
Reinforcement Learning based Multi‐Step Look‐Ahead Bayesian
Optimization

Mujin Cheon*, Haeun Byun*, Jay H. Lee*

* Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and
Technology (KAIST), 291 Daehak‐ro, Yuseong‐gu, Daejeon 34141, Republic of Korea

(e‐mail: jayhlee@kaist.ac.kr).

Abstract: This paper considers the situation where data‐based optimization is to be performed but data
sampling is limited due to high cost and time. Such situations demand highly efficient data‐sampling and
utilization and Bayesian optimization (BO) is the most commonly used method as it allows users to balance
between exploration and exploitation in deciding where to sample next in the design space. However, the
standard acquisition functions used in Bayesian optimization such as the expected improvement have been
criticized for being greedy and myopic in many situations. To address the limitation of the standard
acquisition functions of BO due to its near-sighted nature, this paper suggests a novel reinforcement
learning based method which enables multi‐step lookahead Bayesian optimization. Several benchmark
functions are tested to compare the performance of the RL based method against the traditional BO methods
using expected improvement and its rollout-based extensions. The proposed method outperformed popular
Bayesian optimization methods in the case study.
Keywords: Black box optimization, Bayesian optimization, surrogate modeling, acquisition function,
reinforcement learning, dynamic programming, sequential decision making

1. INTRODUCTION

Black‐box optimization using a data‐based model is one of the
core tasks in engineering and process control as first principles
are unknown or too complex to be used for optimization.
Therefore, data driven modeling and optimization has become
a popular research theme in many engineering domains.
Problems such as materials design, protein folding, and
process control are some of the well‐known cases where data
driven modeling/optimization has been popular or is getting
traction. Black‐box optimization can be challenged by many
issues when the underlying function is non‐convex and is
expensive to sample (e.g., polymer property, cell function). In
such cases, high data‐efficiency of the optimization method is
critical.

Bayesian optimization (BO) is an optimal sequential decision‐
making strategy through iteration between search and
evaluation. It has recently gained great popularity owing to its
high efficiency in terms of data requirements (J. Snoek et al,
2012; D. R. Jones, 2001). The utility of BO has been examined
in solving diverse experiment design problems, including
those for materials discovery, reaction design, and control
(Schmidt J. et al, 2019; Green hill et al, 2020; Shalloo et al,
2020).

The efficiency of BO is brought by controlling the balance
between exploration and exploitation through a so‐called
acquisition function, which is optimized in deciding the next
sample to try. In BO, standard acquisition functions (e.g.
expected improvement, probability of improvement, and upper
confidence bound) are for a single step, which means that they
consider just the immediate improvement at the next step, and

do not optimize the long‐term gain obtained through many
rounds of future evaluations. Such limitation of BO has been
recognized by several researches in the past (Wu et al, 2019;
Lam et al, 2018).

However, few real‐world decision‐making problems can be
solved in just a single step of iteration. Real‐world problems
often require decision making over multiple iterations of
sampling and evaluation starting from the initial knowledge
state. In theory, to obtain an optimal solution to the multi‐step
lookahead BO problem, a stochastic dynamic programming
(SDP) problem should be solved, which is computationally
intractable in almost all cases. Thus, several approximate
methods for solving the multi‐step lookahead BO problem
have been suggested (Wu et al, 2019, Lam et al, 2016);
however, they are either computationally very expensive to
implement or restricted to two‐step lookahead.

In this work, we propose a reinforcement learning (RL) based
BO architecture for multi‐step lookahead decision making in
an unknown environment. RL is used to approximately solve
the stochastic DP problem, in optimal or near‐optimal ways in
many cases, to enable improved multi‐step lookahead decision
making. To incorporate RL into the BO, the BO problem has
to be translated into a Markov Decision Process (MDP) based
on which RL methods can readily be applied. Unlike games
or robotics where the power of RL has been successfully
demonstrated thus far, proper definitions of the knowledge
state in BO are not clear‐cut. One contribution of this paper is
to suggest a novel way to define an MDP that addresses the
multi‐step lookahead BO problem. The key idea is to latticize
the search space and define the mean and standard deviation at
the lattice points as the state of the MDP.

2. BAYESIAN OPTIMIZATION

The ultimate goal of Bayesian optimization (BO) is to solve
the following problem:

𝒙𝒙∗ = argmin𝒙𝒙∈Ω 𝑓𝑓(𝒙𝒙), (1)

where 𝒙𝒙 is a 𝑑𝑑‐dimensional vector inside the 𝑑𝑑‐dimensional
search space Ω ⊆ ℝ𝑑𝑑, and f : Ω → ℝ is the black box function
which is “expensive” to evaluate. Therefore, finding 𝒙𝒙∗ which
corresponds to a minimum value of 𝑓𝑓(𝒙𝒙) should be searched
in a data‐efficient way, i.e., through fewest iterations possible.
To achieve this goal, objective function 𝑓𝑓(𝒙𝒙) of BO is often
modeled with a Gaussian process (GP) from the collected data
set 𝒟𝒟𝑘𝑘 = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑘𝑘 . GP prior 𝑓𝑓 ∼ 𝒢𝒢𝒢𝒢(𝜇𝜇,𝐾𝐾) is defined by a
mean function 𝜇𝜇 ∶ Ω → ℝ and a kernel function 𝐾𝐾 ∶ Ω ×
 Ω → ℝ. A kernel function, which defines how neighboring
points are related with each other (i.e., the smoothness of the
GP model), is selected based on available prior knowledge on
the system. Thus, the choice of kernel function 𝐾𝐾(𝒙𝒙,𝒙𝒙′) and its
hyperparameters should be carefully selected. Most common
choices of kernel functions are the radial basis function (RBF)
kernel and the Matérn kernel.

The BO algorithm starts with the initial data 𝒟𝒟1 = (𝑥𝑥1,𝑦𝑦1),
with 𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝑥𝑥𝑖𝑖). GP prior is constructed based on the initial
data. On top of the GP prior, new data is added after each
iteration/experiment, and the GP prior is updated using Bayes’
rule to obtain the GP posterior distribution. Therefore, when
the data at the current time step 𝒟𝒟𝑘𝑘 = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑘𝑘 become
available, the posterior mean 𝜇̅𝜇𝑘𝑘(𝑥𝑥) and the posterior variance
𝜎𝜎�𝑘𝑘2(𝑥𝑥) of the GP are evaluated as:

𝜇̅𝜇𝑘𝑘(𝑥𝑥) = 𝐾𝐾(𝑋𝑋𝑘𝑘, 𝑥𝑥)⊤[𝐾𝐾(𝑋𝑋𝑘𝑘,𝑋𝑋𝑘𝑘) + 𝜆𝜆𝜆𝜆]−1𝑌𝑌𝑘𝑘
𝜎𝜎�𝑘𝑘2(𝑥𝑥) = 𝜅𝜅(𝑥𝑥, 𝑥𝑥) − 𝐾𝐾(𝑋𝑋𝑘𝑘 , 𝑥𝑥)⊤[𝐾𝐾(𝑋𝑋𝑘𝑘 ,𝑋𝑋𝑘𝑘) + 𝜆𝜆𝜆𝜆]−1𝐾𝐾(𝑋𝑋𝑘𝑘, 𝑥𝑥).

where 𝐾𝐾(𝑋𝑋𝑘𝑘,𝑋𝑋𝑘𝑘) is the 𝑘𝑘 × 𝑘𝑘 matrix whose 𝑖𝑖𝑗𝑗𝑡𝑡ℎ entry is
𝜅𝜅�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�, 𝐾𝐾(𝑋𝑋𝑘𝑘, 𝑥𝑥) (respectively 𝑌𝑌𝑘𝑘) is the 𝑘𝑘 × 1 vector
whose 𝑖𝑖th entry is 𝜅𝜅(𝑥𝑥𝑖𝑖 ,𝑥𝑥) (respectively 𝑦𝑦𝑖𝑖), and 𝜆𝜆 is the noise
variance. Overall, the function value at a location 𝑥𝑥 is
represented by the normal distribution
𝒩𝒩�𝜇̅𝜇𝑘𝑘(𝑥𝑥;𝒟𝒟𝑘𝑘),𝜎𝜎�𝑘𝑘2(𝑥𝑥, 𝑥𝑥;𝒟𝒟𝑘𝑘)�.

Based on the GP model, the next evaluation point 𝑥𝑥𝑘𝑘+1 is
selected by maximizing the acquisition function Λ(𝑥𝑥 ∣
𝒟𝒟𝑘𝑘): 𝑥𝑥𝑘𝑘+1 = argmax

Ω
 Λ(𝑥𝑥 ∣ 𝒟𝒟𝑘𝑘). The most popular choice for

the acquisition function is the expected improvement (EI) (D.
R. Jones et al, 1998). For the minimization problem, the EI can
be represented mathematically as:

𝑢𝑢(𝑥𝑥) = max(𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑓𝑓(𝑥𝑥), 0), (2)

ΛEI(𝑥𝑥) = 𝔼𝔼[𝑢𝑢(𝑥𝑥) ∣ 𝑥𝑥,𝒟𝒟𝑘𝑘]. (3)

From equations (2) and (3), it is clear that the EI based BO
only considers the next time‐step’s decision (i.e., there is no
consideration of 𝑘𝑘 + 1th or 𝑘𝑘 + 𝑛𝑛th time‐step’s decision at the
𝑘𝑘th time step’s decision). This can lead to suboptimal results
as most real‐world problems cannot be solved after just one
iteration. Generally, iterations would repeat many times, and

data acquired at 𝑘𝑘 + 1 th time step (𝑥𝑥𝑘𝑘+1,𝑦𝑦𝑘𝑘+1), and so on,
would be utilized for subsequent decisions. Therefore, the
whole decision‐making process that BO is intended to address
would be more precisely formulated as a stochastic dynamic
programming (DP) problem that considers all future decisions.

3. MULTISTEP LOOKAHEAD BAYESIAN
OPTIMIZATION

As mentioned in the previous section, the entire process of BO
can be viewed as a multi‐stage stochastic dynamic
programming (DP) problem cast over the information state.
Previous works on using the DP approach for BO (Lam et al,
2016) have formulated the system dynamics on 𝑘𝑘- 𝑡𝑡ℎ time step
in the following way:

∀𝑘𝑘 ∈ {1,⋯ ,𝑁𝑁},∀(𝑧𝑧𝑘𝑘 ,𝑢𝑢𝑘𝑘,𝑤𝑤𝑘𝑘) ∈ 𝒵𝒵𝑘𝑘 × 𝒰𝒰𝑘𝑘 × 𝒲𝒲𝑘𝑘 ,

𝑧𝑧𝑘𝑘+1 = ℱ𝑘𝑘(𝑧𝑧𝑘𝑘 ,𝑢𝑢𝑘𝑘,𝑤𝑤𝑘𝑘),
(4)

where 𝑁𝑁 refers to the total number of stage, 𝑧𝑧𝑘𝑘 refers to the
state 𝑧𝑧𝑘𝑘 ∈ 𝒵𝒵𝑘𝑘 , 𝑢𝑢𝑘𝑘 refers to the control which is a function of
the state 𝑢𝑢𝑘𝑘 ∈ 𝒰𝒰𝑘𝑘(𝑧𝑧𝑘𝑘), and 𝑤𝑤𝑘𝑘 is a random disturbance.

Under such dynamics, the goal is to find a policy 𝜋𝜋 =
{𝜋𝜋𝑘𝑘 ,⋯ ,𝜋𝜋𝑁𝑁}, which is a function of the state, i.e., 𝜋𝜋𝑘𝑘:𝒵𝒵𝑘𝑘 ↦
𝒰𝒰𝑘𝑘 , that maximizes the expected total reward. The reward
function can be defined according to the user’s preference, but
one of the most choices is a measure of the improvement. For
the minimization problem, a stage‐reward function
𝑅𝑅𝑘𝑘:𝒵𝒵𝑘𝑘+1 ↦ ℝ , which is a function of the state, control, and
disturbance 𝑅𝑅𝑘𝑘:𝒵𝒵𝑘𝑘 × 𝒰𝒰𝑘𝑘 × 𝒲𝒲𝑘𝑘 ↦ ℝ, can be defined as:

𝑅𝑅𝑘𝑘 = max(𝑦𝑦𝑘𝑘∗ − 𝑦𝑦𝑘𝑘+1, 0), (5)

where 𝑦𝑦𝑘𝑘+1 refers to the observed result of 𝑘𝑘 + 1th time step,
and 𝑦𝑦𝑘𝑘∗ refers to the smallest 𝑦𝑦 value in the dataset 𝒟𝒟𝑘𝑘. Thus,
the expected total reward when following policy 𝜋𝜋 from the
current time step until the end of the time horizon 𝑁𝑁 could be
expressed as:

𝐽𝐽𝜋𝜋(𝑧𝑧𝑘𝑘) = 𝔼𝔼 ��  
𝑁𝑁

𝑖𝑖=𝑘𝑘

𝑅𝑅𝑖𝑖(𝑧𝑧𝑖𝑖 ,𝜋𝜋𝑖𝑖(𝑧𝑧𝑖𝑖),𝑤𝑤𝑖𝑖)�, (6)

The expectation is taken given the random disturbance term
𝑤𝑤𝑖𝑖 , resulting in a probability distribution of the total reward
value. An optimal policy 𝜋𝜋∗ that maximizes the expected total
reward could be expressed as:

𝐽𝐽∗(𝑧𝑧𝑘𝑘) = 𝐽𝐽𝜋𝜋∗(𝑧𝑧𝑘𝑘) = max
𝜋𝜋∈Π

𝐽𝐽𝜋𝜋(𝑧𝑧𝑘𝑘), (7)

where Π is the set of all feasible control policies. However,
solving the above problem through DP to find an optimal
policy 𝜋𝜋∗ can quickly become computationally intractable as
the state dimension grows. Therefore, ways to solve dynamic
programming in an approximate manner have been introduced
by researchers in many fields, including machine learning,
operations research, and control. Among the suggested

methods, one of the most popular method the rollout method
suggested by Lam et al. (2016).

The rollout‐based BO method interacts with GP posterior
established based on 𝒟𝒟𝑘𝑘 at time 𝑘𝑘. It explores all the possible
action time 𝑘𝑘 and receives a virtual output sampled from a
normal distribution 𝑦𝑦𝑡𝑡+1 ∼
𝒩𝒩�𝜇̅𝜇𝑘𝑘(𝑥𝑥𝑘𝑘+1;𝒟𝒟𝑘𝑘),𝜎𝜎�𝑘𝑘2(𝑥𝑥𝑘𝑘+1, 𝑥𝑥𝑘𝑘+1;𝒟𝒟𝑘𝑘)� . When the virtual
result 𝑦𝑦𝑡𝑡+1 is sampled, it is added to the dataset 𝒟𝒟𝑘𝑘 and forms
the hypothetical 𝒟𝒟𝑘𝑘+1. From 𝑘𝑘 + 1th time step to 𝑁𝑁th time step,
the rollout‐based BO method conducts a rollout using the
expected improvement (EI) as their base policy. After the roll
out, the algorithm finds the action for the current step 𝝅𝝅∗ that
maximizes the expected total reward of the rollout.

The rollout method is definitely a far‐sighted approach
compared to the traditional EI based BO method. However,
there are still some gaps to be filled. After the 1st decision
(assuming that 𝒟𝒟𝑘𝑘 was initial data‐in‐hand), the rollout based
BO method assumes that the EI based BO is in place for all
future decisions, to approximately calculate the value function.
Also, they defined the state space as an observation history
𝒵𝒵𝑘𝑘 = (𝒳𝒳 × ℝ)𝑘𝑘. Therefore, the dimension of the state space
keeps increasing as the iteration procedes. To address the
suboptimality caused by such a gap, this paper proposes to use
a more general approach of reinforcement learning (RL) in
addressing the multi‐step Bayesian optimization problem.

4. REINFORCEMENT LEARNING BASED BAYESIAN
OPTIMIZATION

Reinforcement learning (RL) is a machine learning method
that can be used to find optimal or near‐optimal solutions of
dynamic programming (DP) problems. In RL, the agent
interacts with the environment (i.e., at each time, the agent
takes a certain action given a state, and receives information
on the reward at the next state) to learn the optimal policy
𝝅𝝅∗over the state space. This research proposes to use the RL
approach as a way to solve the stochastic DP problem
associated with multi‐step BO.

To train the RL agent, the system should satisfy the Markov
property, which in essence stipulates that the state dynamics
be memoryless (i.e., P[𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∣∣ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝] =
 P[𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∣∣ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝]). The state should be defined such that
the Markov property holds. For training the RL agent, the
problem needs to be described as a Markov decision process
(MDP).

An MDP is defined as a tuple: {𝑇𝑇,𝕊𝕊,𝔸𝔸,𝑃𝑃,𝑅𝑅} (Puterman, 2014),
where 𝑇𝑇 = {0,1, … , ℎ − 1}, ℎ < ∞ is the set of decision
epochs, assumed finite for our problem. State space 𝕊𝕊 is the set
of all states, which should be defined to contain all the
information at time 𝑡𝑡 ∈ 𝑇𝑇 that the agent can use to make a
proper decision after observing it. Action space 𝔸𝔸 is the set of
actions (for clarity of exposition, the 1st decision of the agent
is noted as 𝑎𝑎0). 𝑃𝑃 ∶ 𝕊𝕊 × 𝔸𝔸 ↦ (𝕊𝕊 ↦ 𝑅𝑅) is the state transition
probability. When action 𝑎𝑎 ∈ 𝔸𝔸 is taken at state 𝑠𝑠 ∈ 𝕊𝕊 ,
𝑃𝑃(𝑠𝑠′ ∣ 𝑠𝑠, 𝑎𝑎) is the probability of the next state being 𝑠𝑠′. Last
but not least, 𝑅𝑅 ∶ 𝕊𝕊 × 𝔸𝔸 ↦ ℝ is the reward function. When
action 𝑎𝑎 ∈ 𝔸𝔸 is taken at state 𝑠𝑠 ∈ 𝕊𝕊, the reward 𝑅𝑅(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) is
given to the agent and the state is changed to 𝑠𝑠′ ∈ 𝕊𝕊,

For the RL based BO approach, it is obvious how to define
four out of the five components of the tuple, {𝑇𝑇,𝔸𝔸,𝑃𝑃,𝑅𝑅}. 𝑇𝑇, the
set of decision epochs can be considered user‐chosen
parameter (e.g. when a user wants to make 3‐step look‐ahead
RL based BO, 𝑇𝑇 would be defined as 𝑇𝑇 = {0,1,2}). Also, 𝔸𝔸
would be defined as the search space for the decision, 𝑃𝑃 would
be defined by the GP model, and 𝑅𝑅 can be defined according
to the user’s preference, just as in the rollout based BO
approach. However, how to define the state space 𝕊𝕊 is not
obvious as it should summarize all the information gathered up
to a time point. One can always choose the data‐observation‐
history as the state but such defined state would cause its
dimension to change after each iteration. Therefore, this paper
suggests the GP means and variances over the latticized input
space as the components of the state space 𝕊𝕊. The role of the
RL agent is to interact with the environment given by the
defined MDP to find the optimal policy 𝜋𝜋∗(Figure 1).

A decision policy, 𝜋𝜋𝑡𝑡:𝕊𝕊 → 𝔸𝔸 , takes the state as input and
returns an action as output at time t. A policy 𝜋𝜋 =
(𝜋𝜋0,𝜋𝜋1, … ,𝜋𝜋ℎ−1) is implemented to the MDP System at each
time step. Under the policy 𝜋𝜋, a starting state 𝑠𝑠0, and a look‐
ahead horizon ℎ , the expected total reward 𝑉𝑉ℎ𝜋𝜋(𝑠𝑠0) can be
defined as:

𝑉𝑉ℎ𝜋𝜋(𝑠𝑠0) = 𝔼𝔼 ��  
ℎ−1

𝑡𝑡=0

𝑅𝑅(𝑠𝑠𝑡𝑡 ,𝜋𝜋𝑡𝑡(𝑠𝑠𝑡𝑡), 𝑠𝑠𝑡𝑡+1)�, (8)

which is fundamentally the same expression as equation (7)
when 𝑁𝑁 − 𝑘𝑘 = ℎ. As the BO process has been expressed as an
MDP, our goal is to find the optimal policy 𝜋𝜋∗ that maximizes
the expected total reward.

Speaking of {𝑃𝑃}, when RL is applied in games or robotics, the
agent interacts and learns from the real or simulated

Figure 1. Proposed state space 𝕊𝕊 of MDP tuple for RL based BO

environment to iteratively update their policy 𝜋𝜋 . However, in
the case of the RL for BO, which is needed when the action is
expensive and time‐consuming, one does not have the luxury
to interact with the real environment while training. Therefore,
the agent interacts with a simulated environment. At time t, the
Gaussian Process model created from the initial data 𝒟𝒟𝑡𝑡 with
the mean 𝜇𝜇(𝑡𝑡) and kernel 𝐾𝐾(𝑡𝑡) acts as the simulated
environment in this RL training. When the agent makes an
action 𝐱𝐱𝑡𝑡+1, the simulated data 𝑦𝑦𝑡𝑡+1 is created by the normal
distribution following:

𝑦𝑦𝑡𝑡+1 ∼ 𝒩𝒩 �𝜇𝜇(𝑡𝑡)(𝐱𝐱𝑡𝑡+1;𝒟𝒟𝑡𝑡),𝐾𝐾(𝑡𝑡)(𝐱𝐱𝑡𝑡+1, 𝐱𝐱𝑡𝑡+1;𝒟𝒟𝑡𝑡)� (9)

Such virtually generated data would be added to the dataset to
form a new data set augmented with the virtual data (we use
the notation 𝒟𝒟�𝑡𝑡+1 to denote this in order to distinghish it from
the set with real data only) and the new GP based on updated
dataset is drawn. So, based on 𝒟𝒟𝑡𝑡, the RL agent would freely
conduct a large number of virtual experiments and add the
virtual data on its database to form 𝒟𝒟�𝑡𝑡+1,𝒟𝒟�𝑡𝑡+2, etc. until the

end of the user‐defined decision epoch is reached. While doing
so, the agent would receive rewards for its own education. The
reward for the RL agent can be calculated in the same way as
in the rollout based BO, expressed as:

𝑅𝑅(𝒟𝒟𝑡𝑡 , 𝐱𝐱𝑡𝑡+1,𝒟𝒟𝑡𝑡+1) = (𝑦𝑦𝑡𝑡∗ − 𝑦𝑦𝑡𝑡+1)+
≡ max(𝑦𝑦𝑡𝑡∗ − 𝑦𝑦𝑡𝑡+1, 0). (10)

The ultimate goal for the RL agent to achieve is to maximize
the expected reward through the entire episode. Thus, when
the agent is looking ahead ℎ‐step starting with dataset 𝒟𝒟𝑡𝑡 at
time 𝑡𝑡, the expected total reward can be expressed as:

𝑉𝑉ℎ𝜋𝜋(𝒟𝒟𝑡𝑡) = 𝔼𝔼 � �  
𝑡𝑡+ℎ−1

𝑘𝑘=𝑡𝑡

𝑅𝑅� 𝒟𝒟�𝑘𝑘 ,𝜋𝜋𝑘𝑘� 𝒟𝒟�𝑘𝑘�,𝒟𝒟�𝑘𝑘+1��

= 𝔼𝔼 � �  
𝑘𝑘+ℎ−1

𝑡𝑡=𝑘𝑘

(𝑦𝑦𝑘𝑘∗ − 𝑦𝑦𝑘𝑘+1)+� .

 (11)

For the training of the RL agent, the proximal policy
optimization (PPO) algorithm is employed in this work to find
𝜋𝜋∗ under a given MDP. The PPO algorithm is simple to use
and has shown exceptional computational efficiency in many
case problems (Schulman J. et al, 2017). All in all, the
proposed RL based BO approach works in the following way:

Step 0. At time step t, set k=t and 𝒟𝒟�𝑘𝑘 = 𝒟𝒟𝑡𝑡

Step 1‐1. Based on given 𝒟𝒟�𝑘𝑘, a GP model is constructed.

Step 1‐2. The RL agent makes a virtual action 𝑥𝑥�𝑘𝑘+1 based on
the observation of GP model from step1‐1 combined with its
policy 𝜋𝜋. As a consequence, virtual data 𝑦𝑦�𝑘𝑘+1 is created, 𝒟𝒟�𝑘𝑘 is
updated to 𝒟𝒟�𝑘𝑘+1, and the agent receives reward 𝑅𝑅�𝑘𝑘.

Step 1‐3. Based on 𝒟𝒟�𝑘𝑘+1, a new GP model is constructed and
the same process as step 1‐1, 1‐2 happens for ℎ steps
(𝒟𝒟�𝑘𝑘+1,𝒟𝒟�𝑘𝑘+2, … ,𝒟𝒟�𝑘𝑘+ℎ). When the virtual ℎ‐step experiments
are over (i.e., one episode is over), histories of states and
rewards are saved.

Step 2. step 1‐1 ~ 1‐3 repeats for user‐defined number of times
(i.e., user‐defined number of virtual episodes are conducted)
and histories of episodes are saved. RL agent updates its policy
𝜋𝜋 based on gathered histories.

Step 3. step 1~2 is repeated until the policy 𝜋𝜋 reaches stopping
criterion. When the updating of policy stops, we obtain the
optimal policy 𝜋𝜋∗.

Step 4. Real experiment is conducted by action a suggested by
𝜋𝜋𝑡𝑡∗ , the resulting optimal policy at the time step 𝑡𝑡 . As
consequence, a new real data point is sampled.

Step 5. Based on the new real data, dataset 𝒟𝒟𝑡𝑡 is updated to
𝒟𝒟𝑡𝑡+1. Set t=t+1. Go back to Step 0.

5. CASE STUDY

Data sampling efficiency of the RL based BO method is
compared with the rollout -based BO method and the EI-based
BO method under three different categories of benchmark
functions. EI-based BO is known for being more explorative
than PI (probability of improvement)-based and UCB (upper
confidence bound)-based (Berk et al, 2018; De Ath et al, 2021).
Therefore, EI based BO was selected as a comparison basis.
Also, rewards for rollout-based BO and RL based BO were set
as Equation (5), (10) for the same reason. Thus, all three
method aims to maximize expected improvement in their own
way.

The three selected benchmark functions are as follows (Figure
2):

Figure 2. Graphical illustration of Ackley function (left), Matyas function (middle), and Sum squares function (right)

𝑓𝑓(𝐱𝐱) = −20exp �−0.2�1
2
∑  2
𝑖𝑖=1 𝑥𝑥𝑖𝑖2� −

exp �1
2
∑  2
𝑖𝑖=1 cos (2𝜋𝜋𝑥𝑥𝑖𝑖)� + 20 + exp (1)

(12)

𝑓𝑓(𝐱𝐱) = 0.26(𝑥𝑥12 + 𝑥𝑥22) − 0.48𝑥𝑥1𝑥𝑥2 (13)

𝑓𝑓(𝐱𝐱) = � 
2

𝑖𝑖=1

𝑖𝑖𝑥𝑥𝑖𝑖2 (14)

Equation (12) is the Ackley function which is known to have
multiple local minima. It was evaluated on the 2D plane 𝑥𝑥𝑖𝑖 ∈
[−32.768, 32.768], for 𝑖𝑖 = 1, 2. Equation (13) is the Matyas
function which is known to be plate‐shaped. It was evaluated
on the 2D plane 𝑥𝑥𝑖𝑖 ∈ [−10, 10], for 𝑖𝑖 = 1, 2. Equation (14) is
the Sum Squares function which is known to be a bowl‐shaped
function. It was evaluated on the 2D plane 𝑥𝑥𝑖𝑖 ∈ [−5.12, 5.12],
for 𝑖𝑖 = 1, 2 (Surjanovic, S. et al, 2013).

For the GP, the RBF kernel was used and its hyper parameters
were estimated by the maximum likelihood estimation method
at each time step of iteration (Williams C. K. 2006). For the
RL based BO, the GP hyper parameters were kept the same
during the virtual lookahead training, and were updated only
when the real data was observed.

To compare the data efficiency of each BO algorithm with the
three different benchmark functions on a fair basis, random
initial data (data size = 50) selected from each benchmark
function’s input space were given to each BO algorithm. Based
on the initial data, BO was conducted with the three different
BO algorithm without sharing information about newly
acquired data during the BO process for 20 time‐steps. For
each time step 𝑡𝑡 of iteration, regret (= 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑦𝑦𝑡𝑡∗), was
recorded for the data efficiency index. Regret indicates the
difference between the global optimum value and the best
data‐in‐hand at the 𝑡𝑡- th iteration point. However, random
initial data given to the BO algorithms could be locally biased
to a certain area of the search space. Locally biased input data
could affect the data efficiency of the BO algorithms. To
address this issue, 10 different sets of initial data which contain
20 input‐output relationships were given to each BO algorithm.
Regret values recorded throughout the BO process for each
initial dataset were averaged to measure the general data
efficiency of each BO algorithm.

As a result, the proposed RL‐based BO algorithm has shown
lower average regret values in each iteration compared to the
conventional EI based BO and the rollout‐based BO at most of
the iteration steps. This means that the RL‐based BO has found
a better optimum faster than the conventional BO and the
rollout‐based BO. The data efficiency was significantly better
for the RL based BO algorithm compared to other BO
algorithms for the Ackley function and the Sum Squares
function. However, for the Matyas function, the data efficiency
of the RL‐based BO was not significantly better compared to
the other BO algorithms. This is because the Maytas function
is a plate‐shaped benchmark function; due to the flatness of the
function, there is not much room to optimize. Figures 3, 4, 5

show the average regret value of each iteration step for each
benchmark function.

Figure 3. Average regret of each BO algorithm on each time
step for the Ackley function

Figure 4. Average regret of each BO algorithm on each time
step for the Matyas function

Figure 5. Average regret of each BO algorithm on each time
step for the Sum Squares function

6. CONCLUSION AND FUTURE WORKS

This work suggested a novel reinforcement learning based
Bayesian optimization method to solve the multi‐step BO
problem. To apply the RL approach, the multi‐step BO
problem was formulated as an MDP with a newly defined state
space 𝕊𝕊 base on the GP mean and variance over the latticized
input space. The proposed BO method has been empirically

shown to give higher data efficiency based on testing with
several types of benchmark functions and this can be attributed
to its ability to make far‐sighted sequential decisions by
solving h‐step look‐ahead stochastic dynamic programming in
a near optimal way. The suggested BO method can be applied
to a variety of sequential decision‐making problems cast in an
unknown environment to accelerate the finding of the global
optimum or an improved optimal point. For future work, we
believe the RL based BO method should be compared with
other existing BO methods such as PI- and UCB-based BO
methods for various types of systems. Also, besides data
efficiency, properties like stability and scalability need to be
studied as training a RL agent can be very sensitive and time‐
consuming depending on the problem.

7. ACKNOWLEDGEMENT

This research was supported by the National Research
Foundation (NRF) grant funded by the Korea
government(MSIT) (No. 2021R1A2C200608311)

REFERENCES

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical
bayesian optimization of machine learning
algorithms. Advances in neural information processing
systems, 25.

Jones, D. R. (2001). A taxonomy of global optimization
methods based on response surfaces. Journal of global
optimization, 21(4), 345-383.

Schmidt, J., Marques, M. R., Botti, S., & Marques, M. A.
(2019). Recent advances and applications of machine
learning in solid-state materials science. npj
Computational Materials, 5(1), 1-36.

Greenhill, S., Rana, S., Gupta, S., Vellanki, P., & Venkatesh,
S. (2020). Bayesian optimization for adaptive
experimental design: A review. IEEE access, 8, 13937-
13948.

Shalloo, R. J., Dann, S. J. D., Gruse, J. N., Underwood, C. I.
D., Antoine, A. F., Arran, C., ... & Streeter, M. J. V.
(2020). Automation and control of laser wakefield
accelerators using Bayesian optimization. Nature
communications, 11(1), 1-8.

Wu, J., & Frazier, P. (2019). Practical two-step lookahead
Bayesian optimization. Advances in neural information
processing systems, 32.

Lam, R., Poloczek, M., Frazier, P., & Willcox, K. E. (2018).
Advances in bayesian optimization with applications in
aerospace engineering. In 2018 AIAA Non-Deterministic
Approaches Conference (p. 1656).

Lam, R., Willcox, K., & Wolpert, D. H. (2016). Bayesian
optimization with a finite budget: An approximate
dynamic programming approach. Advances in Neural
Information Processing Systems, 29.

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient
global optimization of expensive black-box
functions. Journal of Global optimization, 13(4), 455-
492.

Puterman, M. L. (2014). Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov,
O. (2017). Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347.

Berk, J., Nguyen, V., Gupta, S., Rana, S., & Venkatesh, S.
(2018, September). Exploration enhanced expected
improvement for bayesian optimization. In joint
european conference on machine learning and
knowledge discovery in databases (pp. 621-637).
Springer, Cham.

De Ath, G., Everson, R. M., Rahat, A. A., & Fieldsend, J. E.
(2021). Greed is good: Exploration and exploitation
trade-offs in Bayesian optimisation. ACM Transactions
on Evolutionary Learning and Optimization, 1(1), 1-22.

Surjanovic, S. & Bingham, D. (2013). Virtual Library of
Simulation Experiments: Test Functions and Datasets.
Retrieved November 22, 2021, from
http://www.sfu.ca/~ssurjano.

Williams, C. K., & Rasmussen, C. E. (2006). Gaussian
processes for machine learning (Vol. 2, No. 3, p. 4).
Cambridge, MA: MIT press.

