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Abstract: A molecular reconstruction method based on physical information neural network is proposed 

for predicting the molecular composition of naphtha. By embedding physical information utilized in 

typical molecular reconstruction methods, such as mixing rules, into the loss function of the neural 

network, the model tends to converge to the state conforming to physical rules in training stage. The 

neural network model obtained by the method contains certain physical information, which can improve 

the generalization ability of the model. The results show that the prediction performance and application 

range of the proposed method are better than those of the typical ANN-based molecular reconstruction 

method. 
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1. INTRODUCTION 

In industrial practice, the composition of feedstock will 

significantly affect the product yields and quality. A detailed 

molecular composition information will aid in determining 

whether the feed conforms to the design and environmental 

requirements of the unit in question, as well as identifying 

potential bottlenecks. Naphtha is a complex mixture of 

hydrocarbons, including n-paraffins(P), iso-paraffins(I), 

naphthenes(N), aromatics(A), etc, which is an important 

feedstock in the chemical industry. Determining a detailed 

molecular composition of naphtha is essential for refineries to 

improve product quality and increase profitability (Ren, et al., 

2019a).   

In order to obtain the detailed molecular composition of 

naphtha, several instrumental analysis techniques can be 

applied, such as gas-chromatography (GC), GC×GC, and 

GC-mass spectrometry (GC-MS). However, it is difficult to 

apply these methods widely in industry, because they are in 

general very time-consuming and expensive (Bi, et al., 

2019a). In an attempt to avoid the usage of instrumental 

analysis techniques, a method known as “molecular 

reconstruction” has been proposed and widely studied by 

researchers in recent years. The molecular composition of 

naphtha can be determined based on a number of average 

properties or so-called commercial indices. These 

commercial indices are usually relatively easy-to-obtain 

analytical data, e.g., the average molecular weight of the 

mixture, the specific density, the global PINA weight 

fractions, hydrogen-carbon molar ratio, some points of a 

boiling point distillation curve and so on (Riazi., 2005).  

Typical molecular reconstruction methods mainly include 

stochastic reconstruction (SR) method, structure-oriented 

lumping (SOL) method, molecular type-homologous series 

(MTHS) matrix method, entropy maximization method and 

etc (Stratiev, et al., 2019). These methods can be summarized 

as five steps for molecular reconstruction: the construction of 

molecular library, the acquisition of the properties of pure 

components, the calculation of average properties of the 

mixture, the establishment of the objective function, and the 

adjustment of the mole fractions (or mass fraction) of 

molecules (Ren, et al., 2019b). The key to these methods is to 

optimize a specific objective function to determine a detailed 

molecule composition (Wang, et al., 2017). The objective 

function can be generated from theoretical concepts like 

Shannon entropy, or it can be a cost function, such as 

calculation error of commercial indices.  However, it is 

difficult to accurately determine the corresponding molecular 

composition of naphtha only from the commercial indices, 

because there is no unique correlation between the average 

properties and detailed composition. The molecular 

composition obtained by these molecular reconstruction 

methods is the most likely of all the possible molecular 

compositions that theoretically conform to the specified 

commercial indices. Previous research has also found that 

typical molecular reconstruction methods are more accurate 

in predicting commercial indices than molecular composition, 

because the commercial indices is a direct optimization 

object (Bi, et al., 2019b).  

Artificial neural network (ANN) is a deep learning method 

with powerful learning ability, which can be used to fit 

complex nonlinear relationships among variables. Steven P. 

et al. applied artificial neural network in the field of 

molecular reconstruction and compared it with typical 

molecular reconstruction methods (Steven, et al., 2010). The 

results shown that the composition of naphtha can be 

reconstructed with great accuracy, provided the considered 

naphtha has similar characteristics compared to the large 

number of training data used to develop the ANN. However, 



 

 

     

 

outside this range, the performance of ANN declines 

dramatically, while the performance of typical molecular 

reconstruction methods is unaffected by the characteristics of 

naphtha considered. Since the ANN is hard to associate with 

containing physical meaning, its application range will be 

determined by employed training set, which is evidently 

finite.  

Physical Information Neural Network (PINN) is a type of 

artificial neural network proposed by a Brown University 

research team, which employs physical equations as 

constraints and is frequently applied to solve partial 

differential equations (PDEs) (Raissi. et al., 2018). By 

embedding the PDEs containing physical information into the 

loss function of the neural network, the model tends to 

converge to the state conforming to the underlying physical 

rules in training stage (Karniadakis. et al., 2021). It can be 

seen as a method of using the physical information as a 

regularization agent to enhance the generalization ability of 

the model. Inspired by PINN, if the physical information 

utilized in typical molecular reconstruction methods can be 

embedded into the loss function of the neural network, the 

generalization ability of the model may be further improved. 

In this work, a molecular reconstruction method based on 

PINN is proposed. In order to make the neural network 

contain some physical information, the mixing rules are 

embedded into the loss function. The neural network 

parameters are optimized by minimizing molecular 

composition prediction errors and the commercial indices 

errors to further improve the generalization ability of the 

network. Data generated based on the characteristics of 

naphtha samples in the literature are investigated to validate 

the proposed method (Mei. et al., 2017). The verification 

results show that the application range of molecular 

reconstruction model established by the proposed method is 

expanded and the predicted values are in good agreement 

with the experimental values.  

The remaining sections are arranged as follows. The 

procedure of PINN-based molecular reconstruction method is 

detailed in Section 2. In Section 3, the proposed method is 

applied to the molecular reconstruction of naphtha. The 

molecular reconstruction results are shown and discussed. 

Conclusion is drawn at the end. 

2. METHODOLOGY 

Artificial neural network (ANN) is a deep learning method, 

which is widely applied to capture complex and nonlinear 

relationships between multiple input variables and output 

variables. As shown in Part A of Fig. 1, the structural layout 

of a typical ANN consists of an input layer, hidden layers and 

an output layer. Among them, hidden layers are the core 

structure of ANN. By utilizing a nonlinear activation function, 

the nonlinear mapping of the model can be realized. The 

mathematical expression can be expressed as follows: 

1( )i i i iH f H W b−=  +                                                 (1) 

where iH  indicates the output of i-th layer, iW  and ib are the 

transformation parameters, also known as weights and biases, 

and ()f  is the activation function. Threshold function, 

Sigmoid function and Tanh function are the most commonly 

applied activation functions for neural networks.  

Input data is fed into the network in a forward direction. Each 

hidden layer accepts data, processes it according to the 

activation function and passes to the next layer. The predicted 

value of the ANN is produced from the output layer. A loss 

function is applied to evaluate the performance of the ANN. 

Then, the back-propagation algorithm is utilized to determine 

parameters of the neural network, such as weights and biases 

of all layers (Rumelhart. et al., 1986). In regression 

algorithms, the mean square error function (MSE) as a 

regression evaluation index is frequently the first choice of 

loss function. 
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Fig. 1. The structural layout of the molecular reconstruction method based on PINN. 

 



 

 

     

 

where
exp

i
x indicates the experimental value of mass fraction 

of pure component i in naphtha, 
cal

ix  indicates the calculated 

mass fraction of pure component i in naphtha and n is the 

number of pure components.  

It is well known that the application range of typical ANN is 

limited by the size of the employed training set, because it 

does not contain physical information. In this work, in order 

to improve the generalization ability of the model, mixing 

rules are embedded into the loss function to train the model. 

The mixing rules obtained from the literature are shown as 

follows (Riazi., 2005): 
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where ix is mass fraction of pure component i in 

naphtha; im and id  are molecular weight and density of pure 

component i in naphtha, respectively; M and D are calculated 

molecular weight and calculated density of naphtha, 

respectively; J is homologous series and JX is mass fraction 

of the homologous series J. 

According to the mixing rules, commercial indices of 

naphtha, e.g., the molecular weight M, the density D and 

mass fraction of the homologous series J, can be calculated. 

Meanwhile, the sum of the mass fractions of the pure 

components should equal 1. Theoretically, the calculated 

value should be equal to the experimental value. Therefore, 

Eq. (6) - (9) are added to Eq. (2) to obtain a new loss function, 

as shown in Eq. (10). 
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At this point, the molecular reconstruction method based on 

PINN has been constructed, and its structural layout is shown 

in Fig. 1. 

3. CASE STUDIES 

3.1 Data Details 

Table 2.  Commercial indices of naphtha 

Group-type analysis (wt %) 

Total amount of n-paraffins Total amount of iso-paraffins 

Total amount of naphthenes Total amount of aromatics 

Simulated distillation (℃) 

Initial boiling point (IBP) 5 vol% boiling point (T5%) 

10 vol% boiling point (T10%) 30 vol% boiling point (T30%) 

50 vol% boiling point (T50%) 70 vol% boiling point (T70%) 

90 vol% boiling point (T90%) 95 vol% boiling point (T95%) 

Final boiling point (IBP)  

Molecular weight 

Density 

 

The PINN-based molecular reconstruction model needs to be 

trained with a large set of experimental data. However, 

gathering enough experimental data to train the neural 

networks is extremely challenging in practice. In this paper, 

based on the components distributions of naphtha samples 

given in the literature (Mei. et al., 2017), 1000 sets of 

simulated samples of naphtha are generated. As illustrated in 

Table 1, a total number of 31 components are considered. 

Commercial indicators of these simulated naphtha samples 

Table 1.  Components of simulated naphtha samples 

Carbon number n-Paraffins iso-Paraffins Naphthenes Aromatics 

C4 n-butane C4 iso-paraffins - - 

C5 n-pentane C5 iso-paraffins Cyclopentane - 

C6 n-hexane C6 iso-paraffins C6 naphthenes Benzene 

C7 n-heptane C7 iso-paraffins C7 naphthenes Ethylbenzene 

C8 n-octane C8 iso-paraffins C8 naphthenes C8 aromatics 

C9 n-nonane C9 iso-paraffins C9 naphthenes C9 aromatics 

C10 n-decane C10 iso-paraffins C10 naphthenes C10 aromatics 

C11 n-undecane C11 iso-paraffins C11 naphthenes C11 aromatics 

C12 n-dodecane C12 iso-paraffins - - 

 

 



 

 

     

 

can be obtained utilizing simulation software. The detailed 

information of the commercial indicators is shown in Table 2.   

In this work, 900 samples of simulated naphtha are utilized to 

established the PINN-based molecular reconstruction. 

Among them, 800 samples are training data and 100 samples 

are validation data. In addition, 100 samples are used as test 

data to validate the performance of the model, with 54 

samples falling outside of the training data range. 

3.2 Modelling 

As mentioned in the methodology part, a PINN-based 

molecular reconstruction model is established, including an 

input layer, a hidden layer and an output layer. According to 

the number of commercial indicators, the number of neurons 

in the input layer is fixed to 15. Based on the theory of 

Kolmogorov, the number of neurons in the hidden layer is 

fixed to 31 (Kolmogorov., 1957). Because there are 31 

naphtha components to be predicted, the number of neurons 

in the output layer is determined to be 31. In addition, some 

hyperparameters of the neural network are also very 

important, such as iteration epoch and activation functions, 

etc., which can be determined through grid search algorithm. 

In this work, ReLU function is determined to be the 

activation function, and the number of iteration epoch is 400. 

3.2 Results and Discussion 

Apart from the proposed method, an ANN-based molecular 

reconstruction model is established for comparison. To 

indicate these differences quantitatively, Table 3 shows the 

mean difference (MD), the mean absolute difference (MAD) 

and the root-mean-square difference (RMSD) of the 

calculated commercial indices of test data obtained ANN and 

proposed method. From the table, the MD, MAD, and RMSD 

of molecular weight and density of test data obtained by 

proposed method are -0.8601, 1.6891, 2.1053 and -0.0015, 

0.0095, 0.0117, respectively, which are more accurate than 

those obtained by ANN-based molecular reconstruction 

model. Meanwhile, it can be seen that the prediction accuracy 

of some points of a boiling point distillation curve has not 

been significantly improved. Because the data of boiling 

range are not embedded into the loss function of the neural 

network, which can be researched in future.  
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The absolute errors of the calculated mass fractions of 20 

samples, which are outside of training data range, obtained 

by proposed method is illustrated in Fig. 2, and that obtained 

by ANN is shown in Fig. 3. It can be found that the absolute 

error of most component mass fractions calculated by 

proposed method is smaller than that calculated by ANN. 

This indicates that a molecular composition closer to the true 

value can be obtained by PINN-based molecular 

reconstruction method. By embedding the mixing rules into 

the loss function of the neural network, the model tends to 

converge to the state conforming to the mixing rules in the 

training stage. The generalization ability of the model is 

improved since the neural network obtained using this 

method incorporates some physical information.  

The one sample (naphtha A) out of the above 20 samples is 

applied to provide a detailed introduction to the molecular 

reconstruction performance of the proposed method. In order 

to visually distinguish the difference between the training 

data and the naphtha A, Principal Components Analysis 

(PCA) is applied to data visualization (Steven, et al., 2010). 

The visualization result is illustrated in Fig. 4. It can be seen 

Table 3.  Comparison of the Commercial Indices of test data obtained ANN and proposed method. 

 ANN Proposed Method  

Bulk properties MD MAD RMSD MD MAD RMSD 

Molecular weight -1.5131 2.4669 3.2012 -0.8601 1.6891 2.1053 

Density (g/cm3) -0.0074 0.0151 0.0198 -0.0015 0.0095 0.0117 

n-paraffins (wt %) 0.5935 2.1672 2.6021 -0.0300 1.9367 2.3801 

iso-paraffins (wt %) 0.8170 2.2699 2.9049 0.8231 2.3992 2.9476 

Naphthenes (wt %)  -0.4201 1.0499 1.3102 -0.7033 1.3543 1.7525 

Aromatics (wt%) -0.3189 0.4341 0.6360 -0.3516 0.4879 0.6315 

IBP (℃) 3.7778 9.6979 9.6980 4.7727 6.6368 8.8253 

T5% (℃) -1.2321 2.5461 2.5461 -1.7279 2.4008 2.9653 

T10% (℃) -2.3768 3.7305 3.7305 -3.0684 3.4981 4.2172 

T30% (℃) -3.1971 5.0134 5.0134 -4.6039 4.8095 6.6891 

T50% (℃) -5.0142 8.0077 8.0077 -5.3822 5.6813 8.4843 

T70% (℃) -4.6900 6.9265 6.9265 -4.7468 4.8196 6.7692 

T90% (℃) -0.6089 2.5430 2.5430 -1.4055 1.6479 2.2033 

T95% (℃) -0.9568 2.0265 2.0265 -1.2655 1.7176 2.5525 

FBP (℃) -0.8201 2.4769 2.4769 -2.3351 2.3516 3.3229 

 



 

 

     

 

that naphtha A is far from the training data range. The 

experimental and calculated values of molecular composition 

of the naphtha A are illustrated in Fig. 5. As shown in Fig. 5, 

the prediction performance of PINN-based molecular 

reconstruction method is better than ANN-based molecular 

reconstruction method, especially for n-pentane, C11 iso-

paraffins, C6 naphthenes, C9 naphthenes, C11 naphthenes, 

ethylbenzene, C9 aromatics and etc. 

4. CONCLUSIONS 

In this work, a PINN-based molecular reconstruction method 

is proposed. By embedding mixing rules into the loss 

function of neural network, part of the network parameters 

could be explained with certain physical meanings, which 

can improve the generalization ability of the neural network 

model. Naphtha samples are investigated to validate the 

proposed method. The results show that compared with the 

 

Fig. 2. Absolute errors of calculated mass fractions of 20 samples obtained by proposed method. 

 

Fig. 3. Absolute errors of calculated mass fractions of 20 samples obtained by ANN. 

 

 

Fig. 4. Visualization result for training data and naphtha A. 

 



 

 

     

 

typical ANN-based molecular reconstruction method, the 

prediction performance and application range of the proposed 

method are improved. 
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Fig. 5. Experimental values and calculated values of the molecular composition of naphtha A. 


