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Abstract: Industrial processes are measured and controlled using high-dimensional process variables, but 
its overall operation is usually characterised by low-dimensional patterns. The changes in the pattern are 
dominated by three features: free motion, controlled motion, and uncertainty. In this paper, all three features 
are taken into consideration to propose a new probabilistic dynamic-controlled latent variable (PDCLV) 
model structure using a dynamic Bayesian network for process modelling in the pattern space. To this end, 
the linear dynamic system characterised by control inputs is introduced, and the expectation maximisation 
algorithm is specially designed for learning the PDCLV model. Benefitting from the dynamic causality 
between control inputs and the explicit modelling of the pattern, a method for pattern-based stochastic 
model predictive control (SMPC) is implemented successfully to realise process optimisation. A case study 
on an industrial boiler combustion process demonstrates the benefits of the proposed PDCLV structure for 
pattern-space modelling and pattern-based SMPC. 
Keywords: Dynamic controlled latent variable, pattern space modelling; dynamic Bayesian network; linear 
dynamic system with control inputs, expectation maximisation, stochastic model predictive control 

 

1. INTRODUCTION 

 With the wide use of hierarchical distributed control and 
digital measurements, industrial processes are usually 
measured and regulated by a large number of process 
variables (PVs) such as the temperature, pressure, and liquid 
level [1]. In engineering practice, there is often the problem 
that each PV is controlled based on the assumed normal 
process condition, but the operation of the complete process 
may still be poor [2]-[3]. By analyzing the geometric features 
of PVs, the reason for such a problem is that the PVs merely 
reflect the process behaviours in a decentralised, independent, 
and partial manner, while they are mutually correlated in the 
spatial structure [4]. Consequently, the holistic effect of the 
PVs and the overall running characteristics of the process are 
in accordance with the pattern which is embedded in the PVs 
geometrically and statistically, and describes the process in a 
centralised and latent way [5]-[7]. 
 To characterize the operational pattern, researchers in 
multivariate statistical process monitoring resort to latent 
variable (LV) modelling methods such as principal 
component analysis (PCA) [8]-[9], independent component 
analysis (ICA) [10], canonical correlation analysis (CCA) 
[11]-[12], partial least squares (PLS) [13]-[14], and their 
extensions for special conditions (nonlinear, multimode, and 
batch processes) [15]-[17]. These methods can project high-
dimensional PVs onto a low-dimensional pattern space that 
concentrates the main process information. In addition, these 
data-based methods do not need explicit knowledge about the 
process, while still using the available PV data.  

 In addition to spatial correlation, almost all PVs are 
dominated by process dynamics (free and controlled motions, 
the former derived from the inherent inertia of the process, 
that is, the autoregressive characteristics of the process, the 
latter driven by external control inputs), and contaminated by 
noise. Consequently, it will be more natural if a pattern can 
provide the dynamic description and probabilistic 
interpretation for the process. Unfortunately, the methods 
mentioned above are based on a spatial projection of the PVs, 
and thus, focus merely on the static and deterministic 
geometric relationships of the PVs. 
 To capture the process dynamics, many dynamic 
versions of the static LV models have been developed, which 
include two types of an augmented PV matrix with lagged 
measurements [18]-[21] and the structured dynamic LV with 
an autoregressive (AR) model [22]-[26]. The former performs 
a static projection onto the augmented PV matrix, and thus, 
poorly characterises the low-dimensional and dynamic 
pattern of the process [23]. The latter describes the pattern 
dynamic through the AR structure, which can fully capture 
the free motions of the PVs.  
 To deal with process uncertainty, many probabilistic 
counterparts of the static LV models have been put forward 
[27]-[30]. These methods focus on finding a generative model 
from the LVs to the PVs, which can interpret the deterministic 
spatial relationship between the PVs and the LVs, as well as 
the stochastic characteristics of the process. As well, a 
prominent advantage of the probabilistic LV structure is that 
the expectation-maximisation (EM) algorithm can be used to 
learn the model, which can greatly reduce the computational 
burden, particularly for high-dimensional PVs [29].  



 
 
 

     

 To simultaneously consider the dynamics and 
uncertainty, dynamic Bayesian networks (DBN) have been 
introduced for pattern modelling. As a typical DBN model, 
the linear dynamic system (LDS) uses continuous LVs 
sequences to describe the process dynamic relationships. 
Under the LDS, some researchers have achieved successful 
integrations of the AR structure and probabilistic generation 
model [31]-[36], and obtained the corresponding probabilistic 
dynamic LV (PDLV) modelling methods for pattern 
extraction. The advantages are ⅰ) eliminating the redundant 
dimensions in the PVs; ⅱ) modelling the free motions of the 
process; and ⅲ) interpreting the uncertain information in the 
PVs. However, since the LDS in the existing PDLV models 
uses the AR structure, the dynamic causality between the 
control inputs and the pattern remains unmodelled or implicit, 
which results in the impracticality of directly controlling and 
optimising the pattern. 
 To overcome this limitation, a probabilistic dynamic-
controlled LV (PDCLV) modelling method is proposed in this 
paper for process pattern extraction and dynamic modelling. 
In this method, the LDS is characterised by the control inputs, 
while the AR with exogenous inputs (ARX) structure is used 
to describe the pattern dynamics. An EM algorithm is 
designed for learning the model under the new LDS 
framework. Thus, the proposed PDCLV model not only 
retains the advantages of the existing PDLV models, but also 
explicitly determines the dynamic causality between the 
control inputs and pattern. Thus, the pattern can be controlled 
directly by the manipulated inputs. In addition, the pattern can 
describe the whole process in a more lumped but concise way 
than the PVs, providing a good opportunity for overall 
process optimisation. Stochastic model predictive control 
(SMPC) [37] is used in this paper and set at the constraint 
control layer to realize process pattern optimisation. 

2. PROBABILISTIC DYNAMIC-CONTROLLED 
LATENT VARIABLE MODELLING 

2.1. PDCLV Model Structure 

 In this paper, the extracted LVs t ∊ ℝm are assumed to be 
m-variate Gaussian and used to characterise the process 
operation pattern. For the static spatial relationships and 
uncertainties, the n-dimensional measured PVs are denoted as 
x and regarded as the generative results of linear combination 
of t plus an additive noise e ∊ ℝn. In addition, considering 
both the free and controlled dynamic relationships of the 
process, the LDS is introduced and characterised by control 
inputs u ∊ ℝd. Consequently, the proposed PDCLV structure 
consists of a Gaussian ARX time-series model and a linear 
Gaussian observation model, that can be written as 

1k k k k+ = + +t At Bu w   (1) 

 k k k= +x Qt e   (2) 
where k is the time instant. For the ARX model (1), the white 
noise wk ∊ ℝm follows a Gaussian distribution with a mean of 
zero and a variance Φw ∊ ℝm×m; the transition matrix A ∊ ℝm×m 

describes the free motions of the pattern; the input matrix B 
∊ ℝm×d expresses the dynamic-causal relationships between 
the control inputs uk and the successive pattern tk + 1. In the 
generation model (2), Q ∊ ℝn×m is the emission matrix of the 
PVs, reflecting the static and deterministic relationships 
between the LVs and the pattern in the geometric structure; ek 
follows a n-variate Gaussian distribution with a mean of zero 
and a variance Φe ∊ ℝn×n, providing the probabilistic 
interpretation for the PVs. It should be noted that, in general, 
the pattern tk is not a state vector unless all latent components 
have first-order dynamics [38]. Therefore, the pattern 
dynamic equation is usually not the state-space representation 
as model (1), but a vector time-series model with ARX 
structure, which can be generally expressed as 
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where s1 and s2 are, respectively, the AR and controlled 
dynamic orders; Ai ∊ ℝm×m and Bj ∊ ℝm×d for i = 1 ,…, s1 and 
j=1 ,…, s2 and the model parameters. For the sake of clarity 
and convenience, the theoretical derivations of this paper take 
the first-order case (1) as an example, and the derivation of 
the generalized model (3) can be easily extended. 
 The graphical structure of the proposed PDCLV model 
is show in  Figure 1. 

 
Figure 1. Graphical structure of the PDCLV model 

 From Figure 1, it can be seen that: ⅰ) there is always a 
path connecting any two PVs measured at different instants 
via the patterns, and this connection is never blocked; ⅱ) from 
the spatial perspective, pattern t interprets the main 
information of the PVs x, and the noise e interprets the 
remaining random part; and ⅲ) from the time perspective, the 
pattern sequence has the Markov property, and tk collects and 
summarises all the previous information (free and controlled 
dynamics, noise characteristics, and spatial structure 
relationships). 
 To obtain the inference process for the pattern, the prior 
distribution of t0 is assumed to be Gaussian with a mean of h0 
and a variance of H0 with the probability density function 
(pdf)  
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 Based on the linear Gaussian ARX model (1) and linear 
Gaussian observation model, and the fact that a Gaussian 
variable under a linear transformation is another Gaussian, the 
conditional pdfs of tk and xk are given by (5) and (6).
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 In addition, the control inputs are assumed to be constant 
at any instant. Therefore, uk can be considered to follow a 
special distribution with a mean of uk and a variance of zero, 
whose pdf is  
( ) 1kp =u   (7) 

 The assumptions on u are natural and reasonable, which 
can be supported by the fact that this paper is devoted to 

exploring how the pattern is affected by the values 
(measurements) rather than the variance of u. 
2.2. The Expectation-Maximisation Algorithm 

 Based on the pdfs (4) to (7), the joint probability for the 
sequences of tk, xk, and uk can be derived to give the log-
likelihood function in (8).
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where the first equality is obtained by the chain rule; N + 1is 
the length of data used for model learning; x0:N, u0:N and t0:N 
are the sequences for the three variables measured from time 
zero to N. The log-likelihood function (8) has actually been 
determined following the pdfs (4)-(7). Then, the parameter to 
be estimated is Θ = {A, B, Q, Φw, Φe, h0, H0}. To improve the 

efficiency and reduce the computational burden of model 
estimation, the EM algorithm is introduced in this paper and 
designed under the PDCLV structure, which consists of the 
expectation step (E-step) and the maximisation step (M-step). 
For the given data sequences x0:N and u0:N, the expectation of 
the log-likelihood function (8) is given by (9).
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 In the M-step, the new estimate Θnew can be obtained by 
maximizing E[ln p(x0:N, u0:N, t0:N|Θ)], which is given as 

( ) ( )0: 0: 0:
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Θ x u t Θ  (10) 

where p(t0:N| x0:N, u0:N, Θold)] is the posterior distribution of the 
pattern sequence under the previous estimate Θold. Considering 
the sensitivity of EM algorithm to the initial condition and to 
avoid the non-uniqueness issue, multiple trials can be carried 
out on the training set for model training. Then, the model 
accuracy can be verified using the test set, and finally, the best 
model is retained. 
 As a result, the optimal estimate Θopt can be obtained by 
iteratively updating and recalculating the E-step and M-step 
until convergence. Then, the PDCLV model defined in this 
paper can be obtained, which can: ⅰ) explain the static and 
deterministic structural relationships between the hidden 
pattern and the measured PVs in the geometric space, which is 
formulated by the emission matrix Q in model (2); ⅱ) interpret 

the random characteristics of the PVs, since the Gaussian noise 
e is incorporated into the PDCLV structure and the 
corresponding distribution information is estimated; ⅲ) 
capture the free motions of the PVs, which is modelled by 
pattern transition matrix A; and ⅳ) explicitly establish the 
dynamic causality between the control inputs and the pattern, 
which is modelled by the input matrix B. As well, an estimate 
of the Gaussian distribution for w can make the description of 
pattern dynamics more objective and natural considering the 
fact that the processes are disturbed by noise. 

3. PATTERN-BASED STOCHASTIC MODEL 
PREDICTIVE CONTROL 

3.1. Basic Framework for Pattern Control 

 From the above discussions, it can be seen that compared 
with the existing PDLV structure, the proposed PDCLV model 
has the advantage that the influence of control inputs on the 
pattern is quantitatively and explicitly modelled. Therefore, 



 
 
 

     

the pattern dynamic equation formulated by the Gaussian ARX 
model (1) can be used for describing the process dynamic 
characteristics as well as implementing a direct way to control 
the pattern. This section seeks to discuss the application of 
pattern-based process control. Figure 2 shows the framework 
for this proposed control strategy. 

 
Figure 2. The framework for pattern-based process control 

 All the variables in Figure 2 are available online. It can 
be seen from Figure 2 that one of the important functions of 
the pattern control layer is to provide the input references uref 
for the basic control layer, which is the same as a cascade 
control strategy. 
 As well, compared with the PVs, the pattern describes the 
whole process from a more global and centralised perspective. 
Thus, it can provide a good opportunity for overall process 
optimisation, for example, by deriving the pattern setpoint 
from the plant-level optimisation problems (usually economic 
objectives), while the pattern control layer will provide the 
optimal references for the basic control layer.  
 Furthermore, since the constraints existing in the PVs 
must also be imposed on the pattern space, and the pattern 
dynamic equation contains additive disturbances, SMPC is the 
natural strategy for pattern control.  
3.2. Pattern Stochastic Model Predictive Control 

 In this section, the SMPC proposed in [37] is introduced, 
and presented in detail. Without a loss of generality, the zero-
targeted tracking problem is discussed here, because any other 
constant tracking problem can be transformed into the zero 
case by defining the deviation between the pattern and the 
setpoint as the new pattern. 
 Based on model (1) and the superposition principle for a 
linear system, at any time k and for i = 0, 1,…, the pattern 
dynamic predictions can be decomposed into the nominal part 

1k i k i k i+ + + += +t At Bu   (11) 

and the pattern dynamic error k k k=ε t - t , which evolves as 

1k i k i k i+ + + += +ε Φε w   (12) 

under the pattern controller 

k i k i k i+ + += +u Kt λ   (13) 

and its nominal component 

k i k i k i+ + += +u Kt λ   (14) 

where λk+i ∊ ℝd, i = 0, 1,…L – 1 are the decision variables for 
the online SMPC optimisation, and λk +i = 0 for i ≥ L with L  a 
finite prediction horizon. Φ= A+BK is a prestabilising matrix. 
In this paper, the linear feedback gain K is selected as the 
linear quadratic regulator (LQR). In addition, it is assumed that 
wk is bounded and lies in the compact convex polyhedron 
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1|| | , [ , , ]m

mσ σ σ σ∈ ≤ =w w     
where |·| is an elementwise comparison. The above 
boundedness assumption on wk is reasonable and agrees with 
reality, since for most processes the probability that the 
additive disturbance exceeds an arbitrarily large threshold is 
zero. 
 The pattern is subjected to probabilistic constraints such 
that 

( )T
k i cp h p+ ≤ ≥g t   (15) 

where g ∊ ℝm, 0 ≤ p c ≤ 1, and h is the constraint boundary. The 
pattern SMPC determines the sequence ηk = [λT 

k , …, λT 
k+L-1] that 

minimises the expected cost 
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where lssc is the steady cost defined as 

{ }T Tlimssc k i k i k i k ii
l + + + +→∞

= +t ut W t u W u   (17) 

and Wt and Wu are the weighting matrices for respectively the 
pattern and control inputs. 
 For rolling optimisation, the probabilistic constraints (15) 
will be satisfied and the recursive feasibility will be guaranteed 
if and only if 
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and βi is selected as the maximum element of the ith column of 
the following matrix 
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 γi is the confidence boundary such that 
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and ξi the worst case given by 
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 For the computability and tractability of online SMPC 
optimisation, the infinite constraints (18) are transformed into 
finite terms by computing the terminal conditions 
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where β
__

 is a certain supremum of βi, and the value of L can 
be determined according to Gilbert and Tan [39]. 
 The online pattern SMPC optimisation problem 𝒫𝒫(ηk) at 
time instant k can be summarised as 
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 After each optimisation, one-step-ahead control uk = Ktk 
+ λ* 

k  is applied to the pattern dynamic equation (1). 

4. INDUSTRIAL CASE STUDY 

 The combustion process is an important part of an 
industrial boiler, related closely to the operation performance 
of the steam-water system and the efficiency of the whole 
boiler. The existing monitoring and control for this process are 
based on two key strategies: to carry out single-loop-based key 
PVs control; and to extract and observe the statistical operation 
pattern so as to achieve overall status monitoring. In this case 
study, the proposed PDCLV modelling method is applied to 
the pattern modelling and pattern SMPC of the industrial boiler 
combustion process, which overcomes the limitation that the 
PVs-based control cannot carry out collaborative regulation on 
the overall pattern, as well as the limitation that the existing 
LV modelling method is unable to control the combustion 
process pattern. 
 As shown in Table 1, the combustion process studied in 
this paper is measured and controlled by 19 key PVs. There 
are three manipulated inputs: air intake volume of the furnace, 
air induced volume, and the speed of the coal feeder 
representing the fuel flow. 

Table 1. Key Controlled and Measured PVs in the Industrial Boiler Combustion Process 
PV description PV description 
x1 furnace differential pressure x11 FGP at the outlet of the HTS 
x2 furnace lower pressure x12 FGT at the inlet of the LTS 
x3 furnace outlet pressure x13 FGP at the inlet of the LTS 
x4 furnace upper temperature x14 FGT at the outlet of the LTS 
x5 furnace middle temperature x15 FGP at the outlet of the LTS 
x6 furnace lower temperature x16 material temperature of the return bed 
x7 FGT at the furnace outlet x17 water temperature at the inlet of the IHE  
x8 FGT at the inlet of the HTS x18 FGT at the outlet of the IHE 
x9 FGP at the inlet of the HTS x19 FGP at the outlet of the IHE 
x10 FGT at the outlet of the HTS   

(Abbreviations: FGT: flue gas temperature; FGP: flue gas pressure; HTS: high temperature superheater; LTS: low temperature 
superheater; and IHE: import header of the economiser)
 In a single steam load, 591 data samples were collected, 
which were divided into a training set (291 samples) and a test 
set (the remaining 300 samples). Based on the training data, 
pattern modelling can be implemented using the PDCLV 
model. For comparison analysis, PDLV modelling [35] was 
used to model the combustion process.  

 The cross-correlation between the control inputs and the 
final retained two LVs are shown in Figure 3, where the title 
cij shows that this subfigure considers the cross-correlation 
between the j-th control input and the i-th latent variable. 

      
(a) PDLV                    (b) PDCLV 

Figure 3. Cross-correlation of the control inputs and LVs 
 From Figure 3, it can be seen that the cross-correlation of 
PDLV is weaker and more disordered compared with that of  

 

(a) Pattern dynamic trajectories 

 

(b) Steady pattern distribution 
Figure 4. Pattern dynamic trajectories 

 
the PDCLV method, which shows that the proposed PDCLV 
method can better extract and determine the dynamic-causal 



 
 
 

     

relationships between the control inputs and pattern of the 
industrial boiler combustion process. 
 Of note, benefiting from the fact that the dynamic-causal 
relationship between the control inputs and pattern is explicitly 
modelled, it is now feasible to control the combustion process 
pattern. The following case study will provide a concrete 
implementation. 
 After pattern dynamic modelling, the pattern SMPC is 
implemented. First, the combustion process operates stably 
under a certain load. Then, the new steam load requires the 
combustion process pattern to operate around a new setpoint. 
Using pattern SMPC, automatic pattern tracking can be 
achieved, whose dynamic trajectories and steady distribution 
(within the 95% confidence ellipse) under 200 uncertainty 
realisations is shown in Figure 4. 
  It can be seen that the pattern dynamic trajectories satisfy 
the constraints and converges to the region centred by the 
setpoint. Thus, SMPC successfully implements pattern tacking. 
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