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Abstract: In the present work, the formulation of critical manifolds for state controllability
is proposed. These critical manifolds are a boundary in the design parameter space that splits
it into two regions, one where the controllability is guaranteed and the other one where the
dynamic system loses the controllability. We demonstrate that loss of controllability due to
model parameter variations induces a one-parametric nonlinear controllability boundary in the
two-dimensional parameter space. A heat exchanger is considered to illustrate the results of this
work showing that not all the combinations of design parameters guarantee the controllability
property.
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1. INTRODUCTION

State controllability is one of the properties that must be
guaranteed for designing some technical systems. Taking
into account conditions and restrictions on design param-
eters from the earliest stages, it helps not only to ensure
proper operation but also allows analyzing that transitions
between states meet restrictions imposed for economic
reasons, efficiency, quality, among others (Bahri et al.,
1997; Ekawati and Bahri, 2003; Havre, 1998; McAvoy and
Braatz, 2003; Seferlis and Grievink, 2001; Vinson and
Georgakis, 2000).

To design a dynamic system, Mönnigmann (2004); Ger-
hard (2010); Muñoz (2015) have developed a methodology
to derive critical boundaries to constrain the feasible set
where the system can be designed guaranteeing some sys-
tem properties, the so-called critical manifolds. Initially,
this approach was developed to make use of applied bi-
furcation theory for robust design of nonlinear systems
(Mönnigmann and Marquardt, 2002). Lyapunov’s indirect
method is used to show the local stability of steady states.
Stability boundaries correspond to those steady states for
which at least one eigenvalue is located on the imaginary
axis and the remaining eigenvalues are located in the open
left-half complex plane.

We want to point out that it had to be assumed that
the variations are slow compared to the time scale of
the system, i.e., inputs and disturbances vary only quasi-
statically compared to system dynamics. This restriction
was remedied by introducing new types of critical bound-
aries defined for the transient behavior of nonlinear sys-
tems (Gerhard et al., 2008), where input and state trajec-
tories are assumed to hit the constraints only tangentially
at a single (grazing) point (Gerhard, 2010). These two

distinct cases, namely the design for robust asymptotic
stability of steady states despite parametric uncertainty
and the design for robust feasibility of a transient, were
investigated simultaneously by Muñoz et al. (2012), where
the formulation of the augmented systems defining the
critical manifolds of a transient system considered that
the uncertain parameters also influence the steady-state
behavior of the nonlinear system.

The notions of critical boundaries, distances to these
boundaries, and their use in optimization problems have
been extended to other systems and problem classes.
Notably, an extension to discrete-time systems, including
the case of periodically operating systems that can be
treated with the theory for discrete-time systems by virtue
of Poincare maps, is given in (Kastsian and Mönnigmann,
2010, 2014). Likewise, the methods have been extended
to delay-differential equations which differ from all other
system classes in that they are infinite-dimensional (Otten-
Weinschenker, 2021).

However, the critical manifold based on controllability
has not been considered in the methodology proposed
by Mönnig mann and Marquardt (2002). Therefore, in
this work, we develop the mathematical condition to
guarantee the controllability of a class of dynamic systems
using the concept of a critical manifold. To illustrate the
results, a heat exchanger is considered for which the design
parameter space is split into two regions, one where the
controllability is guaranteed and the other one where the
dynamic system loses the controllability. These results are
very useful to design a dynamic system satisfying one of
the most important system properties.



2. CRITICAL MANIFOLDS BASED-ON
CONTROLLABILITY

2.1 System class

Let us consider the parametrized linear system defined by

dx(t)

dt
= A(p)x(t) +

m∑
i=1

ui(t) bi(p)(x)

= A(p)x(t) +B(p)u(t), (1)

where x ∈ Rn is the state variable, u ∈ Rm is the vector
of input variables, A(p) ∈ Mn(R) and B(p) ∈ Mn×m(R)
are the matrices that define the system parameterized by
design parameters p ∈ Rp.

According to Kalman (1960) it is said that a point x1 in
the state space of a system, Eq. (1), is controllable from
the state x0 in [t0, t1] if there is an input u defined in the
interval [t0, t1] such that it transfers the state of the system
from x0 in t0 to x1 in t1. A system is said to be controllable
if all points in its state space are controllable. To evaluate
this property, the controllability matrix is considered,

Mc =
[
B| AB| · · · | An−1B

]
n×nm . (2)

A linear dynamic system, Eq. (1), is controllable if and
only if the controllability matrix, Eq. (2), has rank n. Using
this criterion, in the following section, critical manifolds
are derived taking into account the design parameters p
in an implicit form. These critical manifolds will allow
restricting the parameter space during the design stage.

2.2 Derivation of critical manifolds based on controllability

Using the criterion of state controllability presented above,
the parameter space can be characterized by identifying
critical boundaries in which parameters affect the dy-
namic system showing different behaviors, for instance,
the region in the parameter space where the system
loses the controllability. To characterize those boundaries,
Mönnigmann and Marquardt (2008) proposed a general
scheme of derivation for the construction of critical mani-
folds. According to this scheme of derivation and consider-
ing the controllability rank criterion, two different forms to
compute the critical manifolds of controllability are used
depending on the number of inputs.

For a single-input single-output (SISO) linear dynamic
system, i.e., u ∈ R, the controllability matrix, Eq. (2),
becomes a square matrix with dimension n × n and the
rank criterion can be computed using the determinant,
i.e., a SISO linear system is controllable if and only if,
det(Mc(p)) 6= 0. Thus, the critical manifold (CM) can be
formulated as the boundary where the SISO system is not
controllable, i.e.,

CMSISO(p) = {p ∈ Rp| det(Mc(p)) = 0}. (3)

Note that this critical manifold depends implicitly on
design parameters p.

For multiple-inputs multiple-outputs (MIMO) linear dy-
namic system, u ∈ Rm, the controllability matrix, Eq.

(2), becomes a rectangular matrix with dimension n ×
nm. Although the rank criterion is easy to check when
a matrix is constant, a difficulty arises to define a critical
manifold mathematically when the matrices A and B are
parameterized by design parameters p. Thus, we propose
the following procedure to calculate the controllability
criterion.

First, let us consider the following Theorem (Friedberg and
Spence, 1982), which is useful to calculate the matrix rank.

Theorem 1. Let C, D ∈ Mn×nm(R). If P ∈ Mn×n(R)
and Q ∈Mnm×nm(R) are invertible square matrices such
that C = PDQ, then rank(C) = rank(PDQ).

Note that Theorem 1 establishes that the matrix rank is
conservative for a given matrix transformation.

Second, looking for a convenient diagonal shape of D
in Theorem 1, the singular value decomposition (SVD)
is proposed. Let m,n be positive integers and Mc(p) ∈
Mn×nm(R) the controllability matrix, Eq. (2). The singu-
lar value decomposition of Mc(p) is the factorization

Mc(p) = US(p)V T (4)

where U ∈Mn×n(R) y V T ∈Mnm×nm(R) are orthogonal
matrices and S(p) ∈ Mn×nm(R) is a diagonal matrix
parameterized by p of the form

S(p) =


σ1(p) 0 · · · 0 · · · 0

0 σ2(p) · · · 0 · · · 0
...

. . .
...

0 σn(p) 0 · · · 0

 .
where σ1(p) ≥ σ2(p) ≥ . . . ≥ σn(p) ≥ 0, are the values of
singular values of Mc(p) ordered in descending order and
are not negatives.

Third, using Theorem 1 and the SVD defined in Eq. (4),
rank(Mc(p)) = n if σi(p) 6= 0,∀i = 1, 2, . . . , n. If any
singular value is zero, it follows that the rank of the
controllability matrix is smaller, which means that the
MIMO linear system is not controllable. Thus, the critical
manifold (CM) can be formulated as the boundary where
the MIMO system, Eq. (1), loses the controllability as
follows

CMMIMO(p) = {p ∈ Rp|
∏

σi(p) = 0}. (5)

Note that this critical manifold also depends implicitly
on design parameters p, and the matrix controllability
criterion can be checked in a continuous form when design
parameters p are modified.

2.3 Computational issues

To construct the controllability conditions defined by Eqs.
(3) and (5), the Symbolic Math Toolbox (Matlab®) was
used, obtaining parametrized critical manifolds. We want
to point out that from a computational point of view,
the evaluation of controllability conditions will depend on
a threshold from which the equality to zero is satisfied.
Therefore, a “zero-interval” must be defined where we



accept the controllability loss. Thus, a one-parametric
nonlinear controllability boundary in the two-dimensional
parameter space can be defined. Note that the “zero-
interval” will depend on the magnitudes of variables and
parameters of the mathematical model.

3. CASE STUDY: HEAT EXCHANGE

An indirect contact heat exchange is considered, in which
fluids do not interact directly but rather through struc-
tures such as tubes and shells. The mathematical model
and its values are taken from Marin et al. (2004). The
following assumptions are considered:

(1) The heat transfer coefficients and the fluid and wall
material properties of the exchanger are constant.

(2) The fluids are incompressible liquids and there is no
accumulation of mass along the heat exchanger.

(3) There are no heat losses to the environment.
(4) The heat exchanger does not perform or receive any

kind of work around.
(5) Only the change in internal energy is taken into

account. Kinetic and potential energy changes are
neglected.

The energy balance for the cold fluid is

dQ

dt
+
•
vcρc

(
Ĥc (Tc,i)− Ĥc (Tc,o)

)
=
dET,c
dt

, (6)

where the subscript c represents the cold fluid, the sub-
script i represents the inlet, the subscript o represents the
outlet, T is the temperature, Q represents heat transferred

between the two fluids,
•
v is the volumetric flow, ρ is the

density, Ĥ is the enthalpy per unit mass and ET is the total
energy. To define all the terms in Eq. (6), the following
constitutive equations are considered

dET,c = (ρV CV dT )c , (7)

Ĥc (T ) = (CP (T − TR))c , (8)

dQ

dt
=UA×∆T, (9)

where V is the volume occupied by the fluid in the heat
exchanger, CP and CV are the heat capacities at constant
pressure and at constant volume, respectively, TR is the
reference temperature, U is the global heat transfer coef-
ficient, A is the transfer area, and ∆T is the temperature
difference between the two currents through the entire sur-
face A. ∆T is defined as the logarithmic mean temperature
difference (LMTD) which takes into account the spatial
variations of the temperature difference between the fluids.
Countercurrent flow is used since it is carried out more
effectively. LMTD is defined as follows

∆T = LMTD =
(Th,i − Tc,o)− (Th,o − Tc,i)

ln
(
Th,i−Tc,o

Th,o−Tc,i

) . (10)

Replacing Eqs. (7), (8), (9) and (10) in Eq. (6), and using
the similar procedure for the hot fluid with subscript h
representing the hot fluid, we get the mathematical model
for the heat exchanger

dTc,o
dt

=

(
CP
CV

•
v

V

)
c

(Tc,i − Tc,o) +
UA× LMTD

(ρV CV )c
, (11)

dTh,o
dt

=

(
CP
CV

•
v

V

)
h

(Th,i − Th,o)−
UA× LMTD

(ρV CV )h
. (12)

The inlet temperatures Tc,i, Th,i are the manipulated
variables, while the temperatures output Tc,o, Th,o are the
states of the system.

3.1 Model linearization and state space formulation

To apply the methodology presented above, a linear dy-
namic model is required. Thus, we linearize Eqs. (11) and
(12) getting the following parametrized linear ordinary
differential equations

dT ′c,o
dt

= αT ′c,o + βT ′h,o + γ
•
v
′
c + ζT ′c,i + ηT ′h,i , (13)

dT ′h,o
dt

= φT ′c,o + ϕT ′h,o + ψ
•
v
′
h + ϑT ′c,i + κT ′h,i , (14)

with

α=−
(
CP

CV

•
v
V

)
c,SS
− UAΓ

(ρV CV )c
, β = − UA∆

(ρV CV )c
,

γ =
(
CP

CV

1
V

)
c

(Tc,i − Tc,o)SS , η = UAΓ
(ρV CV )c

,

ζ =
(
CP

CV

•
v
V

)
c,SS

+ UA∆
(ρV CV )c

, φ = UAΓ
(ρV CV )h

,

ϕ= UA∆
(ρV CV )h

−
(
CP

CV

•
v
V

)
h,SS

,

ψ =
(
CP

CV

1
V

)
h

(Th,i − Th,o)SS ,

ϑ=− UA∆
(ρV CV )h

, κ =
(
CP

CV

•
v
V

)
h,SS

− UAΓ
(ρV CV )h

,

and

LMTD′ = Γ
(
T ′h,i − T ′c,o

)
+ ∆

(
T ′c,i − T ′h,o

)
, (15)

Γ =

 1

ln

(
Th,i−Tc,o

Th,o−Tc,i

) − (Th,i−Tc,o−Th,o+Tc,i)

ln

(
Th,i−Tc,o

Th,o−Tc,i

)2

(Th,i−Tc,o)


SS

,

∆ =

 1

ln

(
Th,i−Tc,o

Th,o−Tc,i

) − (Th,i−Tc,o−Th,o+Tc,i)

ln

(
Th,i−Tc,o

Th,o−Tc,i

)2

(Th,o−Tc,i)


SS

,

where the subscript SS corresponds to the steady state
and (′) represents the deviation variable.

Thus, model in the state space is as follows

dx

dt
=

[
α β
φ ϕ

]
x+

[
ζ η
ϑ κ

]
u, (16)

where x and u are

x(t) =

[
x1(t)
x2(t)

]
=

[
T
′

c,o(t)

T
′

h,o(t)

]
, (17)



u(t) =

[
u1(t)
u2(t)

]
=

[
T
′

c,i(t)

T
′

h,i(t)

]
, (18)

3.2 Controllability critical manifold for the heat exchanger

For the paremetrized linear dynamic system defined in Eq.
(16), the controllability matrix, according to Eq. (2) is
given by

Mc =

[
ζ η αζ + βϑ αη + βκ
ϑ κ φζ + ϕϑ φη + ϕκ

]
2×4

. (19)

Note that Γ, ∆, β, γ, φ, ψ, ϑ y η depend on the properties
of the fluids, design parameters, and operating conditions,
so they take finite values different from zero from a prac-
tical point of view.

The singular value decomposition is applied to the control-
lability matrix (19) obtaining the following equivalence

Mc = U

[
σ1 0 0 0
0 σ2 0 0

]
2×4

V T . (20)

The state controllability criterion states that the system
is controllable if and only if the controllability matrix, in
this case (19), has full rank, which is equivalent to singular
values σ1 and σ2 of Eq. (20) different to zero. Thus, the
controllability critical manifold is build according to Eq.
(5)

CMMIMO(p) = {p ∈ Rp| σ1(p)σ2(p) = 0}. (21)

3.3 Simulation results

To sketch the form of this controllability critical manifold
for the heat exchanger, a specific operating point and
fluid properties are taken from (Kara and Güraras, 1960),
and summarized in Table 1. The heat exchanger tubes
and shell internal diameter, di,t and di,c respectively, are
considered as the design parameters to show the effect to
the controllability criterion. These design parameters are
related with the volume V of each compartment, namely
tubes and shell. We want to point out that singular values
σi given by the SVD, Eq. (20), depend implicitly on both
chosen design parameters, the shell internal diameter di,c
and the tubes internal diameter di,t. Using the parameter
values established in Table 1 and considering the mathe-
matical operation to compute the controllability condition
(21), the “zero-interval” for this heat exchanger is (−1 ×
10−6, 1× 10−6).

Continuously dependency of design parameter with the
mathematical condition, σ1(p)σ2(p), used to formulate the
controllability critical manifold, is shown in Figure 1. Note
that there exist values of the design parameters where the
product σ1(p)σ2(p) 6= 0 guaranteeing the heat exchanger
controllability. Controllability critical manifold, Eq. (21),
splits the design parameter space in one side where the
heat exchanger is controllable and on the other side where

Table 1. Fluid properties and operating point
of the heat exchanger

Hot Fluid Cold Fluid

Fluid Water Water

Mass flow
[
kg
s

]
13.88 8.33

Inlet temperature [K] 340.15 290.15
Outlet temperature [K] 326.36 313.15

Density
[

kg
m3

]
979.4 999.0

Heat capacity
[

kJ
kgK

]
4.188 4.184

Viscosity
[
Ns
m2

]
× 106 420 1080

Thermal conductivity
[

W
mK

]
× 103 660 598

Restrictions Maximum allowed pressure drop = 12000Pa

Materials used: Carbon steel
Thermal conductivity = 60W/mK

Tube thickness = 0.002m
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Fig. 1. Continuously dependency of design parameter with
the mathematical condition, σ1(p)σ2(p), for the heat
exchanger.

the heat exchanger loses the controllability, as shown in
Figure 2.
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Fig. 2. Controllability critical manifold for the heat ex-
changer. The red region represents the combination
of design parameters where the dynamic system loses
the controllability. (Red region) “zero-interval”: (−1×
10−6, 1× 10−6)



To provide certain validation for proposed method, a sim-
ulation result with the combination of design parameters
in both controllable and non-controllable region are con-
sidered. The initial condition and two set of diameters are
established as follows,

x (0) =
[
T ′c,o (0) , T ′h,o (0)

]
= [20,−15] ,

P1 = (di,t,1, di,c,1) = (0.01188, 0.489) ,

P2 = (di,t,2, di,c,2) = (0.035, 1) .

P1 is located on the controllable region of Fig. 2 and
corresponds to the optimal values obtained in (Kara and
Güraras, 1960). P2 was selected into the non-controllable
region. For both P1, P2, the open-loop system is stable
because all the eigenvalues of the matrix A(p), Eq. (16),
are located on the left-hand side of the complex plane.
The open-loop transient behavior of the heat exchanger
for both parameter sets P1 and P2 are shown in Figs. 3
and 4, respectively. Note that for the parameter set P1 the
open-loop behavior is better than for the parameter set P2.
Although the heat exchanger is stable for both parameter
sets and the steady state is reached in both cases, for the
parameter set P2 the system required more time to reach
the steady state, which is undesirable to design the closed-
loop system.

At the design stage, these results are very useful because
the values of the parameters should be chosen in such a
way that they do not cause the system to reach values
that are not allowed for reasons of safety, product quality,
among others. Additionally, with this mathematical for-
mulation, the normal vectors approach developed in (Mön-
nig mann and Marquardt, 2002; Gerhard, 2010; Muñoz,
2015) can be applied to the robust design guaranteeing
state controllability of dynamic systems.

Fig. 3. T ′c,o and T ′h,o profiles of the heat exchanger us-

ing the set of parameters P1 = (di,t,1, di,c,1) =
(0.01188, 0.489) which are located on the controllable
region of Fig. 2.

4. CONCLUSIONS

Through the full-rank criterion for the state controllability
of linear dynamic systems proposed by Kalman (1960),
in the present work, the mathematical representation of
controllability critical manifolds depending on design pa-
rameters of the system was obtained using the derivation
scheme proposed in (Mönnigmann, 2004; Gerhard, 2010;
Muñoz, 2015). These critical boundaries split the design
parameter space in two regions, one where the controlla-
bility is guaranteed and the other one where the dynamic
system loses the controllability.

Fig. 4. T ′c,o and T ′h,o profiles of the heat exchanger using

the set of parameters P2 = (di,t,2, di,c,2) = (0.035, 1)
which are located on the non-controllable region of
Fig. 2.

A heat exchanger was considered to illustrate the results,
showing that there exist values of the design parameters
where the controllability is not guaranteed. These control-
lability boundaries are useful for the simultaneous design
of a system and its control, the so-called integrated design
approach. Future work will be the comparison between the
use of state controllability criteria for parametrized linear
systems and the state controllability criteria for nonlinear
systems.
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Muñoz, D.A., Gerhard, J., and Marquardt, W. (2012).
A normal vector approach for integrated process and
control design with uncertain model parameters and
disturbances. Comput. Chem. Eng., 40, 202–212.

Otten-Weinschenker, J., M.M. (2021). Robust optimiza-
tion of stiff delayed systems: application to a fluid cat-
alytic cracking unit. Optim Eng. doi:10.1007/s11081-
021-09654-8.

Seferlis, P. and Grievink, J. (2001). Process design and
control structure screening based on economic and static
controllability criteria. Comput. Chem. Eng., 25(1),
177–188.

Vinson, D.R. and Georgakis, C. (2000). A new measure of
process output controllability. J. Process Contr., 10(2-
3), 185–194.


