. Generic CHO-K1 metabolic model was tailored 

and further integrated with CHO fed-batch metabolomic data 

to obtain a cell line- and process-specific model.  The study 

successfully establishes an in silico metabolomic platform 

relating metabolic inhibitors with their nutrient precursors 

which are experimentally validated based on amino acid dose-

dependent spiking study. The data obtained from the study 

altogether enables visualization of metabolic relationships 

between nutrients in the networks, providing a deeper 

mechanistic understanding into different CHO physiologies 



due to cellular metabolic shift with applications spanning from 

cell line evaluation, metabolic engineering to media 

optimization and biomanufacturing control. 

2. METHOD 

2.1 Flux balance analysis and genome-scale modeling 

The foundation of FBA assumes the metabolism of a single 

cell is defined by a system of 𝑛 reactions. Assuming [𝐶𝑖] 
denotes the concentration of metabolite 𝑖. The limiting steady 

state assumption of FBA at equilibrium condition (𝑡 → ∞) 

constrains the fluxes within an average, single cell 𝑐̂ consumed 

by FBA so that: 

𝑑[𝐶𝑖
𝑐̂]

𝑑𝑡
= ∑ 𝑆𝑖𝑗

𝑐̂ 𝜈𝑗
𝑐̂

𝑛

𝑗=1

= 0, ∀𝑖 (1) 

Here, 𝑆𝑖𝑗  is the stoichiometric coefficient for metabolite 𝑖 in 

reaction 𝑗 and the flux of reaction 𝑗 is 𝜈𝑗. FBA is predicated on 

the assumption that cells have been tuned through a 

biochemical exchanging process to a stage where they 

“optimally” utilize their resources, where “optimal” is 

measured by a function of the fluxes, 𝑔(ν). Hence, FBA 

studies metabolic processes through optimization problems 

and adaptations of the form:  

max  {𝑔(𝜈𝑐̂): 𝑆𝑐̂𝜈𝑐̂ = 0, 𝐿𝑐̂ ≤ 𝜈𝑐̂ ≤ 𝑈𝑐̂} (2) 

where 𝑆𝑐̂ is the stoichiometric matrix whose components are 

𝑆𝑖𝑗 . The objective function 𝑔(ν) is defined to be the rate at 

which biomass is created. For convenience, 𝑔(ν) is assumed 

to only contain the sole flux of the growth reaction (i.e., 

𝑔(𝜈𝑐̂) = ν𝑔𝑟𝑜𝑤𝑡ℎ). The vectors of lower bounds, 𝐿𝑐̂, and upper 

bounds, 𝑈𝑐̂, may contain fluxes of value ±∞, or some suitably 

large value, to indicate that a flux is unbounded. If either 𝐿𝑐̂ <

0 or  𝑈𝑐̂ > 0, then the biochemical reaction is said to be 

reversible. 

2.2 Growth and exchange rate calculation 

Growth rates of CHO cells were assumed to follow 

exponential growth behavior: 

𝑁𝑥 = 𝑁𝑥,0 ∙ 𝑒𝜇𝑡 (3) 

Here 𝑁𝑥,0 (×106 cells∙mL-1) is the number of cells at time 0 

(hr), 𝑁𝑥 (×106 cells∙mL-1) is the number of cells after culture 

time 𝑡 (hr). The 𝐼𝑉𝐶𝐷 profile of cell at time 𝑡𝑛 can be 

calculated as followed: 

𝐼𝑉𝐶𝐷𝑡𝑛
= 𝐼𝑉𝐶𝐷𝑡𝑛−1

+
(𝑉𝐶𝐷𝑡𝑛

+ 𝑉𝐶𝐷𝑡𝑛−1
)/2

∆𝑡
(4) 

Rearranging (1), cellular growth rate 𝜇 (1∙hr-1) therefore can 

be expressed as a log-based growth model: 

𝜇 = ln (𝑁𝑥/𝑁𝑥,0)/𝑡 (5) 

Assuming CHO cells growing exponentially, the metabolite 

exchange rates 𝑟 (mmol∙hr-1) can be estimated by evaluating 

the change in measured concentration 𝐶𝑖 (mmol) of metabolite 

𝑖 over time:  

𝑟 =
𝑑𝐶𝑖

𝑑𝑡
≈

∆𝐶𝑖

∆𝑡
 (6) 

2.3 Boolean network topology logic model 

Since metabolites and their corresponding pathways were 

reported in various mammalian systems other than CHO, a 

multi-stage in silico genome-scale network topology analysis 

was designed to explore and study metabolic by-products and 

their related pathways in CHO expression host. In this 

topology model, a set of logic rules was constructed to 

correlate a metabolite, through genome-scale metabolic model 

of cells, to upstream nutrient precursors. The main idea here is 

that, when applying this set of logic to the metabolite and the 

identified precursor, increasing the exchanged flux of 

upstream intake nutrient would also increase the generation 

flux of the downstream metabolite. Using this approach, the 

following operator notation was utilized: ¬ (not) and ∪ (or). 

For any two metabolites 1 and 2 in a biochemical reaction, the 

applied Boolean logic (𝐵) must follow:  

¬(𝐵1 ∪ 𝐵2) = −1 (7) 

For generalization, a series of chemical reactions containing 

metabolite 1 to metabolite 𝑖 must satisfy the logic of Boolean 

function 𝑓: 

∏ 𝑓(𝐵1
𝑖 + 𝐵2

𝑖 )

𝑛

𝑖=1

= −1 (8) 

2.4 Process control and optimization 

Briefly stated, GEM is a reconstruction of metabolic network, 

represented by a stoichiometric matrix of metabolites and 

reactions. Intracellular metabolic fluxes can be estimated by 

FBA with the optimization of a defined biological objective 

function based on constraints using a linear programming 

approach. The GEM of three different CHO cell lines 

including CHO-K1, CHO-S and CHO-DG44 were previously 

published (Hefzi et al., 2016). As the constraints of the FBA 

approach of the model, raw inputs of the model are the 

consumption or accumulation rate of amino acids, metabolites. 

Biomass growth rate in exponential phase and mAb 

productivity in stationary phase of CHO cell culture are the 

two objectives of optimization for solving the model using the 

linear programming approach. With the raw inputs as the 

constrains for both upper and lower boundaries, and the 

optimization objective specified, the biomass growth rate or 

mAb productivity can be estimated. 

2.5 Metabolic flux analysis medium optimization 

One of the controlling and optimization approaches in cell 

culture is to optimize the components of amino acids in the 

medium. The range of modification and the number of 

simulations within the range can be specified for different 

amino acids of interest. FBA can then be computed for all the 

conditions within the range of selected objective function 

targeted for optimization. For example, alanine and arginine 

are selected from the list with the range specified from 0.1 to 

2.0 for 10 steps. The biomass in exponential phase is selected 

as the objective of optimization. FBA can then estimate 

different biomass growth rates based on the raw inputs while 



modifying the flux of alanine and arginine in the range of 90% 

to 200%. The variation of each amino acids is calculated 

independently, therefore in total there are twenty estimations 

performed. Ten estimations from 90% to 200% are simulated 

for alanine and so is for arginine.  

3. RESULTS AND DISCUSSION 

3.1 CHO fed-batch process understanding and control 

To understand and control CHO cell metabolism, a high cell 

density (HCD) fed-batch process with nine different feeding 

conditions using a proprietary medium A was conducted, from 

which metabolomic data obtained from cells were obtained, as 

illustrated in Table 1. 

Table 1. Culture feeding strategy for high cell density process 

development. Feeding strategy was designed and referenced to 

the inoculation seeding volume (30 mL). 

Condition Feed Day Feed Level (% Seed Volume) 

Low Feed 2 Low – 5% (1.5 mL feeding) 

High Feed 2 High – 15% (4.5 mL feeding) 

Early Feed 2 Medium – 10% (3 mL feeding) 

Late Feed 4 Medium – 10% (3 mL feeding) 

Control 3 Medium – 10% (3 mL feeding) 

 

To study the effect of different feeding amount and timing on 

cell culture performance, the results from the study showed 

that low feed (1.5 mL feeding, starting on Day 2) and late feed 

(3 mL feeding, starting on Day 4) resulted in the highest peak 

VCD attained on Day 7 and Day 9, respectively. On the other 

hand, high feed (1.5 mL feeding, starting on Day 2) and early 

feed (3 mL feeding, starting on Day 4), despite showing the 

longest culture duration, generally suffered from relatively low 

peak VCD (see Figure 1 A). A similar trend was also observed 

from the IVCD profile of cells, as conditions with either 

exceedingly high or low growth rate due to employment of 

different feeding strategies altogether resulted in subpar IVCD 

profile (see Figure 1 B).  

 
Figure 1. Cellular phenotype characteristics of CHO-K1 cells 

cultivated at different culture conditions employed in HCD 

fed-batch process. (A) VCD profile. (B) Growth rate profile. For 

(A), fed-batch process was conducted at 0.5×106 cells∙mL-1 

seeding density in 30 mL culture volume. For (B), the growth rate 

was calculated from a natural log growth model, as described in 

Eq.1. 

3.2 Flux modeling analysis of CHO-K1 cells in HCD fed-

batch process 

To further understand the metabolism shift in different 

process, consumption fluxes of essential nutrients were 

incorporated as upper and lower bounds constraints for flux 

modeling analysis. All metabolite data were collected in the 

HCD fed-batch process, of which corresponding uptake fluxes 

were used to constraint CHO-K1 metabolic model for flux 

balance analysis (FBA). In the first stage of the study, 

experimental data obtained from the growth phase of HCD cell 

culture experiments were used as steady state inputs for the 

model with the objective function of maximizing biomass 

during linear growth phase. The simulation data were then 

compared against the experimental growth rate data as 

calculated via a log-based growth model, as shown in Figure 

2. In general, the percentage differences of the result obtained 

by constraining the metabolic model with experimental uptake 

rates and the result calculated from experimental VCD data 

were ranging from 2% to 14% difference, further validating 

the predictability of the model when coupling with 

experimentally measured LC-MS metabolomic data. 

 

Figure 2. Growth profile of CHO-K1 cells cultivated in HCD 

fed-batch process. Cellular growth rate as calculated from 

performing flux balance analysis using experimentally measured 

metabolic uptake rate with the objective of maximizing biomass 

using genome scale modeling (GEM) calculated via FBA was 

compared against experimentally growth rate (Experimental) 

calculated via a log-based growth model. 

3.4 Development of inhibitory metabolites control strategy 

via metabolic network topology  

CHO cells secrete inhibitory metabolites during growth and 

production phase which hampers cellular performance and 

negatively impacts titer productivity and various product 

quality attributes. Previous works have reported by-products 

and their amino acid inputs in various mammalian cell lines 

other than CHO (see Table 2). Recent study conducted in our 

group has identified seven different by-product metabolites 

and verified their inhibitory impact on cellular performance 

across different modes of CHO bioprocess (Kuang et al., 

2021). Thus, identification of their pathway of generation as 

well as their nutrient precursors is critical with regards to 

develop proper control strategy to minimize the accumulated 

concentration in CHO extracellular environment.  

Table 2. Inhibitory metabolites as described in this study and 

their respective nutrient precursors. Here, downstream 

metabolite by-products as identified in other mammalian cell lines 

from the literature are mapped to their nutrient precursors. Shown 

here:  *, essential amino acids. 
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Since metabolites and their corresponding pathways were 

reported in various mammalian systems other than CHO, a 

multi-stage in silico genome-scale network topology analysis 

was designed to explore and study metabolic by-products and 

their related pathways in CHO expression host. In this 

topology model, a set of logic rules was constructed to 

correlate a metabolite, through genome-scale metabolic model 

of cells, to upstream nutrient precursors. The main goal is that, 

when applying this set of logic to the metabolite and the 

identified precursor, increasing the exchanged flux of 

upstream intake nutrient would also increase the generation 

flux of the downstream metabolite. In this network topology, 

only reactions located at most three tiers away from the target 

inhibitor were considered. For a metabolic pathway to be 

considered critical in the network topology strategy, each 

metabolite must satisfy a rigorous rule of logic ordering at both 

two and three tiers of reactions, as illustrated in Figure 3 A 

and C. To illustrate the application of our network topology 

model, CMP – a metabolite previously identified to be growth 

and productivity inhibitor in CHO bioprocess – was explored 

in this study. Here, CMP was identified in the cytoplasm 

compartment of CHO cellular metabolic network. In silico 

modeling FBA was conducted based on metabolomic uptake 

rate dataset of cells under different feeding strategies, after 

which a list of reactions with active metabolic fluxes was 

extracted. Network topology was then applied to identify the 

critical amino acid related pathways, where a rigorous set of 

logic strategy was applied to CMP and any subsequent 

metabolite in a backward searching fashion starting from a 

metabolite of interest back to the elementary nutrient 

precursors upstream to its formation. 

Overall, the metabolic network topology strategy identified 

four unique logic strategies and thirty unique hits when 

searching for two tiers of reactions, and subsequently sixteen 

unique strategies with over seven hundred hits for three tiers 

of reactions (see B and D). Additionally, pathway analysis 

study of potential causation pathway leading to the formation 

of CMP is illustrated in Figure 4 A and B. Pathway 

enrichment was further performed to evaluate generation of 

CMP from different feeding conditions with respect to input 

amino acids. The simulation data revealed high access to 

nutrients (early feed and high feed) predicted a higher 

accumulation of CMP when searching at two tiers (Figure 4 

C) and three tiers (Figure 4 D) of reactions. Overall, the data 

obtained from the conducted analysis elucidated different fed-

batch feeding strategies can have an impact on the downstream 

accumulation profile of inhibitory metabolites, further 

suggesting optimization over the concentration range of 

supplemented medium constituents can better improve cellular 

phenotype and overall culture performance. 

 

Figure 3. Boolean logic matrix for metabolic network topology. 

(A) Network logic matrix and (B) Numbers of reactions identified 

for 2 layers of reactions. Similarly, (C) Network logic matrix and 

(D) Numbers of reactions identified for 3 layers of reactions. Here, 

a network topology strategy was developed to correlate target 

inhibitory metabolite to their nutrient input precursor through 

CHO metabolic network. In this topology network, green cells ( ) 

indicate a metabolite being consumed in a biochemical reaction, 

whereas yellow cells ( ) indicate a metabolite being generated. 

 

Figure 4. In silico metabolic network mapping and pathway 

analysis of inhibitory metabolite. Metabolic network mapping of 

downstream inhibitory metabolite to upstream nutrient precursors 

at two tiers (A) and three tiers (B) of reactions. Pathway analysis 

via CHO genome scale modeling at two tiers (C) and three tiers 

(D) of reactions predicting generation of inhibitory metabolite. 

Here, previously identified growth and productivity inhibitor CMP 

was identified in the cytoplasm [c] of CHO metabolic network. 

CMP was further mapped to input precursors including aspartate 

(asp), glutamine (gln), alanine (ala) and glucose (glc) to identify 

critical inhibitory metabolite-related pathways. Flux balance 

analysis was conducted based on metabolomic dataset, after which 

pathway enrichment was conducted on active reactions to evaluate 

generation of waste inhibitors under different fed-batch feeding 

strategies. 

3.5 Validation of metabolites pathway via amino acids spiking study 

As an effort to control and optimize the cellular phenotype in 

a standard CHO bioprocess, a dose-dependent nutrients 

spiking study was developed to identify key medium 

Substrates Metabolites
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Asn NAP (Bocca et al., 2018), TAA (Kim et al., 2011)
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2014)
Trp ICA(Mulukutla et al., 2017), TRI (Åkesson et al., 2018)
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constituents precursory to the formation metabolites. In this 

study, amino acid inputs including glutamine, alanine, 

aspartate, and glucose – previously explored in other 

mammalian systems (see Table 2)  and also predicted in the 

simulation analysis (Figure 3) – were added to a pool of 

studied substrates and spiked into CHO-K1 fed-batch cultures 

on Day 0 at different doses, as described in Table 3. 

The results of the dose-dependent nutrients spiking study are 

shown in  Figure 5. When glutamine, glucose, aspartate, and 

glucose were spiked into CHO cultures at two- and three-

factors higher than the control, a higher concentration of CMP 

and GMP released into extracellular environment was 

measured on Day 9, Day 12, and Day 14. Interestingly, the 

concentration of CMP and GMP from the three-factors 

condition as measured on Day 14 when compared against the 

control increased by 1.7-fold and 1.9-fold, respectively, 

further confirming the strong correlation between the 

supplemented pool of nutrients to the downstream formation 

of metabolites as previously explored in the in silico FBA 

study. 

Table 3. Dose-dependent nutrients spiking study in CHO-K1 

fed- batch process. In this analysis, each condition was spiked 

with different levels of substrates, after which downstream 

accumulated concentration of corresponding by-product 

metabolite was measured via LC-MS.  

 

 

Figure 5. Metabolite analysis results from dose-dependent 

nutrients spiking study. The accumulated concentration of (A) 

CMP and (B) GMP with supplemented nutrients spiked into CHO-

K1 fed-batch process increased by two- and three-factors (see 

Table 3) was measured. 

Downstream metabolic genes involved in CMP-related 

metabolic pathway nested in the pyrimidine metabolism as 

well as their respective enzyme expression level evaluated via 

qPCR were also studied (see Figure 6 B, C and D). Fed 

nutrients including glutamine generated from alanine and 

aspartate metabolism acts as substrate to generate n-

carbamoyl-l-aspartate (CBAP), which is further metabolized 

into CMP. Uridine-cytidine kinase 2 (Uck2) facilitates the 

conversion of CMP to cytidine which is further metabolized 

into β-alanine (β-Ala). Ultimately, β-Ala is converted to acetyl 

coenzyme A (AcCoA) towards energy production in the citric 

acid cycle via 4-aminobutyrate aminotransferase (Abat). 

Downstream metabolite cytidine can also be reversely 

synthesized to CMP through 5’-nucleotidase (Nt5). Thus, 

elevated enzymatic expression level of Uck2, Nt5 and Abat can 

serve as strong indication of excess CMP accumulated as 

response to different factors imposed by the dose-depending 

nutrients spiking study. 

The gene expression levels of Uck2, Nt5 and Abat as expressed 

on Day 3, Day 12 and Day 14 as quantified via qPCR are 

shown in Figure 6. In general, the results showed a higher 

expression level towards the later date of the culture, 

suggesting an increasing accumulation pattern of CMP as cells 

continuously metabolizing fed substrates. Unsurprisingly, the 

gene expression level of Uck2, Nt5 and Abat obtained from the 

CMP two-factors conditions were all higher when compared 

against the control, further agrees with the metabolite analysis 

results, and therefore successfully validates the simulated 

result obtained from the flux modeling analysis study. 

 
Figure 6. Gene expression analysis results from dose-dependent 

nutrients spiking study. (A) Schematic diagram of CMP-related 

metabolic pathway nested in the pyrimidine metabolism. The gene 

expression level of metabolic genes downstream to the formation of 

CMP were also evaluated via qPCR and presented as relative 

quantification (RQ) values. Shown here: (B) Uridine-cytidine kinase 

2 (Uck2), (C) 4-Aminobutyrate aminotransferase (Abat), and (D) 5'-

Nucleotidase (Nt5). Ala, alanine; CBAP, n-carbamoyl-l-aspartate; 

UMP, uridine monophosphate; CTP, cytidine triphosphate; CMP 

cytidine monophosphate; β-Ala, β-alanine; AcCoA, acetyl coenzyme 

A; , amino acid nutrient inputs; , metabolic inhibitor.  

3 Medium components analysis via in silico process DOE 

The low feed and late feed condition in Figure 1 were selected 

to build the FBA and understand the process. The media 

compositions are optimized through in silico process DoE. For 

the screening design of amino acids at these two conditions, 

the fractional factorial designs were constructed with all the 

amino acids as the factors and the biomass growth rate as the 

response in silico. Two level of factors were 70% and 130%, 

meaning the variation of the raw input flux data. Three central 

points (100%) were also included in the fractional factorial 

design. In total thirty-five experimental runs were designed. 

With all the modified inputs, the biomass growth rates were 

estimated by FBA (see Figure 7). Each row represented the 

DOE condition of each run of experiment. The estimated 

growth rates were listed at the last column of the table.  

Substrates Control
CMP/GMP 

Two-Factors
CMP/GMP Three-Factors

Ala [mM] 0.14 0.28 0.42
Asp [mM] 3.9 7.8 11.7
Gln [mM] 6 12 18
Glc [g·L-1] 5 7.5 10
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However, it was not straightforward to observe the relationship 

between the estimated growth rate and the DOE conditions of 

amino acids directly from the table. Therefore, the Partial least 

squares regression (PLS) approach was introduced to abstract 

the relationship. The DOE condition data and the estimated 

growth rates generated from the model were fitted to a PLS 

model to abstract the relationship between the output data 

(growth rate) and the input data (DOE condition data). The 

variable importance in projection (VIP) plot was generated to 

understand how each amino acid was affecting the variation of 

biomass growth rate. The VIP value of each amino acid 

indicated its importance in controlling the growth rate at that 

condition (see Figure 8). 

For the low feed and late feed condition, the most important 

amino acids components estimated were glucose, glutamine, 

lactate, asparagine, lysine, and serine, while that at high feed 

and early feed condition were valine, lysine, phenylalanine, 

cystine, arginine, and glucose. The difference in the top ranked 

amino acids and metabolites reflected the difference in cell 

metabolism at different conditions. When the low nutrient feed 

is applied at late stage of the cell culture, the metabolites that 

have a higher consumption (or accumulation rate) were at low 

level or depleted (or at high level), such as the consumption of 

glucose and glutamine (and accumulation of lactate). 

However, an early-stage feed with rich nutrient components in 

the media avoided such depletion or accumulation of 

metabolites. As the result, the variation in the media will not 

affect the cell growth as much as that in the former case. 

Instead, the valine plays an important role in the feed. The 

conclusion can be media ingredient and cell line specified. 

Valine is known as essential amino acids for cell culture and 

plays significant role in transport system in cell metabolism.  

The top ranked amino acids and metabolites in VIP plots were 

selected for further analysis in two experiment conditions. 

Optimization on the composition of these selected amino acids 

for maximum biomass growth rate was estimated by 

optimization design with respond surface methodology 

approach. The optimization design was constructed with the 

factors being selected from the top ranked amino acids and 

metabolites on the VIP plot of the screening process. Three-

level full factorial designs were established for two experiment 

conditions with the top six amino acids and metabolites 

mentioned in the previous paragraph as factors. In total, 732 

runs of experiment designed including three central points are 

constructed for each condition. FBA was applied to GEM to 

perform in silico experiments based on the designed conditions 

to estimate the biomass growth rate. The relationship between 

the top six metabolites and the calculated biomass growth rate 

was studied by response surface methodology to find the 

optimum composition of the selected six metabolites for 

maximum biomass growth rate. The design conditions and the 

estimated biomass growth rate were fitted to a quadratic model 

using least regression. The maximum biomass growth rates 

were found based on the quadratic model. The range of amino 

acids inputs were found based on the model to achieve the 

maximum biomass growth rate. 

 

Figure 7. Fractional factorial design with twenty-one factors at 

two levels (70% and 130%).. 

 

Figure 8. Variable importance in projection (VIP) plot of amino 

acids to biomass in fitted PLS model. (A) Condition 7: late feed 

and low feed. (B) Condition 3: early feed and high feed. 

The maximum biomass growth rate estimated for condition 3 

is higher than that in condition 7, which indicates the high feed 

and early feed indeed has potential for a higher biomass 

growth rate with proper optimization to the metabolism of cell 

culture. The optimized modification on metabolites in media 

is different for different experiment conditions as the cell 

metabolism and media composition are both different. The 

optimized values of metabolites being at around 0.3 is because 

of the optimization range set for the study. The maximum 

increase fraction of flux is set to 30% in this study since the 

design of experiments range is within 30%. The optimization 

design space is therefore within such boundary. The simulated 

optimization results suggested that the metabolites shall 

increase/reduce by the fraction specified in Table 1 to achieve 

the optimized combination of metabolites flux, which resulted 

the maximum biomass growth rate. Although the actual 

concentration of those metabolites may not be able to achieve 

the specific number indicated by the model due to the 

limitation in their solubility, the model provided a direction on 

optimizing the media at different feeding strategies. In this 

approach, we demonstrated that incorporating FBA and in 

silico DOE simulations is demonstrated can provide reveals 

insights concerning the study in optimizing medium 

components to achieve the maximum growth rate and 

productivity with simple experiments to be performed for the 

controlled conditions as raw input flux.  
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3.6 Medium components analysis via impact screening on 

biomass 

As briefly mentioned, providing CHO culture with nutrient 

rich medium can have a direct negative impact on cellular 

performance, mostly due to diversion of excess nutrients 

available in extracellular environment into inefficient 

pathways which produces metabolic inhibitory by-products. In 

this study, the relationship between the supplemented 

concentration of the amino acid precursors and their impact on 

growth was further explored via in silico sensitivity analysis of 

medium components. Here, FBA simulation was performed 

based on previously obtained metabolomic flux data. Golden-

section search is applied on cellular uptake flux of each amino 

acid to determine the lowest achievable down-regulated factor 

without compromising on the generation of cellular biomass, 

as shown in Figure 9. The final lower limit threshold at which 

amino acid flux can be reduced while still maintaining 

comparable level of growth rate to the control (no down-

regulated factor applied) was recorded and pooled towards 

subsequent medium optimization study. 

The results of the sensitivity analysis study are shown in 

Figure 9. The down-regulated factors of nine different amino 

acid precursors to the identified inhibitory metabolites – as 

previously shown in Table 2 – were further considered for the 

following medium optimization study. Since the utilized CHO 

culture medium as used throughout this study was intensified 

with concentrated medium components to maximize resource 

use, the final down-regulated factors as studied under this 

approach were slightly adjusted to allow complete dissolution 

of supplementing amino acid without requiring the adjustment 

of medium pH which could affect osmolality and further 

introducing another variable in play.  

3.7 Plackett-Burman design to optimize medium components 

In the following study, ten different amino acids as previously 

identified (Table 4) were added to a pool of components 

targeted for medium optimization strategy. A Plackett-Burman 

DOE design was incorporated to optimize medium 

components prioritizing the support of cellular expansion rate 

in a CHO fed-batch process. The amino acid concentrations 

were simultaneously varied to either high level (+1, same 

concentration as found in the cultivated medium) or low level 

(-1, with a down-regulated factor applied) and supplemented 

to the seed medium on Day 0. Overall, the design presented a 

screening matrix with twelve unique conditions along with a 

control (condition 13, no down-regulated factor applied). 

Critical process performance in terms of cellular phenotypic 

behavior such as VCD profile, IVCD profile and growth rate 

obtained from the conducted batch process were 

systematically evaluated to assess the impact of each variable 

across all tested conditions. In general, all conditions studied 

with at least four or more amino acid components subjected to 

decreased concentration exhibited improved cellular 

phenotypes. When comparing the best performing condition at 

each CPP against the control, the peak VCD profile of cells 

realized a 40% increase on Day 4 at 13.1×106 cells∙mL-1 

(condition 3) versus 8.8×106 cells∙mL-1 (control). Similarly, 

the cumulative VCD profile also realized a 15% increase on 

Day 6 at 6.1×106 cells∙mL-1 (condition 9) versus 36.1×106 

cells∙mL-1 (control). Interestingly, the effect of down-

supplementing amino acids realized the best improvement in 

cellular growth rate profile calculated by a log-based growth 

model at 2.9-folds increase on Day 1 with the highest growing 

condition (condition 1) comparing against the control. Overall, 

improvement in cellular performance throughout the entire 

culture duration (Day 0 to Day 6) with respect to the target 

product CPP was realized across all studied conditions. The 

results from the study altogether confirmed significant fraction 

of fed nutrients was diverted into non-regulated metabolic 

pathways generating inhibitory by-products; and thus, by 

effectively limiting the amount of supplemented amino acid 

nutrients in the cultivated medium, the impact of these 

identified rate-limiting factors was effectively mitigated, 

allowing cells to achieve a higher growth rate and better 

overall peak and cumulative cell densities.  

 

Figure 9. In silico impact simulation of reducing amino acid 

uptake fluxes on generation of cellular biomass.  Shown here: 

*, amino acid precursor of identified inhibitory metabolites. 

Table 4. Target identified amino acids and their corresponding 

down-regulated factors applied. 

Asn Asp Gln Ile Leu Pro Trp Ser Glu Met 

0.44 0.25 0.72 0.49 0.69 0.67 0.39 0.25 0.25 0.59 

4. CONCLUSIONS 

We present an unorthodox approach to optimize CHO 

bioprocess by integrating conventional design-of-experiments 

methodology with genome scale model flux analysis. Generic 

CHO-K1 metabolic model was tailored and further integrated 

with CHO fed-batch metabolomic data to obtain a cell line- 

and process-specific model. In silico metabolic flux analysis 

was conducted via GEM to identify the critical medium 

components toward cellular growth and further evaluate their 

optimized flux values from thirty-five simulated fed-batch 

DOE conditions. Glucose and valine were projected as the 

most critical nutrients in the process from the flux simulation 

analysis. Previously identified metabolic inhibitor cytidine 

monophosphate accumulated in extracellular environment was 

found to be regulated by glucose, glutamine, aspartate, and 

alanine and further experimentally validated through dose-

dependent amino acid spiking study. A process diagnostic and 

control model was constructed from network topology 

modeling constructed through GEM and pathway enrichment 

analysis, which allowed optimization of medium components 

utilized in a fed-batch feeding process to better support cell 

metabolism and mitigate accumulation of metabolic inhibitors. 
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