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Abstract: Soil moisture estimation is an essential element in the implementation of a closed-
loop irrigation system. The determination of the best locations to install the sensors such that
good state estimation can be obtained is an important problem. In our previous work, this
issue has been addressed by employing the modal degree of observability based on extensive
simulations. It was found that optimally placed sensors can lead to much-improved soil moisture
estimation performance. However, it is unclear whether the significantly improved estimation
performance can still be observed in actual applications. In this work, we consider an actual
agricultural field in Lethbridge, Alberta, Canada, and study the impact of sensor placement
in soil water estimation. Soil moisture measurements from 42 soil moisture sensors installed
at different depths were collected for one growing season. First, a three-dimensional agro-
hydrological model with heterogeneous soils is developed. Then, a state estimator designed
based on the extended Kalman filter (EKF) is adopted to estimate the soil water content.
Subsequently, we apply the modal degree of observability to the three-dimensional system and
determine where the best sensor locations are. Different scenarios are considered to estimate
the soil water content and the estimation results are analyzed for all the scenarios.

Keywords: Sensor placement; degree of observability; state estimation; extended Kalman filter,
Richards equation.

1. INTRODUCTION

Freshwater scarcity is becoming a serious issue world-
wide primarily due to population growth, climate change,
and increasing pollution (UNESCO (2009)). Of the total
amount of freshwater, about 70% is consumed in the agri-
cultural activities, with the main consumer being irriga-
tion (WWAP (2018)). Currently, the water-use efficiency
in irrigation is estimated to be 60% due to poor irriga-
tion strategies (UNESCO (2009)). In order to mitigate
the freshwater supply crisis, the water-use efficiency in
agriculture irrigation needs to be improved. One promising
solution to improve the water-use efficiency is to use a
closed-loop irrigation system where a controller uses real-
time field conditions to make the best irrigation deci-
sions (Nahar et al. (2019)). However, in implementing the
closed-loop irrigation system, the soil moisture informa-
tion of the entire field which should be fed back to the
controller is required. On the other hand, the agriculture
fields usually are of large scale and installing sensors in the
whole field is impractical. Therefore, the main barrier in
implementing the closed-loop irrigation system is the lack
of soil moisture measurements. To address this issue, using
state estimation techniques which reconstruct full states
information based on the measurements of a small number
of sensors have been proposed. Due to the nonlinearity
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of the field model, the nonlinear state estimators such as
extended Kalman filter (Reichle et al. (2002); Agyeman et
al. (2021)), ensemble Kalman filter (Zhang et al. (2018)),
and particle filter (Pasetto et al. (2012); Montzka et al.
(2011)) have been typically used to address the problem
of soil moisture estimation in the literature.

In the above studies, the optimal sensor placement has not
been considered. Because of the limited number of sensors
in the agricultural fields, the determination of the best
locations to install the sensors such that good state esti-
mation can be obtained is an important problem. In Nahar
et al. (2017), Nahar and co-authors proposed to use the
observability analysis to find the optimal sensor locations.
However, the applicability of this method was restricted to
one-dimensional systems. Then, in our recent work, (Sahoo
et al. (2019)), the optimal sensor placement problem has
been addressed by employing the modal degree of observ-
ability. It was demonstrated the optimally placed sensors
can improve soil moisture estimation performance. How-
ever, it is unclear whether the optimal sensor placement
can significantly improve the estimation performance in
actual applications. Moreover, in all the above studies,
homogeneous soil parameters or simple arrangements of
different soil types have been considered.

In this work, we investigate the impact of sensor placement
in soil water estimation of agro-hydrological systems with
heterogeneous soils for an actual field. The actual field
studied in this work is located in Lethbridge, Alberta,



Fig. 1. The layout of the studied field

Canada. First, 42 soil moisture sensors were installed at
different depths of the field to collect the soil moisture
measurements for one growing season. Next, a three-
dimensional agro-hydrological model with heterogeneous
soil parameters of the studied field is developed. Then,
the extended Kalman filter (EKF) is chosen as a state
estimator to estimate the soil water content. Subsequently,
we apply the modal degree of observability to the three-
dimensional system to determine the best locations of
the sensors. Finally, estimation results are obtained and
analyzed to investigate the effect of sensor placement
on the performance of soil moisture estimation in actual
applications.

2. DESCRIPTION OF THE STUDIED FIELD

The agricultural field studied in this work is located in
Lethbridge, Alberta, Canada. The layout of the field is
shown in Figure 1. The field is a circular one with a radius
of about 50 meters. The depth of the field is 75 cm in the
simulations of this work. The soil texture consists of three
types of soil: clay, silt, and sand. Each area of the field has
a different percentage of the soil types that makes the soil
profile heterogeneous. Thus, the soil profile of the field has
different properties at various zones. In the studied field, a
centre pivot is used as the irrigation implementing system.
In irrigation time, the center pivot rotates at a speed of
0.011 m/s.

The soil profiles at 60 points of the studied field were sam-
pled. The soil profile data will be used in Section 3.2 to in-
terpolate the soil parameters of the entire field. Moreover,
42 watermark sensors were installed in the field at different
depths (14 sensors at the depth of 25 cm, 14 sensors at the
depth of 50 cm, and 14 sensors at the depth of 75 cm, below
the surface) to measure the pressure head of these loca-
tions. The measurements were collected every 60 minutes
from June 19 to August 13, 2019. Some irregular features
in the real dataset, increase the model plant mismatch
and cause the overall state estimation more challenging.
This data will be used in Section 7 to estimate the soil
moisture of the entire field through a state estimator. The
precipitation data of the studied field was obtained from
the Alberta Climate Information Service (ACIS) website
( https://agriculture.alberta.ca/acis/). Figure 2 shows the
precipitation data on a daily basis for the period under
investigation.
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Fig. 2. Daily precipitation data of the studied field during
the period under investigation
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Fig. 3. An agro-hydrological system (Bo et al. (2020))

3. MODELING OF THE WATER DYNAMICS OF
THE STUDIED FIELD

3.1 Agro-hydrological system description

An agro-hydrological model characterizes the hydrological
cycle between the soil, the water, the atmosphere, and
the crop. Figure 3 provides an illustration of an agro-
hydrological system (Bo et al. (2020)). The dynamics of
soil water can be modeled using the Richards’ equation as
follows (Richards (1931)):
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= ∇ · (K(h)∇(h+ z))− S (1)

where h (m) is the pressure head, θ (m3m−3) is the
volumetric water content, t (s) is time, z (m) is the spatial
coordinate, K(h) (ms−1) is the unsaturated hydraulic
water conductivity, C(h) (m−1) is the capillary capacity,
and S (m3m−3s−1) denotes the sink term, representing
the root water extraction rate. In equation (1), the soil
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Fig. 4. Soil texture of the surface of the investigated field

where θs (m3m−3), θr (m3m−3), Ks (ms−1) are the
saturated volumetric moisture content, residual moisture
content and saturated hydraulic conductivity, respectively.
n and α are curve-fitting soil hyrdraulic properties.

3.2 Interpolation of soil parameters

The parameters θs, θr,Ks, α, and n form a set of soil
parameters that determine the soil properties of the field.
Due to the heterogeneity of the soil in the studied field,
the soil parameters are different at different points of the
field. In fact, each point in the field which corresponds
to a node in the discretized model has its own set of
soil parameters. These soil parameters are unknown and
need to be obtained. In this work, we use the Kriging
interpolation method (Matheron (1963)) to estimate the
soil parameters of the entire field. We first used the 60
soil samples of the studied field and determined the soil
texture type of the sampled points by measuring the
percentage of the clay, silt, and sand soils existing in the
samples. Next, we obtained the set of soil parameters
for these sampling points based on the composition of
the soil types (Carsel et al. (1988)). Subsequently, we
used the soil parameters of these 60 sampled points as
the measurements in the Kriging interpolation method to
interpolate the soil parameters of the entire field. Figure 4
shows the interpolated soil parameters of the surface of the
studied field. The results show that the soil parameters of
the field are heterogeneous.

3.3 Polar form of Richards’ equation

In this paper, the center pivot is considered as the irriga-
tion implementing system in the studied field. In order to
model the circular movement of the centre pivot, Richards’
equation is expressed in cylindrical coordinates as follows
(Agyeman et al. (2021)):
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where r, θ, z represent the radial, azimuthal, and axial
directions, respectively.

3.4 Model discretization

Since the polar form of the Richards’ equation is a non-
linear partial differential equation, numerical solutions are
needed to solve this equation. In (Agyeman et al. (2021)),
the two point central finite difference scheme is employed
to discretize the PDE with respect to the spatial variables
( r, θ, z). Then, some boundary conditions were imposed
to solve the resulting ODE. For example, the symmetry
boundary condition ∂h

∂r
|C = 0 at the centre (C) of the

field to deal with singularity that occurs at r = 0, or the
Neuman boundary condition ∂(h)

∂z
|T = −1− Uirr

K(h)
at the top

(T ) of the field at z = 0, to incorporate the irrigation
rate Uirr(ms−1) into the Richards’ equation. The same
numerical model development and discretization scheme
is used in this paper. Specifically, we discretize the field
into 6, 40 and 22 nodes in the radial, azimuthal and axial
directions, respectively. The head pressure of the soil at
these discretized nodes are the states of the system.

3.5 State-space representation of the field model

The field model is expressed in state space form as:

ẋ(t) = F (x(t), u(t)) + ω(t) (5)

where x(t) ∈ RNx represents the state vector containing
Nx = 5, 280 pressure head values for the corresponding
spatial nodes. u(t) ∈ RNu and ω(t) ∈ RNx represent
the input vector and the model disturbances respectively.
Specifically, in this work, the sensors directly measure the
states of the system and the output vector y(k) is the head
pressure (h) at the measured nodes of the field. Thus, the
output equation simply represents a matrix (C) indicating
which states are measured by the sensors:

y(t) = Cx(t) + v(t) (6)

where y(t) ∈ RNy and v(t) ∈ RNy respectively denote
the measurement vector and the measurement noise. The
matrix C is determined by the sensor placement algorithm.

4. OPTIMAL SENSOR PLACEMENT

In order to determine the best locations to install the
sensors in the agricultural fields, Sahoo and co-authors
proposed to use the modal degree of observability (Sahoo
et al. (2019)). They demonstrated the degree of observabil-
ity tells us how strongly or weakly observable a system is
and it can be used as a measure of the optimality of sensor
placement. In this paper, we use the algorithm presented
in Sahoo’s work (Sahoo et al. (2019)). In the following, we
summarize this algorithm.

Modal degree of observability which was inspired from
the PBH test, analyzes the ability of a sensor node to



estimate other nodes of the system. For a node i at a
specific operating point (k), the normalized measure of the
modal degree of observability can be calculated by (Gu et
al. (2015))

O
(k)
i =

n∑
j=1

(1− λ2
j (A

(k)
d ))v2ij (7)

where A
(k)
d is the discretized model Jacobian matrix at

time k that can be obtained from A
(k)
d = eA(k)T when T is

the sampling time, and λj(j = 1, . . . , n) are the eigenvalues

of matrix A
(k)
d . Based on the definition (Sahoo et al.

(2019)), the observability of the system is the highest when
the sensors are located at nodes with the highest degree
of observability. Thus, the determination of the optimal
sensor placement which is based on the maximization of
the degree of observability, consists of three steps:

(1) At each operating point (k), calculate the normalized

measure of the modal degree of observability O
(k)
i for

all the system nodes i, i = 1, . . . , n, where n is the
total number of the states.

(2) Compute the final modal degree of observability (Oi)
for each node as the average value of the modal degree
of observability at each operating points.

(3) Order the measures Oi, i = 1, . . . , n, according to
their values. The optimal locations to place the sen-
sors are the nodes with the highest Oi values.

In the following, we describe how the above sensor place-
ment algorithm can be applied to the system considered in
this work. Firstly, the Backward Differentiation Formulas
(BDFs) methods are used to approximate the time deriva-
tive in Eq. (5) and obtain the state trajectory (x(t)). To
implement the BDFs methods, the cvodes integrator in
CasAdi (version 3.5.1) are used (Agyeman et al. (2021)).
Then, a symbolic approach using CasAdi is employed to
calculate the Jacobian matrix (A) which is required in im-
plementation of the optimal sensor placement algorithm.
In calculation of Jacobian matrix, the state trajectory
obtained from previous step is required at each operat-
ing point (k). Finally, we calculate the discretized model
Jacobian matrix from Ad(k) = eA(k)T and use it in Eq. (7)
to obtain the degree of observability for all nodes of the
system at a specific operating point.

Figure 5 represents the modal degree of observability for
different nodes of the system considered in this work. From
Figure 5, it can be seen that nodes between 240 and 480,
located at 65 cm below the surface layer, have relatively
higher values of the modal degree of observability around
0.0574, while placing sensors on the surface corresponding
to nodes 5040 to 5280 gives the lowest modal degree of
observability about 0.0075. Furthermore, the location of
the optimal sensor placement is node 244 which has the
highest degree of observability value, 0.148.

5. SOIL MOISTURE ESTIMATOR DESIGN

Once the system observability is checked and the optimal
sensor placement is found, state estimation can be per-
formed. In this work, we choose the discrete-time EKF
to estimate the states. The detail steps are described as
follows:
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Fig. 5. Modal degree of observability of different nodes

In this work, we rely on extensive simulations to determine
the appropriate tuning EKF parameters (matrices P,Q
and R). We examine the estimated state trajectories and
estimation error for different tuning parameters and choose
tuning matrices that improve significantly the estimation
performance and result in a smaller estimation error.

6. INITIAL SIMULATION STUDY

In this section, we evaluate the modal degree of ob-
servability results for large-scale three-dimensional agro-
hydrological systems using state estimation with simulated
data. In this study case, the initial condition of the head
pressure (x0) at each state is a random variable between
-0.95 m and -0.8 m. The irrigation amount is a constant
rate of 3.6 mm/day which is applied to the farm surface
in the first 8 hours of each day. The three-dimensional
agro-hydrological system obtained in Section 3, is used to
simulate the model and obtain the head pressure of the
actual system and is further used in the prediction step of
the estimator.

In EKF design, 20% mismatch in the initial condition of
each state is considered. Twelve head pressure measure-
ments are used to correct the prediction state estimates
in the update step of the EKF at each sampling time.
Process noise and measurement noise are considered in
the simulations and they have zero mean and standard
deviations of 1×10−6 and 6×10−2, respectively. To verify
the effectiveness of the proposed method, two different
cases are considered. In the first case, the sensors are
placed at 12 nodes with a higher degree of observability,
around 1.8056, and the second case is where 12 sensors
correspond to nodes with a lower degree of observability,
about 0.2937.

Figure 6, represents the trajectories of the actual states
and estimated states at some testing nodes. From Figure 6,
it can be seen that the estimates by placing the sensors
with higher degree of observability converge faster to the
actual states. Figure 6(d) compares the total estimation
error between case 1 and case 2 and it demonstrates that
the root mean square error (RMSE) in case 1 is smaller
than case 2 over the simulations. Also, the average RMSE
over 6 days simulations in case 1 is 13.15% while in case
2 is 22.71% which shows that the performance of state
estimation with optimally sensor placement is significantly
improved.



(a) State trajectory at depth = 5 cm

(b) State trajectory at depth = 15 cm

(c) State trajectory at depth = 30 cm

(d) Total estimation error trajectory

Fig. 6. Trajectories of the actual states and estimated
states at some testing nodes

7. VALIDATION OF SENSOR PLACEMENT USING
REAL DATA

In this section, we investigate the impact of optimal sensor
placement in soil water estimation of the studied field
using real collected data. The collected data includes the
soil water tension of 14 locations at depth of 25 cm, 14
locations at depth of 50 cm, and 14 locations at depth of
75 cm. Before using the collected data as the measurements
in the EKF, we have performed some preprocessing steps.
First, we converted the soil water tension (Kpa) to the
soil head pressure (m). Then, we analyzed the data set
to determine which areas of the field have been irrigated
over the time period of the experiment. Regarding the
sensor placement, the modal degree of observability of 42
measured nodes is obtained and sorted. Then, to verify
the effectiveness of the proposed method, two cases are
constructed. In case 1, of 42 data points, 15 measured

(a) State trajectory at depth = 25 cm

(b) State trajectory at depth = 50 cm

(c) State trajectory at depth = 75 cm

(d) Total estimation error trajectory

Fig. 7. Trajectories of the real states and estimated states
at some validation points

nodes with a higher degree of observability, around 0.8607,
are considered as the measurements in EKF. While, in
case 2, another 15 measured nodes with a lower degree
of observability, about 0.3734, are used as the training
points. Also, the rest of the measurements are treated as
validation points to compare the real states with estimated
states in cases 1 and 2.

Figure 7, represents the trajectories of the real states
and estimated states at some validation points. From
Figures 7, it can be observed that the estimates by placing
the sensors with higher degree of observability converge
faster to the actual states. Figure 7(d) compares the
total estimation error between case 1 and case 2 and it
demonstrates the RMSE in case 1 is smaller than case 2
over the simulations. Also, the average RMSE over 50 days
simulation, in case 1, 15.76%, is much smaller than case
2, 37.70%. Therefore, the performance of state estimation



with optimally sensor placement is significantly improved
in the actual applications.

In the end, to fairly compare between simulation case
study and real data case, we use the normalized RMSE
(NRMES = RMSE

ȳ
) which facilitates the comparison be-

tween datasets or models with different scales. The
NRMSE in the simulation study for case 1 (optimally
placed sensors) and case 2 (sensors with a lower degree of
observability) over 10 days simulation is about 26.36% and
14.68% respectively, while NRMSE in the real data study
for cases 1 and 2 is 28.22% and 15.01% respectively, over
the same simulation days. These comparisons demonstrate
that optimal sensor placement can significantly improve
the performance of state estimation in the actual applica-
tion and the amount of improvement in the real data case
study is very similar to the simulation study case.
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