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Abstract:
We present a numerical case study for modeling and simulation of upstream and downstream
processes for monoclonal antibody (mAb) production. We apply a systematic and intuitive
modeling methodology for an existing upstream process and downstream process. The resulting
models are based on differential mass balances and kinetic expressions for the reactions
and adsorption. Mass balances for the fedbatch reactor yield a model consisting of five
ordinary differential equations (ODEs). The downstream process is conducted batchwise in
a chromatographic column for capture of mAbs. Mass balances of the chromatographic column
yield a system of partial differential equations (PDEs). The chromatographic model applies the
nonlinear shrinking core adsorption isotherm model for transition between the mobile phase
and the stationary phase. We apply a high-order spectral nodal continuous Galerkin scheme
for spatial discretization of the chromatographic column, which result in a semi-discrete ODE
formulation. The resulting simulation model, coupling the upstream and downstream processes
in batchwise mAb production, can be used as a benchmark for numerical estimation, control
and optimization studies.

Keywords: Monoclonal antibody production, fedbatch reactor, capture chromatography,
shrinking core adsorption isotherm, process modeling.

1. INTRODUCTION

Monoclonal antibodies (mAbs) is a class of biopharma-
ceuticals representing the 6 top-selling biopharmaceutical
products in 2017 (Walsh, 2018). There has been a huge
increase in the sale of mAbs the previous years, and the
yearly sale is expected to grow to 130-200 billion US
dollars in 2022 (Grilo and Mantalaris, 2019). As such,
new technology is needed to keep up with the increasing
demand. The emerging need for huge mAb production has
led to recent research in optimization of biotechnological
processes for mAb production (Badr et al., 2021; Gomis-
Fons et al., 2021). Most optimization is related to the
development of mathematical models to support operation
of the processes.
Modeling of upstream and downstream processes is well
developed. However, often the model presentations are
unnecessarily complicated and the chain rule is applied to
the mass balance equations for fedbatch reactor models.
Due to systematic and intuitive modeling and numerical
considerations, we present the differential mass balance
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models in compact forms without using the chain rule.
When used systematically, this modeling methodology has
significant advantages in the modeling phase and in the
numerical implementation phase. Additionally, the models
presented in this paper are well-suited for model based
optimization such as model predictive control (MPC). We
intend to apply the developed models in model based opti-
mization in future work and the key objective of the paper
is to present a well-defined simulation model for batchwise
mAb production, that can be used as a benchmark in
numerical simulation, control and optimization studies.
This paper presents a numerical case study that combines
modeling of an upstream and downstream process for mAb
production. Fig. 1 presents an overview of the reactor
(upstream process) and chromatographic column (down-
stream process). We apply the proposed modeling method-
ology to existing models for the upstream process and
downstream process (Badr et al., 2021). We show that the
methodology allows for easy modeling of fedbatch reactors
for upstream processes. For the downstream process, the
methodology results in a general compact model, which is
even applicable for a wide range of reactions conducted
in columns. We apply a high-order spectral nodal con-



Fig. 1. Overview of the fedbatch reactor for fermentation
and the chromatographic column operated batchwise.

tinuous Galerkin method (CGM) for space discretization
of the chromatographic column. The method is based on
Legendre polynomials on a Gauss-Lobatto grid. Recent
results show that high order methods are very suitable
for chromatographic processes as they outperform widely
applied finite volume (FV) methods (Hørsholt et al.,
2019a,b; Meyer et al., 2020). The chromatography model
applies a nonlinear shrinking core adsorption isotherm
model for transition between the mobile phase and the
stationary phase. We demonstrate that the upstream and
downstream model can be applied for simulation of mAb
production and capture of mAbs respectively. The sim-
ulations of the chromatographic column show a trade-off
between the productivity and yield of the column in the
loading phase and a similar trade-off for captured mAbs
and concentration of mAbs in the recovery phase. The
trade-off indicates that optimization of the process can be
advantageous.
The remaining part of the paper is organized as fol-
lows. Section 2 introduces the upstream process. Section 3
presents the downstream chromatographic process. Section
4 describes the applied methods for simulation. Section 5
presents the results. Section 6 presents the conclusion.

2. UPSTREAM PROCESS

We consider an upstream process for monoclonal antibody
production conducted in a fedbatch reactor. The model
was originally presented by Badr et al. (2021). We apply
a systematic modeling methodology that is well-suited
for modeling of the reactor in simulation, control, and
optimization studies.

2.1 General model for fedbatch fermentation

The mass (mole) balance for well-mixed fedbatch fermen-
tation, assuming constant and identical density, can be
compactly states as (Ryde et al., 2021),

dV

dt
= eTF, (1a)

dn

dt
= CinF +RV. (1b)

Let C denote the set of components (molecules) and let S
denote the set of inlet streams. V ∈ R is the medium
volume, e ∈ R|S| is a vector of ones, F ∈ R|S| is the
vector of flow rates in the inlet streams, n ∈ R|C| is the
vector of mole numbers for each component in the reactor,
Cin ∈ R|C|×|S| is a matrix of concentrations in the inlet
streams, and R ∈ R|C| is the production rate vector. The
concentration vector, c ∈ R|C|, is

c =
n

V
. (2)

Let R denote the set of reactions and let S ∈ R|R|×|C|

denote the stoichiometric matrix for the considered reac-
tions and components. r ∈ R|R| denotes the reaction rate
vector. Specification of the stoichiometry and kinetics, i.e.
S and r = r(c), enables computation of the production
rate,

r = r(c), (3a)
R = ST r, (3b)

and completes the model.
In addition, the masses of the components, m ∈ R|C|, may
be of interest. It is computed by

m = Mw ⊙ n, (4)
in which ⊙ denotes elementwise multiplication and Mw ∈
R|C| is the molecular mass vector.

Remark. The model (1)-(4) is a general compact form,
which is easy to implement. Additionally, the model equa-
tions reduce the actual modeling to specification of: C, R,
S, S, r(c), Cin, F , and Mw, together with selection of
initial conditions for (1).
Usual practice is to apply the chain rule to the mass
balance equations (1) to represent the states as concen-
trations, c, rather than mole numbers, n. The result is a
set of equations on the form,

dV

dt
= eTF, (5a)

dc

dt
=

(
Cin − ceT

) F

V
+ ST r(c). (5b)

However, we strongly recommend to apply (1) rather than
(5), as (1) is more intuitive and application of the chain
rule is only valid for an infinitely small, dt. As such, the
formulations (1) and (5) are not numerical equivalent when
solved with numerical solvers. The novelty of this work lies
in the intuitive and compact formulation of the model (1).

2.2 Reaction stoichiometry and kinetics

We demonstrate the application of the general modeling
methodology on a fedbatch fermentation model for mAb
production (Badr et al., 2021). The model consists of four
components,

C = {X,G,L, P}, (6)
where X is viable cells, G is glucose, L is lactate, and P
is the product (mAbs), and five reactions,

R = {1, 2, 3, 4, 5}. (7)
The stoichiometry of the process is,



1. Cell production, α1,GG+X −→ 2X, r1,

2. Cell death, X −→ α2,GG, r2,

3. Cell maintenance, α3,GG+X −→ X, r3,

4. Lactate production, X −→ X + α4,LL, r4,

5. Product formation, X −→ X + α5,PP, r5,

which can be represented by the stoichiometric matrix,

S =

X G L P


1 −α1,G 0 0 1

−1 α2,G 0 0 2

0 −α3,G 0 0 3

0 0 α4,L 0 4

0 0 0 α5,P 5

(8)

The reaction rates, r = [r1 r2 r3 r4 r5]
T , are,

r1 = µX(cG, cL)cX , r2 = µD(cG, cL)cX , (9a)
r3 = µMcX , r4 = µLcX , (9b)
r5 = µP cX , (9c)

where µX(cG, cL) and µD(cG, cL) are governed by Monod
growth kinetics,

µX = µmax

(
cG

KG + cG

)(
KL

KL + cL

)
, (10a)

µD = kd

(
cL

KDL + cL

)(
KDG

KDG + cG

)
, (10b)

and µM , µL, and µP are parameters for estimation.

2.3 Inlet streams

The reactor is operated in fedbatch mode with two inlets;
1) an inlet containing glucose and 2) a pure water inlet.
We denote the flow rate of the water inlet and glucose inlet
FW and FG, respectively. The concentration of glucose in
the glucose inlet is denoted cG,in. Hence,

Cin =

 0 0
cG,in 0
0 0
0 0

 , F =

[
FG

FW

]
, S = {SG, SW }. (11)

The split into a water inlet and a substrate inlet makes
the model affine in the inlet flow rates (Ryde et al., 2021).
This is beneficial in optimization studies with the model.

3. DOWNSTREAM PROCESS

We consider a downstream chromatographic process for
capture of the product P , i.e., mAbs. Similarly to the
upstream process, the chromatographic model was origi-
nally presented by Badr et al. (2021). We point out that
P does not distinguish between a product with deficiencies
(from the reactor) and a product of higher quality (after
the chromatographic process). We demonstrate that our
systematic modeling methodology is applicable for the
downstream process and results in a general model for-
mulation for the capture chromatography process.
We assume that the process is conducted in a column with
diameter, dc, packed with a porous media with porosity,
εc. We denote the total volume of the column, V , which
allows for definition of the liquid volume, Vl = εcV , and
the stationary volume, Vs = (1 − εc)V . The stationary
volume, Vs, contains a number of spherical particles,

Np, with porosity, εp. The components of the model are
the mobile phase concentration, c(t, z), the pore phase
concentration of free molecules, cp(t, z), and the pore phase
concentration of bound molecules at different binding sites,
q(t, z). Additionally, we derive the general mass balance
model under the following assumptions (Meyer, 2020),

• The column is homogeneously packed with particles.
• The particles are porous and spherical with constant

diameter.
• The mobile phase density is constant.
• The viscosity is constant.
• Operational conditions are isothermal and adiabatic.
• No convection inside particles.
• No radial dispersion in the mobile phase.
• No diffusion in the pore phase.

3.1 General model for chromatography

The mass balances in the chromatography model are
∂tc = −∂zN +R, (12a)
∂tcp = Rp, (12b)
∂tq = Rq, (12c)

where (12a) is based on the mobile liquid volume and
(12b)-(12c) are based on the pore volume in the particles.
N denotes the flux in the mobile liquid phase and R
denotes the transport (production) rate from the mobile
liquid volume to the particle pore volume. Similarly, Rp

and Rq denote the transport of molecules to the free and
bound particle pore volume, respectively. We impose a
convective flow inlet and outlet boundary condition,

N(t, 0) = vcin(t), (13a)
N(t, L) = vc(t, L), (13b)

together with the following initial condition,
c(0, z) = c0(z), (14a)
cp(0, z) = cp,0(z), (14b)
q(0, z) = q0(z). (14c)

The flux in the mobile liquid phase, N , is governed by
advection (convection) and Fickian diffusion,

N = vc+ J, (15a)
J = −D∂zc, (15b)

where v is the linear mobile liquid phase velocity in the
column, J denotes Fick diffusion, and D is the diffusion
coefficient.
The transport rate from the mobile liquid phase to the
pore volume, R, is based on the open surface area of the
particles. The open particle surface area per liquid volume
in the chromatography column is

ϕl =
NpApεp

Vl
=

Vs

Vp

Apεp
Vl

=
(1− εc)V

(4/3)π(dp/2)3
4π(dp/2)

2

ϵcV
εp =

1− εc
εc

εp
6

dp
,

(16)

where Vp is the volume of a particle and dp is the particle
diameter. The open pore surface area per pore volume is

ϕp =
NpApεp
NpVpεp

=
4π(dp/2)

2

(4/3)π(dp/2)3
=

6

dp
. (17)

Consequently, the transport rates are



R = −ϕlrp, (18a)
Rp = ϕprp + ST

p rq, (18b)
Rq = ST

q rq, (18c)
where S = [Sp Sq] is the stoichiometric matrix for the
transport rates (reaction rates) in the pores of the particle.
rp is the kinetic expression for the transport of molecules
from the mobile liquid volume to the pore space of the
particles. The transport, rp, is given per open surface area.
rq is the kinetic expression for the transport of molecules in
the particle pore spaces. These transport (reaction) rates
can be expressed as

rp = rp(c, cp), (19a)
rq = rq(cp, q). (19b)

Remark. The model (12)-(19) is a general and compact
formulation of the chromatographic column under the
given assumptions. The mobile phase transport equation,
(12a), can even be applied to model general reactions
conducted in columns, e.g., reactions conducted in a plug-
flow reactor.
Usual practice is to insert expressions (15)-(18) into (12)
and get

∂tc = −v∂zc+D∂zzc−
1− ϵc
ϵc

ϵp
6

dc
rp, (20a)

∂tcp =
6

dc
rp + ST

q rq, (20b)

∂tq = ST
q rq, (20c)

and even further insert selections of Sp, Sq, rp, and rq.
We strongly recommend to apply the formulation (12)
as it reduces the actual modeling of the chromatographic
column to selection of production rates, R, Rp, and Rq,
i.e., selection of Sp, Sq, rp, and rq, together with selection
of inlet concentration, cin(t), and initial conditions (14).
Also, the model (12)-(19) is a more intuitive formulation
compared to (20). The novelty of this work is the intro-
duction of the very compact model (12).

3.2 Shrinking core adsorption isotherm

We demonstrate the general modeling methodology on a
capture chromatography model (Badr et al., 2021). The
model applies a shrinking core adsorptions isotherm, which
has previously been proposed as a valid model for modeling
of chromatographic processes (Baur et al., 2016a,b). As
such, we select the quantities, Sp, Sq, rp, and rq based on
the shrinking core adsorption model.
The kinetic expression for the transport rate from the
mobile phase to the pore space of the particles are

rp = k(c− cp), (21)
where k is the transport coefficient.
The shrinking core adsorption isotherm assumes two sites
for adsorption, q = [q1, q2]

T . The stoichiometry of the
transport in the pores of the particles is

S = [Sp Sq] =

[
−1 1 0
−1 0 1

]
, (22)

and the corresponding kinetic expression is

rq =

kA,1

(
cp(qsat − q1)−

q1
keq

)
kA,2

(
cp(q1 − q2)−

q2
keq

)
 , (23)

where kA,1 and kA,2 are the adsorption rate constants for
each site, qsat is the saturation capacity, and keq is the
equilibrium constant of the adsorption process.
The transport coefficient, k, is given as a combination of
the two site contributions as,

1

k
=

1

kF
+

1

kS
, (24)

where kF is the film transfer coefficient and kS is the pore
transfer coefficient. The two transfer coefficients can be
computed as,

kF =
1.09usf

εc
, (25)

kS = Ds
(1− α)1/3

1− (1− α)1/3
, (26)

where Ds is a fitting parameter, usf = vεc is the superficial
velocity, and

α =
q1
qsat

1/keq + cin
cin

. (27)

The combination of the shrinking core model and the
general PDE for chromatographic processes, (12), results
in nonlinear chromatography described by a nonlinear
PDE.

3.3 Loading of column

We select a rectangular pulse inlet boundary condition,

cin(t) =


0, t < t1
cf , t1 ≤ t ≤ t2
0, t > t2

, (28)

where cf is the feed concentration, t1 is the start of the
loading phase, and t2 is the end of the loading phase.

3.4 Yield and productivity in loading phase

The capture chromatography process has four phases as
illustrated in Fig. 1; 1) loading of column, 2) washing of
column, 3) recovery of product, and 4) cleaning of column.
We assume constant operation time for phase 2-4 and
denote the time in those phases tc. The time in phase 2-
4 is given as tc = 21CV (column volumes) (Badr et al.,
2021), i.e., the time it takes the liquid to run through the
column 21 times. As such, we consider the yield, Y , and
the productivity, Q, of the column,

Y (t) =
m

min
, (29)

Q(t) =
m

t+ tc
, (30)

where m = m(t) [g] is the total accumulated mass of
captured mAbs in the column at time t, and min = min(t)
is the total accumulated mass of mAbs injected to the
column at time t.



Table 1. Parameters for reactor model.
Parameter Value Unit

KG 0.0 [mmol/L]
KL 7.10 [mmol/L]

KDG 1.54 [mmol/L]
KDL 0.0 [mmol/L]
µmax 5.17× 10−2 [h−1]
kd 2.32× 10−2 [h−1]

µM , µL, µP 1.0 [h−1]
α1,G 7.52× 10−10 [mmol/cell]
α2,G = α1,G [mmol/cell]
α3,G 82.3× 10−12 [mmol/cell]
α4,L 2.76× 10−11 [mmol/cell]
α5,P 5.45× 10−15 [mmol/cell]
MP ≈ 0.15× 103 [g/mmol]
cG,in 130 [g/L]
MG 0.180156 [g/mmol]

Table 2. Parameters for chromatographic process.

Parameter Value (Load/Recover) Unit
L 2.0 [cm]
dc 15.0 [cm]
εc 0.36 [-]
dp 85.0× 10−4 [cm]
εp 0.52 [-]
usf 1.33 [cm/min]
D 5.0× 103 [cm2/min]
cf 2.4847 / 0.0 [g/L]
t1 0 / 0 [min]
t2 180 / 30 [min]
Ds 2.23× 10−3 [cm/min]
kA,1 6.77× 104 [min−1]
kA,2 3.18× 104 [min−1]
keq 61.47 / 0.001 [L/g]
qsat 69.10 [g/L]
tc 45.36 [min]

4. SIMULATION

The reactor model (1) consists of a system of non-stiff
ODEs, which we solve in Matlab with ode45.
We apply a high-order CGM for spatial discretization of
the chromatography model (12) (Hesthaven and Warbur-
ton, 2008). We solve the resulting system of semi-discrete
ODEs in Matlab with an implicit variable step-size solver,
ode15s, as the spatially discretized system is stiff.

5. RESULTS

This section presents simulation results for both models.

5.1 Upstream simulation

We simulate the reactor model (1). Table 1 presents the
model parameters (Badr et al., 2021). Fig. 2 presents the
simulation. The final concentration of the product, mAbs,
is 2.48 [g/L], which we apply as inlet concentration, cf , for
the capture chromatography process.

5.2 Downstream simulation

We simulate the loading phase and recovery phase of the
capture chromatographic model (12). Table 2 provides
the parameters for the simulation adapted from Badr
et al. (2021). Fig. 3 presents the result. Fig. 3a and

Fig. 2. Simulation of upstream process. States at the
final time: cP = 2.48 [g/L], V = 56.44 [L], and
mP = 140.25 [g].

3b presents the loading phase results, where we observe
a breakthrough in the column and a trade-off between
yield and productivity of the column. Fig. 3c and 3d
presents the recovery phase results, where we observe a
trade-off between recovered mAb mass and recovered mAb
concentration.

6. CONCLUSION

The paper presents a systematic methodology for up-
stream and downstream process modeling. The method-
ology simplifies the model presentation and reduces the
actual modeling to selection of stoichiometric matrices
and reaction kinetics for both upstream and downstream
processes. We demonstrate the modeling methodology on
an existing model for mAb production in a fedbatch re-
actor and a chromatography model for capture of mAbs.
The upstream process model is a five component ODE,
while the downstream process is a nonlinear PDE. The
chromatographic model applies a nonlinear shrinking core
adsorption isotherm to model the transition between the
mobile phase and the stationary phase in the chromato-
graphic column. We discretize the nonlinear PDE in space
with a high-order spectral continuous Galerkin scheme
that can be expanded to a multi-element spectral scheme
for better resolution and scalability. Simulation of the
upstream and downstream processes shows that the mod-
eling methodology works as intended. In particular, the
chromatographic process results in a Pareto front for the
yield and productivity in the loading phase and a Pareto
front for the concentration of mAbs and captured mAbs
in the recovery phase.
The proposed modeling methodology is well-suited for
model-based optimization of the upstream and down-
stream processes.



(a) Loading phase of the column. 1) The mobile phase concentration
in the outlet of the column, where a breakthrough is observed, and 2)
The total mAbs captured in the column. The red dotted line indicates
a possible operating point for ending the loading phase.

(b) The normalized productivity vs. the yield of the loading phase.
The plot forms a Pareto front. The red dot indicates the operating
point indicated in Fig. 3a.

(c) Recovery phase of the column after the loading operation indi-
cated on Fig. 3a. 1) The concentration of mAbs in the collector, and
2) The total mAbs in the collector. The red dotted line indicates a
possible operating point for ending the recovery phase.

(d) Normalized concentration vs. normalized total product of the
recovery phase. The plot forms a Pareto front. The red dot indicates
the operating point indicated in Fig. 3c.

Fig. 3. Simulation of loading phase and recovery phase of the chromatographic column.
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