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Abstract: This paper focuses on formulating and solving the optimization of crude oil operations 
scheduling carried out in a system composed of a refinery and a marine terminal. The main challenge lies 
in coordinating the decisions made at both facilities and, at the same time, dealing with the uncertainties 
inherent in this activity. To tackle this problem, we present a continuous-time mixed-integer non-linear 
programming (MINLP) formulation. Furthermore, uncertainty in the ship arrival times is considered 
through a two-stage stochastic programming approach. Finally, the Conditional Value-at-Risk (CVaR) risk 
measure is employed to weigh the risk of having high costs relative to the worst scenarios. In this way, the 
proposed model is capable of supporting the decision-making process under uncertainty in an integral way. 
Keywords: Stochastic optimization; Continuous-time representation; Crude oil scheduling; Uncertain oil 
supply; Conditional Value-at-Risk. 

1. INTRODUCTION 

The optimization of crude oil operations scheduling in 
refineries with marine access is a complex problem that 
involves: the allocation of ships to tanks and tanks to crude 
distillation units (CDUs), the calculation of crude oil volumes 
transferred between resources, and the calculation of the 
composition of the mixtures.  

A wide variety of papers addressed this problem (Furman et 
al., 2007; Jia et al., 2003; and Lee et al., 1996). These studies 
assumed refineries with separate storage and charging tanks. 
The storage tanks are used for receiving and storing the crude 
from the ships and the charging tanks are used for blending the 
crudes and feeding the CDUs. 

A smaller number of works have been focused on oil refineries 
without charging tanks. In this kind of refineries, the blending 
process takes place in storage tanks or in pipelines that feed 
CDUs. Some of the most relevant works are Cerdá et al. 
(2015), Pinto et al. (2000), and Reddy et al. (2004). 

All the works mentioned above tackled the problem through a 
deterministic approach. However, stochastic programming 
models have also been developed to address the crude oil 
scheduling problem under uncertainty. 

In Wang and Rong (2010), a two-stage robust model was 
proposed to address the crude oil scheduling problem 
considering uncertainty in vessel arrival times and product 
demand. Cao et al. (2010) developed a stochastic chance-
constrained MINLP model to solve the crude oil scheduling 
problem under demand uncertainty. Oliveira et al. (2016) 
proposed a two-stage stochastic MILP model that defines the 
scheduling of oil pumping through a pipeline and the 
sequencing of ships berthing at a terminal. It should be noted 

that these authors reported a model based on discrete-time 
formulation. 

In this paper, we develop a two-stage stochastic MINLP model 
based on continuous-time representation, considering 
uncertainty in vessel arrival times, to tackle the scheduling 
problem of crude oil operations in a marine-access refinery. 
Additionally, we extend the proposed model by incorporating 
the Conditional Value-at-Risk (CVaR) risk measure in the 
objective function. To the best of our knowledge, no other 
paper considers at once a two-stage stochastic approach, CVaR 
and continuous-time formulation applied to the optimization 
of crude oil operations scheduling. 

The rest of the paper is structured as follows. The problem 
definition is given in Section 2. The proposed mathematical 
formulation is described in Section 3. The risk problem and its 
management method are presented in Section 4. The proposed 
solution for the MINLP problem is described in Section 5. 
Next, problem instances and computational results are 
reported in Section 6. Finally, conclusions are drawn in 
Section 7.  

2. PROBLEM DESCRIPTION 

Often, crude oil is supplied to a refinery through vessels that 
arrive at a marine terminal close to it. This terminal-refinery 
system is connected by an oil pipeline.  

Figure 1 gives a schematic of the crude oil operations in a 
typical marine-access refinery. Furthermore, the operations 
involve the unloading of crudes into multiple storage tanks 
from the ships arriving at different times, the blending of 
crudes in mixing pipelines, and the feed of CDUs performed 
by storage tanks at different rates over time. 



The integration of this system implies a challenge due to the 
need to coordinate the decisions made at the terminal and the 
refinery, each one with different objectives. While the former 
is interested in unloading the ships as soon as possible to avoid 
demurrage and departure tardiness costs, the latter is 
concerned with receiving what it exactly needs for the planned 
production. 

Therefore, uncertainties are inherent in the overall process due 
to the dependence between crude oil supply and marine 
weather. The latter affects the arrival time of vessels and, thus, 
the start of offloading activities and downstream decisions. To 
tackle this problem, we propose a model based on two-stage 
stochastic programming with recourse (Birge and François 
Louveaux, 2011). Essentially, two-stage stochastic 
programming models involve two types of decision variables: 
first-stage variables (here-and-now variables) which have to 
be implemented now and influence all future decisions, and 
second-stage ones that will be implemented later on when 
more information about the process may be available (recourse 
variables, wait-and-see). 

In this paper, the first-stage decisions refer to the variables 
related to the supply of crude blends to CDUs, that is, 
allocation of tanks and total volumes transferred. The start-
time, end-time, and length of slots are also first-stage 
decisions. Regarding the second stage decisions, they include 
the variables related to the activities carried out in the marine 
terminal, the inventory level in tanks, and the composition of 
mixtures delivered, that is, the amount of each type of crude 
transferred from tanks to CDUs. Furthermore, the crude oil 
supply availability is subject to uncertainty which is 
represented by a discrete set of scenarios that contemplates 
different arrival times. 

Available data to solve the problem include: set of scenarios 
with their respective probabilities, the arrival time of the 
vessels in each scenario, volume and type of crude oil 
transported; limits on flow rates between resources; the 
number of tanks, their capacities, and initial inventory; the 
CDU data, such as the feed quality specifications; economic 
data including costs due to vessel demurrage and departure 
tardiness, costs because of differences between processed 
volume and required demand; lastly, CDU demands. 

3. MODEL FORMULATION 

In this section, we introduce the two-stage stochastic MINLP 
model. It is important to note that the precedence between 
vessels is not subject to the order of the elements in the set of 
vessels, as stated in Cerdá et al. (2015), and there is no pre-
allocation of time slots for each vessel as in Reddy et al. 
(2004). In the present work, predefined precedence has been 
applied where the set of slots is pre-ordered and the 

optimization algorithm allocates each vessel to some of these 
slots; Gómez Palacín et al. (2019) and Gómez Palacín (2020). 

Also, it is relevant to highlight the following characteristics. 
The scheduling horizon is divided into variable-length slots s, 
synchronized across all tanks. Three mutually exclusive states 
are defined for the tanks: loading, unloading, and idle. Then, a 
new slot is activated whenever a tank changes its state. Even 
so, a tank can maintain its state during consecutive time slots. 

3.1 Model assumptions 

The proposed MNILP formulation is based on the following 
assumptions: 
1) There is an SBM pipeline connecting the terminal with the 

refinery, so only one vessel can unload at any moment. 
2) A vessel that has started unloading crude can leave the 

terminal once it is completely emptied. 
3) Each vessel carries a single type of crude oil and it is 

considered that the pipeline has a negligible volume 
compared to the volume to be unloaded. 

4) A tank cannot receive crude from a vessel and feed a CDU 
at the same time. After receiving crude, a tank should stay 
idle during some time for brine settling and removal. 

5) A maximum of two tanks can be loaded simultaneously 
and transfers between tanks are not allowed. 

6) A tank can at most feed two CDUs simultaneously. 
7) At most three tanks are allowed to concurrently feed a 

CDU and time to changeover tanks is negligible. 
8) A perfect mixing of crudes occurs in the pipelines. 
9) It is not allowed to stop feeding the crude distillation units. 

3.2 Notation 

Sets 
• S = time slots 
• B = vessels 
• Q = tanks 
• U = crude distillation units 
• C = types of crude oils  
• K = key components 
• E = scenarios 
Parameters 
• 𝐻𝐻 = length of the scheduling horizon 
• 𝐹𝐹𝐹𝐹𝑞𝑞 = maximum rate of crude transfer to tank q 
• 𝐹𝐹𝐹𝐹𝑞𝑞 = minimum rate of crude transfer to tank q 
• 𝐹𝐹𝐹𝐹𝑏𝑏 = maximum rate of crude transfer from vessel b 
• 𝐹𝐹𝐹𝐹𝑏𝑏 = minimum rate of crude transfer from vessel b  
• 𝑂𝑂𝑂𝑂𝑂𝑂𝑞𝑞 = maximum rate of crude transfer from tank q  
• 𝑂𝑂𝑂𝑂𝑂𝑂𝑞𝑞 = minimum rate of crude transfer from tank q  
• 𝐹𝐹𝐹𝐹𝑢𝑢 = maximum rate of crude transfer to CDU u 
• 𝐹𝐹𝐹𝐹𝑢𝑢 = minimum rate of crude transfer to CDU u 
• 𝑃𝑃𝑃𝑃𝑐𝑐,𝑘𝑘 = volumetric concentration of the key component k in 

the crude type c 
• 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑢𝑢,𝑘𝑘 = maximum allowed concentration of key 

component k in the feedstock of CDU u 
• 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑢𝑢,𝑘𝑘 = minimum allowed concentration of key 

component k in the feedstock of CDU u 
• 𝑆𝑆𝑆𝑆 = time to settle and remove the brine 
• 𝑑𝑑𝑑𝑑𝑑𝑑𝑢𝑢 = total demand of blended crude for CDU u 

Figure 1. Schematic of crude oil operations. 
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• 𝐶𝐶𝐶𝐶𝐶𝐶𝑢𝑢 = cost due to positive difference between processed 
volume and required demand by u 

• 𝐶𝐶𝐶𝐶𝐶𝐶𝑢𝑢 = cost due to negative difference between processed 
volume and required demand by u 

• 𝐴𝐴𝐴𝐴𝑏𝑏,𝑒𝑒= arrival time of vessel b under scenario e 
• 𝐸𝐸𝐸𝐸𝐸𝐸𝑏𝑏,𝑒𝑒= departure time of vessel b under scenario e 
• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏 = demurrage or sea waiting cost 
• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏 = departure tardiness cost 
• 𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏,𝑐𝑐 = amount of crude c in the vessel b 
• 𝐼𝐼𝐼𝐼𝐼𝐼𝑞𝑞,𝑐𝑐 = initial amount of crude c in the tank q 
• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑞𝑞,𝑐𝑐 = initial crude c concentration in the tank q 
• 𝛼𝛼 = confidence level 
• 𝜆𝜆 = trade-off coefficient 
• 𝜋𝜋𝑒𝑒= scenario e probability 
Variables  
• 𝑡𝑡𝑡𝑡𝑠𝑠 = end-time of slot s 
• 𝑖𝑖𝑖𝑖𝑠𝑠 = start-time of slot s 
• 𝑑𝑑𝑑𝑑𝑠𝑠 = length of slot s 
• 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑏𝑏,𝑞𝑞,𝑠𝑠,𝑒𝑒 = amount of crude c transferred from b to q 

during s 
• 𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏,𝑞𝑞,𝑠𝑠,𝑒𝑒 = amount of crude transferred from b to q during s 
• 𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑏𝑏,𝑠𝑠,𝑒𝑒 = total amount of crude c unloaded from b during s 
• 𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞,𝑢𝑢,𝑠𝑠 = amount of crude mix transferred from q to u during 

s 
• 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑞𝑞,𝑢𝑢,𝑠𝑠,𝑒𝑒 = amount of crude c transferred from q to u 

during s under scenario e 
• 𝑓𝑓𝑓𝑓𝑢𝑢,𝑠𝑠= total amount of crude mix transferred to u during s 
• 𝑖𝑖𝑖𝑖𝑞𝑞,𝑐𝑐,𝑠𝑠,𝑒𝑒 = amount of c in q at the beginning of s 
• 𝑖𝑖𝑞𝑞,𝑠𝑠,𝑒𝑒 = crude level in q at the beginning of s 
• 𝑖𝑖𝑖𝑖𝑞𝑞,𝑠𝑠,𝑒𝑒 = crude level in q at the end of the scheduling horizon 
• 𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞,𝑐𝑐,𝑠𝑠,𝑒𝑒 = amount of c in q at the end of the horizon 
• 𝑜𝑜𝑜𝑜𝑢𝑢 = positive difference between processed volume and 

required demand by u 
• 𝑠𝑠𝑠𝑠𝑢𝑢 = negative difference between processed volume and 

required demand by u 
• 𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏,𝑒𝑒 = demurrage of vessel b under scenario e 
• 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏,𝑠𝑠,𝑒𝑒 = auxiliary variable to calculate 𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏,𝑒𝑒 
• 𝑑𝑑𝑒𝑒𝑝𝑝𝑏𝑏,𝑠𝑠,𝑒𝑒 = departure time of vessel b under scenario e 
• 𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏,𝑒𝑒 = departure tardiness of vessel b under scenario e 
• 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏,𝑠𝑠,𝑒𝑒 = auxiliary variable to calculate 𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏,𝑒𝑒 
• 𝑧𝑧𝑧𝑧𝑒𝑒= cost associated with scenario e 
• 𝑣𝑣𝑣𝑣𝑣𝑣 = Value-at-Risk 
• 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = Conditional Value-at-Risk 
• 𝜙𝜙𝑒𝑒 = auxiliary variable to assess the CVaR 
Binary variables 
• 𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠,𝑒𝑒 = is equal to 1 if vessel b remains docked during s 

under scenario e; 0 otherwise 
• 𝑥𝑥𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠,𝑒𝑒 = is equal to 1 if vessel b docks at the beginning of s 

under scenario e; 0 otherwise 
• 𝑥𝑥𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠,𝑒𝑒 = is equal to 1 if vessel b undocks at the end of s 

under scenario e; 0 otherwise 
• 𝑥𝑥𝑥𝑥𝑞𝑞,𝑠𝑠,𝑒𝑒 = is equal to 1 if tank q is receiving crude during s 

under scenario e  
• 𝑦𝑦𝑞𝑞,𝑢𝑢,𝑠𝑠 = is equal to 1 if tank q feeds CDU u during slot s 
• 𝑦𝑦𝑦𝑦𝑞𝑞,𝑠𝑠 = is equal to 1 if tank q is delivering crude during slot s 
• 𝑧𝑧𝑧𝑧𝑞𝑞,𝑠𝑠,𝑒𝑒 = is equal to 1 if tank q is idle or settling during slot s 

under scenario e  

3.3 Constraints 

A vessel is unloaded during a slot s if it was unloading during 
the previous slot and has not finished yet, or if it starts at the 
beginning of the current slot (1). 

𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠,𝑒𝑒  =  𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠−1,𝑒𝑒  +  𝑥𝑥𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠,𝑒𝑒  −  𝑥𝑥𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠−1,𝑒𝑒

∀𝑏𝑏 ∈ 𝐵𝐵,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (1)
 

A ship can only undock if it is currently docked (2). 
𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠,𝑒𝑒  ≥  𝑥𝑥𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠,𝑒𝑒       ∀𝑏𝑏 ∈ 𝐵𝐵,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (2) 

Each vessel can be docked and undocked only once during the 
planning horizon, (3) and (4) respectively. 

�𝑥𝑥𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠,𝑒𝑒
𝑠𝑠

 =  1      ∀𝑏𝑏 ∈ 𝐵𝐵,∀𝑒𝑒 ∈ 𝐸𝐸 (3) 

�𝑥𝑥𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠,𝑒𝑒
𝑠𝑠

 =  1      ∀𝑏𝑏 ∈ 𝐵𝐵,∀𝑒𝑒 ∈ 𝐸𝐸 (4) 

Only one vessel can unload at any moment (assumption 1). 

�𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠,𝑒𝑒
𝑏𝑏

 ≤  1      ∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (5) 

A maximum of two tanks can be loaded simultaneously 
(assumption 5). 

�𝑥𝑥𝑥𝑥𝑞𝑞,𝑠𝑠,𝑒𝑒
𝑞𝑞

 ≤  2      ∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (6) 

A vessel cannot be docked if there is no tank receiving crude. 

�𝑥𝑥𝑥𝑥𝑞𝑞,𝑠𝑠,𝑒𝑒
𝑞𝑞

 ≥  𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠,𝑒𝑒      ∀𝑏𝑏 ∈ 𝐵𝐵,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (7) 

A tank cannot be loaded if there is no vessel docked. 

𝑥𝑥𝑞𝑞𝑞𝑞,𝑠𝑠,𝑒𝑒  ≤  �𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠,𝑒𝑒      ∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸
𝑏𝑏

(8) 

A tank may not charge more than two CDUs simultaneously 
(assumption 6). 

�𝑦𝑦𝑞𝑞,𝑢𝑢,𝑠𝑠
𝑢𝑢

 ≤  2      ∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑠𝑠 ∈ 𝑆𝑆 (9) 

At most three tanks are allowed to concurrently feed a CDU 
(assumption 7). 

�𝑦𝑦𝑞𝑞,𝑢𝑢,𝑠𝑠
𝑞𝑞

 ≤  3      ∀𝑢𝑢 ∈ 𝑈𝑈,∀𝑠𝑠 ∈ 𝑆𝑆 (10) 

Each CDU must continually process feedstock coming from 
tanks (assumption 9). 

�𝑦𝑦𝑞𝑞,𝑢𝑢,𝑠𝑠
𝑞𝑞

 ≥  1      ∀𝑢𝑢 ∈ 𝑈𝑈,∀𝑠𝑠 ∈ 𝑆𝑆 (11) 

A tank must be in one of the three states during a given slot. 
𝑥𝑥𝑥𝑥𝑞𝑞,𝑠𝑠,𝑒𝑒  +  𝑦𝑦𝑦𝑦𝑞𝑞,𝑠𝑠  +  𝑧𝑧𝑧𝑧𝑞𝑞,𝑠𝑠,𝑒𝑒  =  1       ∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (12) 

A tank must be discharging if it is feeding a CDU (13) and vice 
versa (14). 

𝑦𝑦𝑦𝑦𝑞𝑞,𝑠𝑠  ≥  𝑦𝑦𝑞𝑞,𝑢𝑢,𝑠𝑠      ∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑢𝑢 ∈ 𝑈𝑈,∀𝑠𝑠 ∈ 𝑆𝑆 (13) 

�𝑦𝑦𝑞𝑞,𝑢𝑢,𝑠𝑠
𝑢𝑢

 ≥  𝑦𝑦𝑦𝑦𝑞𝑞,𝑠𝑠      ∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑠𝑠 ∈ 𝑆𝑆 (14) 

The end-time of a slot is equal to its start-time plus its length.  
𝑡𝑡𝑡𝑡𝑠𝑠  =  𝑖𝑖𝑖𝑖𝑠𝑠  +  𝑑𝑑𝑑𝑑𝑠𝑠      ∀𝑠𝑠 ∈ 𝑆𝑆 (15) 

The start-time of a slot coincides with the end-time of the 
previous slot. 

𝑖𝑖𝑖𝑖𝑠𝑠  =  𝑡𝑡𝑡𝑡𝑠𝑠−1      ∀𝑠𝑠 ∈ 𝑆𝑆 (16) 
The total length of the time slots must be equal to the length of 
the scheduling horizon. 

�𝑑𝑑𝑑𝑑𝑠𝑠
𝑠𝑠

 =  𝐻𝐻 (17) 



The big-M method, explained by Winston and Goldberg 
(2004), is applied to compute the amount of crude unloaded to 
tanks (18)-(21). 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑏𝑏,𝑞𝑞,𝑠𝑠,𝑒𝑒  ≤  𝐹𝐹𝐹𝐹𝑞𝑞 ∗ 𝑑𝑑𝑑𝑑𝑠𝑠
∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑐𝑐 ∈ 𝐶𝐶,∀(𝑏𝑏, 𝑐𝑐) ∈ 𝐵𝐵𝐵𝐵,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (18)

 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑏𝑏,𝑞𝑞,𝑠𝑠,𝑒𝑒  ≥  𝐹𝐹𝐹𝐹𝑞𝑞 ∗ 𝑑𝑑𝑑𝑑𝑠𝑠 −  𝑀𝑀1 ∗ (2 −  𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠,𝑒𝑒  −  𝑥𝑥𝑥𝑥𝑞𝑞,𝑠𝑠,𝑒𝑒)

∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑐𝑐 ∈ 𝐶𝐶,∀(𝑏𝑏, 𝑐𝑐) ∈ 𝐵𝐵𝐵𝐵,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (19)
 

𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑐𝑐,𝑏𝑏,𝑞𝑞,𝑠𝑠,𝑒𝑒  ≤  𝑀𝑀1 ∗ 𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠,𝑒𝑒

∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑐𝑐 ∈ 𝐶𝐶,∀(𝑏𝑏, 𝑐𝑐) ∈ 𝐵𝐵𝐵𝐵,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (20)
 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑏𝑏,𝑞𝑞,𝑠𝑠,𝑒𝑒  ≤  𝑀𝑀1 ∗ 𝑥𝑥𝑥𝑥𝑞𝑞,𝑠𝑠,𝑒𝑒

∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑐𝑐 ∈ 𝐶𝐶,∀(𝑏𝑏, 𝑐𝑐) ∈ 𝐵𝐵𝐵𝐵,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (21)
 

Also, we use the big-M method to calculate the crude volume 
unloaded from a vessel during a slot s. 

𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑏𝑏,𝑠𝑠,𝑒𝑒  ≤  𝐹𝐹𝐹𝐹𝑏𝑏 ∗ 𝑑𝑑𝑑𝑑𝑠𝑠      ∀(𝑏𝑏, 𝑐𝑐) ∈ 𝐵𝐵𝐵𝐵,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (22) 
𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑏𝑏,𝑠𝑠,𝑒𝑒  ≥  𝐹𝐹𝐹𝐹𝑏𝑏 ∗ 𝑑𝑑𝑑𝑑𝑠𝑠  −  𝑀𝑀2 ∗ (1 −  𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠,𝑒𝑒)

∀(𝑏𝑏, 𝑐𝑐) ∈ 𝐵𝐵𝐵𝐵,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (23)
 

𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑏𝑏,𝑠𝑠,𝑒𝑒  ≤  𝑀𝑀2 ∗ 𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠,𝑒𝑒      ∀(𝑏𝑏, 𝑐𝑐) ∈ 𝐵𝐵𝐵𝐵,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (24) 
The crude volume unloaded from a vessel during a slot s is 
equal to the sum of volumes unloaded to each tank. 

𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑏𝑏,𝑠𝑠,𝑒𝑒 = �𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑏𝑏,𝑞𝑞,𝑠𝑠,𝑒𝑒
𝑞𝑞

      ∀(𝑏𝑏, 𝑐𝑐) ∈ 𝐵𝐵𝐵𝐵,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (25) 

The total volume loaded into a tank during a slot s is calculated 
by using (26). 

𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏,𝑞𝑞,𝑠𝑠,𝑒𝑒  =  � 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑏𝑏,𝑞𝑞,𝑠𝑠,𝑒𝑒
𝑐𝑐∈𝐵𝐵𝐵𝐵

 ∀𝑏𝑏 ∈ 𝐵𝐵,∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸(26) 

To make each vessel unload fully during the scheduling 
horizon (assumption 2), we use (27). 

�𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑏𝑏,𝑠𝑠,𝑒𝑒
𝑠𝑠

 =  𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏,𝑐𝑐       ∀(𝑏𝑏, 𝑐𝑐) ∈ 𝐵𝐵𝐵𝐵,∀𝑒𝑒 ∈ 𝐸𝐸 (27) 

The big-M method is applied to compute the amount of crude 
unloaded from tanks (28)-(30). 

𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞,𝑢𝑢,𝑠𝑠  ≤  𝑂𝑂𝑂𝑂𝑂𝑂𝑞𝑞 ∗ 𝑑𝑑𝑑𝑑𝑠𝑠      ∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑢𝑢 ∈ 𝑈𝑈,∀𝑠𝑠 ∈ 𝑆𝑆 (28) 
𝑓𝑓𝑓𝑓𝑢𝑢𝑞𝑞,𝑢𝑢,𝑠𝑠  ≥  𝑂𝑂𝑂𝑂𝑂𝑂𝑞𝑞 ∗ 𝑑𝑑𝑑𝑑𝑠𝑠 −  𝑀𝑀3 ∗ (1 −  𝑦𝑦𝑞𝑞,𝑢𝑢,𝑠𝑠) 

∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑢𝑢 ∈ 𝑈𝑈,∀𝑠𝑠 ∈ 𝑆𝑆 (29)
 

𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞,𝑢𝑢,𝑠𝑠  ≤  𝑀𝑀3 ∗ 𝑦𝑦𝑞𝑞,𝑢𝑢,𝑠𝑠      ∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑢𝑢 ∈ 𝑈𝑈,∀𝑠𝑠 ∈ 𝑆𝑆 (30) 
The total volume unloaded from a tank during a slot s is 
calculated by using (31). It should be noted that this total 
volume does not depend on the scenarios as it is a first-stage 
variable. However, its composition does, as the inventory 
profile in each tank may be different between scenarios due to 
receiving crude from ships at different times. 

𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞,𝑢𝑢,𝑠𝑠  =  �𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑞𝑞,𝑢𝑢,𝑠𝑠,𝑒𝑒
𝑐𝑐

   ∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑢𝑢 ∈ 𝑈𝑈,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (31) 

The total feed to CDU u during slot s is calculated by using 
(32)-(33). 

𝑓𝑓𝑓𝑓𝑢𝑢,𝑠𝑠  =  �𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞,𝑢𝑢,𝑠𝑠
𝑞𝑞

      ∀𝑢𝑢 ∈ 𝑈𝑈,∀𝑠𝑠 ∈ 𝑆𝑆 (32) 

𝐹𝐹𝐹𝐹𝑢𝑢 ∗ 𝑑𝑑𝑑𝑑𝑠𝑠 ≤ 𝑓𝑓𝑓𝑓𝑢𝑢,𝑠𝑠  ≤  𝐹𝐹𝐹𝐹𝑢𝑢 ∗ 𝑑𝑑𝑑𝑑𝑠𝑠      ∀𝑢𝑢 ∈ 𝑈𝑈,∀𝑠𝑠 ∈ 𝑆𝑆 (33) 
The concentration of key components in the feedstock for the 
CDUs is given by (34)-(35). 

��𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑞𝑞,𝑢𝑢,𝑠𝑠,𝑒𝑒 ∗ 𝑃𝑃𝑃𝑃𝑐𝑐,𝑘𝑘
𝑐𝑐𝑞𝑞

 ≤  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑢𝑢,𝑘𝑘 ∗ 𝑓𝑓𝑓𝑓𝑢𝑢,𝑠𝑠

∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑢𝑢 ∈ 𝑈𝑈,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (34)
 

��𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑞𝑞,𝑢𝑢,𝑠𝑠,𝑒𝑒 ∗ 𝑃𝑃𝑃𝑃𝑐𝑐,𝑘𝑘
𝑐𝑐𝑞𝑞

 ≥  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑢𝑢,𝑘𝑘 ∗ 𝑓𝑓𝑓𝑓𝑢𝑢,𝑠𝑠

∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑢𝑢 ∈ 𝑈𝑈,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (35)
 

The amount of crude c in each tank at the start of slot s is 
calculated by using (36). 

𝑖𝑖𝑖𝑖𝑞𝑞,𝑐𝑐,𝑠𝑠,𝑒𝑒 = 𝑖𝑖𝑖𝑖𝑞𝑞,𝑐𝑐,𝑠𝑠−1,𝑒𝑒 + � 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑏𝑏,𝑞𝑞,𝑠𝑠−1,𝑒𝑒
𝑏𝑏∈𝐵𝐵𝐵𝐵

−�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑞𝑞,𝑢𝑢,𝑠𝑠−1,𝑒𝑒
𝑢𝑢

                            ∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑐𝑐 ∈ 𝐶𝐶,∀𝑠𝑠 ∈ 𝑆𝑆 ∖ {𝑠𝑠1},∀𝑒𝑒 ∈ 𝐸𝐸                 (36)
 

The amount of crude c in each tank at the beginning of the 
horizon is given by (37). 

𝑖𝑖𝑖𝑖𝑞𝑞,𝑐𝑐,𝑠𝑠,𝑒𝑒  =  𝐼𝐼𝐼𝐼𝐼𝐼𝑞𝑞,𝑐𝑐      ∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 = 𝑠𝑠1,∀𝑒𝑒 ∈ 𝐸𝐸 (37) 
The amount of crude c in each tank at the end of the horizon is 
given by (38). 

𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞,𝑐𝑐,𝑠𝑠,𝑒𝑒 = 𝑖𝑖𝑖𝑖𝑞𝑞,𝑐𝑐,𝑠𝑠,𝑒𝑒  + � 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑏𝑏,𝑞𝑞,𝑠𝑠,𝑒𝑒
𝑏𝑏∈𝐵𝐵𝐵𝐵

−�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑞𝑞,𝑢𝑢,𝑠𝑠,𝑒𝑒
𝑢𝑢

 ∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 = |𝑆𝑆|,∀𝑒𝑒 ∈ 𝐸𝐸 (38)
 

The total crude level in each tank at the start of slot s (𝑖𝑖𝑞𝑞,𝑠𝑠,𝑒𝑒) 
and at the end of the horizon (𝑖𝑖𝑖𝑖𝑞𝑞,𝑠𝑠,𝑒𝑒) is given by (39)-(42). 

𝑖𝑖𝑞𝑞,𝑠𝑠,𝑒𝑒  =  𝑖𝑖𝑞𝑞,𝑠𝑠−1,𝑒𝑒  +  �𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏,𝑞𝑞,𝑠𝑠−1,𝑒𝑒
𝑏𝑏

−  �𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞,𝑢𝑢,𝑠𝑠−1
𝑢𝑢

 ∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑠𝑠 ∈ 𝑆𝑆 ∖ {𝑠𝑠1},∀𝑒𝑒 ∈ 𝐸𝐸 (39)
 

𝑖𝑖𝑖𝑖𝑞𝑞,𝑠𝑠,𝑒𝑒  =  𝑖𝑖𝑞𝑞,𝑠𝑠,𝑒𝑒  +  �𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏,𝑞𝑞,𝑠𝑠,𝑒𝑒
𝑏𝑏

−  �𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞,𝑢𝑢,𝑠𝑠
𝑢𝑢

∀𝑞𝑞 ∈ 𝑄𝑄, 𝑠𝑠 = |𝑆𝑆|,∀𝑒𝑒 ∈ 𝐸𝐸 (40)
 

𝑖𝑖𝑞𝑞,𝑠𝑠,𝑒𝑒  =  �𝑖𝑖𝑖𝑖𝑞𝑞,𝑐𝑐,𝑠𝑠,𝑒𝑒
𝑐𝑐

      ∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (41) 

𝑖𝑖𝑖𝑖𝑞𝑞,𝑠𝑠,𝑒𝑒  =  �𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞,𝑐𝑐,𝑠𝑠,𝑒𝑒
𝑐𝑐

      ∀𝑞𝑞 ∈ 𝑄𝑄, 𝑠𝑠 = |𝑆𝑆|,∀𝑒𝑒 ∈ 𝐸𝐸 (42) 

In order to not exceed the established page limit, we do not 
specify the mathematical formulation of the maximum and 
minimum volume constraints for tanks. 
To ensure minimum settling time (assumption 4), we use (43). 

𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  −  𝑡𝑡𝑡𝑡𝑠𝑠  ≥  𝑆𝑆𝑆𝑆 ∗ (𝑥𝑥𝑥𝑥𝑞𝑞,𝑠𝑠,𝑒𝑒  +  𝑦𝑦𝑦𝑦𝑞𝑞,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  −  1)

∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆, 𝑠𝑠 < 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,∀𝑒𝑒 ∈ 𝐸𝐸 (43)
 

To calculate the difference between processed volume and 
required demand by each CDU, we use (44)-(45). 

𝑜𝑜𝑜𝑜𝑢𝑢  ≥  �𝑓𝑓𝑓𝑓𝑢𝑢,𝑠𝑠
𝑠𝑠

 −  𝑑𝑑𝑑𝑑𝑑𝑑𝑢𝑢      ∀𝑢𝑢 ∈ 𝑈𝑈 (44) 

𝑠𝑠𝑠𝑠𝑢𝑢  ≥  𝑑𝑑𝑑𝑑𝑑𝑑𝑢𝑢  −  �𝑓𝑓𝑓𝑓𝑢𝑢,𝑠𝑠
𝑠𝑠

      ∀𝑢𝑢 ∈ 𝑈𝑈 (45) 

The discharge of crude oil from vessel b cannot start before its 
arrival time. 

𝑖𝑖𝑖𝑖𝑠𝑠  ≥  𝐴𝐴𝐴𝐴𝑏𝑏,𝑒𝑒 ∗ 𝑥𝑥𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠,𝑒𝑒       ∀𝑏𝑏 ∈ 𝐵𝐵,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (46) 
The demurrage is calculated as the time elapsed between the 
arrival of a ship and the start of its unloading. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏,𝑠𝑠,𝑒𝑒 ≥ 𝑖𝑖𝑖𝑖𝑠𝑠 − 𝐴𝐴𝐴𝐴𝑏𝑏,𝑒𝑒 ∗ 𝑥𝑥𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠,𝑒𝑒 − 𝐻𝐻 ∗ (1 − 𝑥𝑥𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠,𝑒𝑒)

∀𝑏𝑏 ∈ 𝐵𝐵,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (47)
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏,𝑒𝑒  =  �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏,𝑠𝑠,𝑒𝑒
𝑠𝑠

      ∀𝑏𝑏 ∈ 𝐵𝐵,∀𝑒𝑒 ∈ 𝐸𝐸 (48) 

The variable 𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏,𝑠𝑠,𝑒𝑒 represents the departure time of vessel v 
in scenario e. If vessel v leaves the terminal after its expected 
departure time 𝐸𝐸𝐸𝐸𝐸𝐸𝑏𝑏,𝑒𝑒, it should pay a penalty that will be 
proportional to the departure tardiness 𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏,𝑒𝑒. The values of 
the mentioned variables are defined by 49−51. 
𝑡𝑡𝑡𝑡𝑠𝑠 ≤ 𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏,𝑠𝑠,𝑒𝑒 + 𝐻𝐻 ∗ (1 − 𝑥𝑥𝑥𝑥𝑥𝑥𝑏𝑏,𝑠𝑠,𝑒𝑒)      ∀𝑏𝑏 ∈ 𝐵𝐵,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (49) 



𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏,𝑠𝑠,𝑒𝑒 ≥ 𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏,𝑠𝑠,𝑒𝑒 − 𝐸𝐸𝐸𝐸𝐸𝐸𝑏𝑏,𝑒𝑒      ∀𝑏𝑏 ∈ 𝐵𝐵,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (50) 

𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏,𝑒𝑒  =  �𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏,𝑠𝑠,𝑒𝑒
𝑠𝑠

     ∀𝑏𝑏 ∈ 𝐵𝐵,∀𝑒𝑒 ∈ 𝐸𝐸 (51) 

The concentration of crudes sent to CDUs must be the same as 
the one inside the tank. This principle is satisfied by (52). It 
should be noted that this equation yields two bilinear terms. 

𝑖𝑖𝑞𝑞,𝑠𝑠,𝑒𝑒 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑢𝑢𝑐𝑐,𝑞𝑞,𝑢𝑢,𝑠𝑠,𝑒𝑒 = 𝑖𝑖𝑖𝑖𝑞𝑞,𝑐𝑐,𝑠𝑠,𝑒𝑒 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞,𝑢𝑢,𝑠𝑠

∀𝑐𝑐 ∈ 𝐶𝐶,∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑢𝑢 ∈ 𝑈𝑈,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (52)
 

The cost associated with each scenario e is calculated by using 
(53). The first term, the costs due to the difference between 
processed volume and required demand, comprises the first-
stage cost. The second term, demurrage and departure 
tardiness costs, represents the second-stage cost. 

𝑧𝑧𝑧𝑧𝑒𝑒  =  �(𝐶𝐶𝐶𝐶𝐶𝐶𝑢𝑢 ∗ 𝑜𝑜𝑜𝑜𝑢𝑢
𝑢𝑢

 + 𝐶𝐶𝐶𝐶𝐶𝐶𝑢𝑢 ∗ 𝑠𝑠𝑠𝑠𝑢𝑢)

+  �(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏,𝑒𝑒 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏 ∗ 𝑡𝑡𝑑𝑑𝑑𝑑𝑏𝑏,𝑒𝑒)
𝑏𝑏

     ∀𝑒𝑒 ∈ 𝐸𝐸 (53)
 

The objective function, which is composed of the first-stage 
cost and the expected value of the second-stage cost, 
considering all scenarios e, is given by (54). 

𝑀𝑀𝑀𝑀𝑀𝑀 �𝜋𝜋𝑒𝑒 ∗ 𝑧𝑧𝑧𝑧𝑒𝑒
𝑒𝑒

(54) 

4. RISK MANAGEMENT 

Quite often, it is important to consider not only the expected 
value of a cost function J but its distribution and the risk of 
having values located in the upper tail of the distribution. 
There are two popular risk measures, Value-at-Risk (VaR) and 
Conditional Value-at-Risk (CVaR). On the one hand, VaR at 
confidence level 1-α determines the minimum value ω* such 
that the probability of J being lower than ω* is larger than 1-
α. On the other hand, CVaR at confidence level 1-α is the 
average value of the tail of the distribution, above VaR. In this 
paper, we use CVaR because it is easier to compute and it is a 
more consistent measure of risk since, if J is convex with 
respect to u (decision variables), then CVaR is also convex. 

Assuming a set of scenarios e with probabilities πe, a risk 
constrained scheduling problem can be reformulated as 
follows: 

𝑧𝑧𝑧𝑧𝑒𝑒  −  𝑣𝑣𝑣𝑣𝑣𝑣 ≤  𝜙𝜙𝑒𝑒      ∀𝑒𝑒 ∈ 𝐸𝐸 (55) 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑣𝑣𝑣𝑣𝑣𝑣 +  (1/𝛼𝛼) ∗ (�𝜋𝜋𝑒𝑒 ∗ 𝜙𝜙𝑒𝑒
𝑒𝑒

) (56) 

One of the main approaches in the practice of decision-making 
under risk uses mean-risk models. Here we minimize the 
mean-risk function (57) subject to (1)-(53), (55), and (56). In 
this approach, the parameter λ is a nonnegative trade-off 
coefficient representing the exchange rate of mean cost for risk 
(Noyan, 2012). 

𝑀𝑀𝑀𝑀𝑀𝑀 �𝜋𝜋𝑒𝑒 ∗ 𝑧𝑧𝑧𝑧𝑒𝑒
𝑒𝑒

 +  𝜆𝜆 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (57) 

5. SOLUTION PROCEDURE 

The solution procedure for the MINLP model consists of two 
stages. First, solving an MILP model which is an 
approximation of the MINLP formulation. Next, after fixing 
the binary variables of the original MINLP model to their 
optimal MILP values, the resulting NLP model is solved. In 

case no feasible solution can be reached, an outer 
approximation solver (DICOPT) is adopted. The approximate 
MILP formulation is obtained by replacing the nonlinear 
constraint (52) with the linear constraints (58) and (59) which 
state that a tank maintains the initial crude c concentration until 
the moment it receives crude oil from a ship. 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑞𝑞,𝑢𝑢,𝑠𝑠,𝑒𝑒 ≤ 𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑞𝑞,𝑐𝑐 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞,𝑢𝑢,𝑠𝑠  +  𝑀𝑀4 ∗�𝑥𝑥𝑥𝑥𝑞𝑞,𝑠𝑠′,𝑒𝑒
𝑠𝑠′≤𝑠𝑠

∀𝑐𝑐 ∈ 𝐶𝐶,∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑢𝑢 ∈ 𝑈𝑈,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (58)
 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑞𝑞,𝑢𝑢,𝑠𝑠,𝑒𝑒 ≥ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑞𝑞,𝑐𝑐 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞,𝑢𝑢,𝑠𝑠  −  𝑀𝑀4 ∗�𝑥𝑥𝑥𝑥𝑞𝑞,𝑠𝑠′,𝑒𝑒
𝑠𝑠′≤𝑠𝑠

∀𝑐𝑐 ∈ 𝐶𝐶,∀𝑞𝑞 ∈ 𝑄𝑄,∀𝑢𝑢 ∈ 𝑈𝑈,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑒𝑒 ∈ 𝐸𝐸 (59)
 

6. RESULTS 

In order to check the effectiveness of the proposed approach, 
a case study is carried out. It consists of a scheduling horizon 
of 120 hours, a refinery with 5 storage tanks, 2 CDUs, and 5 
types of crude characterized by a single key property. In 
addition, the arrival of 2 ships is considered. The arrival times 
and probabilities for each scenario are detailed in Table 1. The 
expected departure date is 12 hours after the arrival. The 
demand for CDU 1 is 100,000 m3 and for CDU 2 is 65,000 m3. 
The example has been solved using GAMS software, CPLEX 
32.2.0 for MILPs and CONOPT 4.19 for NLPs on an HPE 
server, Proliant DL380 with 2 processors and 32GB RAM. The 
total number of constraints, continuous, and binary variables 
are 19729, 9501, and 1272, respectively. 

Table 1. Arrival times and probabilities 

Scenarios Probabilities Arrival time (h) 
Vessel 1 Vessel 2 

1 0.01 10 40 
2 0.05 50 40 
3 0.01 90 40 
4 0.18 10 70 
5 0.5 50 70 
6 0.18 90 70 
7 0.01 10 100 
8 0.05 50 100 
9 0.01 90 100 

Four values of α and three of λ were adopted. Twelve instances 
were solved from the combination of these values. The 
resolution of each of them took approximately 10 minutes. The 
results obtained are summarized in Table 2 and Table 3. 

Table 2. CVaR values 
CVaR (x103 $) α 

λ 0.3 0.2 0.1 0.05 
0 81.4 122.1 244.2 488.4 

0.1 54.2 69.3 108.6 159 
1 42.5 48.75 55.9 57 

 
Table 3. Mean-risk function values 

MR (x103 $) α 
λ 0.3 0.2 0.1 0.05 
0 24.42 24.42 24.42 24.42 

0.1 29.84 31.35 35.28 40.32 
1 76.04 82.29 96.8 97.53 



In addition, Gantt charts for vessels operations corresponding 
to two instances are shown in Figure 2 and Figure 3. 

Here we discuss how these risk parameters α and λ affect the 
solutions. When α decreases, more conservative policies are 
adopted, which give more weight to worse scenarios. Thus, the 
optimal mean-risk function of the total cost and CVaR 
increase. Increasing the value of λ implies a higher level of risk 
aversion as this means increasing the relative importance of 
the risk term. Similar to the parameter α, CVaR increases as λ 
decreases. However, the optimal mean-risk function increases 
as λ takes larger values. 

7. CONCLUSIONS 

A model characterizing the operation of a maritime terminal 
connected to an oil refinery has been presented. The model is 
used to decide the best way of operating the crude section 
taking into account the uncertainty associated with the arrival 
of ships. The benefits of considering, at once, a two-stage 
stochastic approach, CVaR and continuous-time formulation 
applied to the optimization of crude oil operations scheduling 
are summarized below. The two-stage formulation provides a 
more robust solution since this approach allows correct the 
consequences of decisions taken now depending on future 
conditions. On the other hand, the incorporation of CVaR 
makes it possible to penalize extreme values and thus 
minimize risk. Then, although the continuous-time 
formulation is usually more complicated to develop, compared 
to the discrete one, it represents the operations with a higher 
degree of accuracy and with a smaller number of elements and 
variables.  Finally, even though the solution of the approximate 
MILP model might not be optimal for the MINLP, it provides 
an efficient way of selecting very good and feasible decisions 
according to the risk level the user wishes to assume. 
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Figure 3. Gantt chart (α = 0.3, λ = 0.1). 

Figure 2. Gantt chart (α = 0.3, λ = 1). 


