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Abstract: Autotroph-heterotroph interactions are ubiquitous in natural environment and play a key role in 
controlling various essential ecosystem functions, such as production and utilization of organic matter, 
cycling of nitrogen, sulfur, and other chemical elements. Understanding how these biofilm metabolic 
interactions are constrained in space and time remains challenging because fully predictive models designed 
for this purpose are currently limited. Toward filling this gap, here we developed community metabolic 
network models for two autotroph-heterotroph biofilm consortia (termed UCC-A and UCC-O), which share 
a suite of common heterotrophic members but have a single distinct photoautotrophic cyanobacterium 
(Phormidesmis priestleyi str. ANA and Phormidium sp. OSCR) that provides organic carbon and nitrogen 
sources to support the growth of heterotrophic partners. After determining model parameters by data fitting 
using the spatiotemporal distributions of microbial abundances, we comparatively analyzed the resulting 
biofilm models to examine any fundamental differences in microbial interactions between the two consortia 
under the variation of key environmental variables: CO2 and photon levels. The UCC-A model predicted 
generally expected responses, i.e., the autotroph population increased in response to elevated levels of CO2 
and photon, followed by increase in the heterotroph population. In contrast, the UCC-O model showed 
somewhat complicated dynamics, e.g., higher photon incidence rates resulted in the increase in autotroph 
population but decrease in heterotroph population due to the lowered provision of glucose from the 
autotroph. A further analysis showed that species coexistence was governed by the photon incidences rather 
than the carbon availability for UCC-O, which was the opposite for UCC-A. 
Keywords: cyanobacteria, environmental biofilms, metabolic modeling, hot lake communities, interspecies 
interactions 

1. INTRODUCTION 

Microbial communities are multi-species assemblies in which 
metabolically distinct cells interact with each other and form 
mutualistic, syntrophic, commensal, or antagonistic 
relationships (Ackermann, 2015; Bernstein et al., 2012; Hall-
Stoodley et al., 2004; Stoodley et al., 2002)). These 
interactions are often complex and give rise to higher-order 

properties such as enhanced stability, robustness, and 
productivity (Song et al., 2015). The microbial community 
interactions are also governed by spatial relationships where 
multicellular assemblies often attach to surfaces and each other 
to form organized 3-dimensional structures, known as 
biofilms. In the chronic wound biofilms, for example, species 
interact with each other, form a robust community, and 
develop colonization resistance against pathogens. Bacteria in 



biofilms grow at slower pace and slower growth may lead to 
decreased uptake of drug and other physiological changes 
leading to treatment failures (Siddiqui et al., 2010). 
Environmental microorganisms also assemble into biofilms 
and control production and utilization of organic matter, 
degradation of toxic compounds and the cycling of nitrogen, 
sulfur and other metals across highly organized spatial 
gradients (Cox et al., 2011; Stambler et al., 2007).  

As a typical example, cyanobacteria and heterotrophic species 
in nature form stable microbial mats or biofilms by developing 
synergistic relationships. The cyanobacteria are 
photoautotrophic primary producers that convert inorganic 
matter with the help of light energy into useful organic 
compounds and oxygen, which are then consumed by the 
heterotrophic species in the vicinity (Song et al., 2016). 
Cyanobacteria also benefit from the presence of their partners 
because – at the simplest level – heterotrophs remineralize 
organic carbon to CO2 and remove lower localized O2 
concentrations that otherwise may inhibit photoautotrophic 
growth of cyanobacteria (Beck et al., 2017; Bernstein et al., 
2017). For controlling the dynamics of these communities, it 
is critical to understand how metabolic interactions between 
autotrophs and heterotrophs occur and, how they are 
constrained in space and time, and how those constraints affect 
community dynamics and biochemical function. Predictive 
mathematical models such as community metabolic networks 
can serve as a useful tool for this purpose. 

Model microbial communities are useful tools for 
investigating and standardizing interspecies interactions 
(Zengler et al., 2019). Here, we consider a model 
cyanobacteria-heterotroph community that was originally 
sourced from a microbial mat in Hot Lake (Lindeman et al., 
2013). The hot lake is meromictic, hypersaline lake harboring 
phototrophic microbial mat (Cole et al., 2014). The microbial 
community in the mat is metabolically diverse. The species 
abundances vary spatiotemporally. Many studies have been 
performed to understand the interactions within the 
community, species abundances, generation and utilization of 
various carbon sources and toxic compounds (Taffs et al., 
2009; Widder et al., 2016). Due to the complex nature of the 
interspecies and intraspecies interactions, it is very difficult to 
understand and predict the dynamics of community formation 
and development. These communities play important role in 
biogeological cycle. The two unicyanobacterial consortia 
(UCC-A and UCC-O) considered here contain two distinct 
species of cyanobacteria (Phormidesmis priestleyi str. ANA 
and Phormidium sp. OSCR respectively) isolated from the Hot 
Lake phototrophic microbial mat (Cole et al., 2014). The 
heterotrophs were classified within Alphaproteobacteria, 
Gammaproteobacteria, and Bacteroidetes, and represented 
genera known to contain marine and halophilic aerobes.  
In this study, we deploy both simple and more complex 
mathematical models to analyze and interpret the interactions 
within this model microbial community. Mathematical 
simulation is a useful tool to evaluate the growth and 
abundances of species in biofilm spatial structures. The main 
objective of this study is to develop a mathematical model to 
analyze the autotrophic and heterotrophic growth, to account 
for interspecies interactions through metabolite exchanges and 

to predict spatial arrangements of the species in the biofilm. 
The multispecies biofilm model was validated by using 
experimental data available from previous study on 
photoautotroph-heterotroph biofilms (Cole et al., 2014). The 
validated model was then used to predict the important 
interactions for the community stability and development of 
metabolic niche in the environment. The model will be a useful 
tool to study autotrophic-heterotrophic interactions from other 
ecosystems and will aid bioengineering of photosynthetically 
driven microbial consortia for applications such as carbon 
capture and utilization (Schweitzer et al., 2021) as well as 
biofuel synthesis (Beck et al., 2017). 

2. MATERIALS AND METHODS 

2.1 System description  

For model development, we chose microbial-mat-derived 
unicyanobacterial consortia previously studied by (Cole et al.,  
2014) in which the biofilms were grown in the tissue culture 
flasks, the metabolomics, dry weight, composition, total 
protein, and cell counts were measured. This study concluded 
that two consortia had distinct species of cyanobacteria which 
were primary producers along with nearly identical 
heterotrophs present in both the systems. The metabolomic 
study detected glucose in all the samples. Inorganic carbon 
was the sole carbon source supplied to the consortia. The 
biofilms were grown for 28 days under continuous photon flux 
of 35 µmol photons PAR/m2/s. The autotroph and heterotroph 
biomass obtained from the published study are shown in 
Figure 1B (UCCA) and Figure 1C (UCCO). The study 
concluded that UCCA produced higher autotroph biomass as 
compared to UCCO. 

 
Figure 1. Schematic representation of the autotroph-heterotroph 
biofilm model of constant thickness L with CO2, photon, O2, nitrate 
and phosphate provided at the L = 0. 

2.2 Model Formulation 

We constructed and gapfilled core metabolic network models 
using U.S. Department of Energy’s Systems Biology 
Knowledgebase (KBase) modeling platform (Arkin et al., 
2018). We developed two individual networks for autotrophic 
cyanobacteria Phormidesmis priestleyi ANA and 
Phormidium sp. OSCR. The heterotroph model was generated 
by combining  genomes of most abundant species in consortia 



Bin 01 (Bacteriodetes), Bin18 (Rhodo), Bin10 (HL-49), Bin 
04 (Plasmid), Bin 02 (HL-53) and Bin 05 (HL-91) (Lindemann 
et al., 2017). The autotroph-1 model accounts for 140 genes, 
125 metabolites and 134 reactions whereas autotroph-2 model 
accounts for 124 genes, 137 metabolites and 139 reactions.  

The core scale metabolic networks for autotrophs have been 
shown to provide good agreement with experimentally 
obtained biomass growth rates on photon and CO2. Our 
preliminary flux balance calculations with maximum growth 
objective showed that the autotroph produced glucose and 
oxygen as byproducts. The heterotroph core metabolic model 
was examined for various glucose and oxygen uptake rates and 
found to be in good agreement with experimental growth rates. 
The major byproduct of heterotroph metabolism was CO2.  

The multispecies biofilm model was constructed for autotroph 
and heterotroph community in microbial mat derived 
unicyanobacterial consortia. The biofilm was assumed to be 
formed on the flask surface as described in previous 
publication (Cole et al., 2014), this interface was termed as 
bottom of the biofilm (L=30 micron) (Figure 1A). The 
metabolites such as inorganic carbon in the form of CO2, O2, 
nitrate and phosphate were supplied at the top of the biofilm 
(L=0 micron). The biofilm was assumed to be growing under 
constant photon incidence rate supplied at top of the biofilm. 
The autotrophs in the community were assumed to convert 
CO2 in presence of photon energy to organic carbon (glucose) 
and oxygen which were consumed by heterotrophs in the 
community. Heterotrophs generated CO2 as a metabolic 
byproduct which was consumed by autotrophs in the 
community. Diffusion was assumed to occur only in the axial 
direction of the biofilm such that spatial variations could be 
captured with a single variable z (Figure 1A). For simplicity, 
the biofilm was assumed to have a fixed thickness L over 
which the nutrients diffused, and cell growth occurred. 
Therefore, the models were most appropriate for predicting the 
metabolism of mature biofilms of a specified thickness. 

The spatiotemporal models for photoautotroph-heterotroph 
consortia were constructed by combining core metabolic 
network models with nutrient uptake kinetics and reaction-
diffusion equations for species biomass, supplied substrates 
and synthesizes metabolic byproducts.  

The species biomass was calculated by using, 

  
𝜕𝜕𝑋𝑋𝑖𝑖(𝑧𝑧,𝑡𝑡)

𝜕𝜕𝜕𝜕
= 𝜇𝜇𝑖𝑖𝑋𝑋𝑖𝑖 + 𝐷𝐷𝑋𝑋𝑋𝑋

𝜕𝜕2𝑋𝑋𝑖𝑖
𝜕𝜕𝜕𝜕2

                                                   

−𝐷𝐷𝑋𝑋𝑋𝑋
𝜕𝜕𝑋𝑋𝑖𝑖(0,𝑡𝑡)

𝜕𝜕𝜕𝜕
= 𝑘𝑘𝑋𝑋𝑋𝑋,0 �𝑋𝑋𝑖𝑖,𝑏𝑏 − 𝑋𝑋𝑖𝑖(0, 𝑡𝑡)�, 

                 −𝐷𝐷𝑋𝑋𝑋𝑋
𝜕𝜕𝑋𝑋𝑖𝑖(𝐿𝐿,𝑡𝑡)

𝜕𝜕𝜕𝜕
= 𝑘𝑘𝑋𝑋𝑋𝑋,𝐿𝐿�0 − 𝑋𝑋𝑖𝑖(𝐿𝐿, 𝑡𝑡)�    (1) 

 
where Xi was the biomass concentration (g/L) of i-th species. 
µi is the growth rate (h-1) of the i-th species. The biomass was 
assumed to be diffused with diffusion coefficient (DXi) and 
removed from the both ends of the biofilm at the mass transfer 
rates (kXi,0 and kXi,L).  

The metabolite concentrations (CO2, phosphate, nitrate, 
glucose and oxygen) were calculated by using, 
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where Mj was the concentration (mmol/L) of j-th metabolite 
(CO2, phosphate, nitrate, glucose, O2). The uptake fluxes vMjXi 
of j-th metabolite for i-th species was calculated from flux 
balance calculations. The metabolites were assumed to be 
diffused at the rate of DMj and removed from the bottom of the 
biofilm at the mass transfer rate, kMj. Mjb was bulk 
concentration of the metabolite at the air-biofilm interface. We 
supplied CO2, phosphate, nitrate and O2 at the top of the 
biofilm and the accumulated metabolites were removed from 
both ends of the biofilm. 

Uptake kinetics were specified for the four primary 
metabolites: CO2, photon, glucose and oxygen. The uptake 
kinetics for each metabolite were assumed to follow 
Michaelis-Menten expressions.         
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the uptake rate (mmol/gDW/h) of the i-th substrate, Si is the 
extracellular concentration (mmol/L) of the i-th substrate, vmax,i 
is the maximum uptake rate and Km,i is the half saturation 
constant. Equation (1) was used to establish transport bounds 
on the uptake rates with the actual uptake rates being 
determined by solution of the intracellular flux balance 
problem. 

The uptake kinetics of phosphate and nitrate had the form,  
                                        𝑣𝑣𝑝𝑝 = α𝑝𝑝

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚,𝑝𝑝𝑃𝑃
𝐾𝐾𝑚𝑚,𝑝𝑝+P

                                  (4)  

                                        𝑣𝑣𝑛𝑛 = α𝑛𝑛
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚,𝑛𝑛𝑁𝑁
𝐾𝐾𝑚𝑚,𝑛𝑛+N

                                    (5)                                                                             

where vp and vn are the uptake rates (mmol/gDW/h), P and N 
are the extracellular concentrations (mmol/L), vmax,p and vmax,n 
are the maximum uptake rates and Km,p and Km,n are the half 
saturation constants of the phosphate and nitrate respectively. 
Equations (2 and 3) were used to establish transport bounds on 
the uptake rates with the actual uptake rates being determined 
by solution of the intracellular flux balance problem. The 
parameters α𝑝𝑝 and α𝑛𝑛 were added to evaluate the effect of 
restricted phosphate and nitrate uptakes on biomass 
concentration and species interactions. 

Attenuation of scalar incidence irradiance was calculated by 
using Beer-Lambert law, 

 
                                   𝐼𝐼 =   𝐼𝐼𝑖𝑖𝑖𝑖𝑒𝑒−(𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡(𝐿𝐿−𝑧𝑧))                                  (6)                                          
 
where Iin is the initial photon incident rate (µE/m2s). The 
attenuation coefficient, ktot was adjusted to achieve enough 
penetration of light into the biofilm. The photon incidence rate 
obtained from this equation was used to calculate the lower 
bound on photon uptake rate by using nutrient uptake kinetics. 
The lower bound of photon uptake rate along with other 
nutrient bounds were used for solving core metabolic model 



and the corresponding growth rates of autotrophs were 
obtained. 

2.3 Solving model equations 

The biofilm model was consisting of a set of partial differential 
equations (PDEs) with mixed boundary conditions and 
embedded LPs. We converted those PDEs to ordinary 
differential equations (ODEs) by discretizing in space. The 
algebraic equation (AE) for photon balance equation 
combined with the ODEs led to system of differential algebraic 
equations (DAEs). The DAE system was solved using 
DFBAlab, a MATLAB tool that explicitly addresses problems 
associated with LP alternative optima and possible 
infeasibilities. DFBAlab employs a lexicographic optimization 
strategy in which a series of LP problems are sequentially 
solved to ensure the determination of unique exchange fluxes 
necessary for a well-defined dynamic system. We specified the 
lexicographic optimization objectives to reflect the anticipated 
physiology of the autotroph-heterotroph biofilm. We used 30 
spatial node points to achieve fast and accurate solutions. We 
solved 210 ODEs, one algebraic equation for photon balance 
and 390 LPs in MATLAB 2017b using DFBAlab, stiff ode 
integrator ode15s and Gurobi 7.5.2 as a LP solver (Chen et al., 
2016; Phalak et al., 2016).  

2.4 Model Parameters 

For determining parameter values, we used the species 
abundance data available at various depths in the biofilms of 
UCC-A and UCC-O at different times (see Figure 1B and 1C). 
The spatial data available for the fraction of biomass was 
converted to the biomass concentration at various locations by 
using biofilm density. The concentration of autotrophs and 
heterotrophs vary in space and time. We used day 7 spatial data 
as an initial condition for the model and validated the model 
for day 14, day 21 and day 28. We used least square curve 
(lscurvefit) fitting technique in MATLAB to fit the 
experimental data and validate the biofilm model. The lower 
bound and upper bounds on the parameters were chosen based 
on the available literature values. The global optimum was 
sought by using multistart option in MATLAB. This approach 
chose various starting points in from the lower and upper 
bounds.   

The parameters used in the biofilm model are not reported here 
due to space limitations. The kinetic parameters (vmax and Km) 
for the metabolites were obtained from model fitting. We have 
used the values obtained from literature as the initial guesses 
for vmax and Km (Meadow s et al., 2010; Shastri et al., 2005; 
Triana et al., 2014). The aqueous diffusion coefficients for 
substrates and byproducts were converted to the biofilm 
diffusion coefficients using appropriate coefficients (Stewart, 
2003). The diffusion coefficients and the mass transfer rate 
constant for biomass were obtained from the validation of the 
biofilm experimental data. 

3. RESULTS 

3.1 Biofilm model validation 

The UCC-O and UCC-A biofilm models were validated by 
using data from an experimental study (Cole et al., 2014). The 
uptake kinetics for CO2, glucose, oxygen and photon were 

specified with an abundant amount of nitrate and phosphate. 
We have used two approaches to fit the experimental data. The 
first approach assumed that the biofilm was grown under 
limited amount of CO2, photon and oxygen and unlimited 
amount of nitrate and phosphate. We termed this model as 
unconstrained model. The other approach assumed that the 
biofilm was grown under limited amount CO2, photon and 
oxygen but the autotroph’s phosphate and/or nitrate uptakes 
were restricted. We termed this model as constrained model. 
The phosphate constraint (αp) in the model considered limited 
access to the phosphate to autotrophs after day 14 as predicted 
by the study on autotrophs and heterotrophs (Lindemann et al., 
2017). The nitrate uptake constraint (αn = 0.75) for autotrophs 
in UCC-O was added to account for their capabilities to secrete 
the extracellular polymeric substances. We compared the 
predictions from constrained and unconstrained model with 
the experimental data.  

The unconstrained UCC-O model predicted higher autotroph 
and heterotroph biomass concentrations than the constrained 
model (Figure 2). The model fitting improved for the 
constrained model. The root mean least square error for 
constrained model reduced by 10% as compared with that for 
unconstrained model. The model fittings improved in presence 
of nitrate and phosphate limitations as this incorporates 
important metabolite exchanges in the system. 

The UCC-O model captured the qualitative peak locations for 
autotrophs and heterotrophs for day 21 (Figure 2A and 2B 
middle panels) and day 28 (Figure 2A and 2B bottom panels). 
The UCC-O model predicted lower heterotroph biomass 
concentrations for day 14, day 21 and day 28 as compared to 
the experimental observation. The UCC-O model successfully 
captured the temporal shifts of peak locations for autotrophs 
and heterotrophs. 

 
 Figure 2. Spatially resolved model fitting for UCC-O autotroph-
heterotroph biofilms with (constrained model, red solid lines) and 
without (unconstrained model, blue lines) nitrate and phosphate 
limitation. (A) Autotroph biomass (g/L) at day 14 (top panel), day 
21(middle panel) and day 28 (bottom panel) for biofilm of thickness 
L = 30 µm. (B) Heterotroph biomass (g/L) at day 14 (top panel), day 
21(middle panel) and day 28 (bottom panel) for biofilm of thickness 
L = 30 µm.  
The constrained model for UCC-A assumed restricted 
phosphate uptakes for autotrophs after day 14. This deemed 
reasonable as with increase in the time, the access to available 
phosphate was limited. We accounted this effect by 
multiplying the phosphate uptake rate of autotrophs after 14 
days by αp =1. The optimized value of αp was obtained from 



data fitting analysis. We compared the model predictions for 
constrained and unconstrained case with the experimental 
data. The autotroph and heterotroph biomass concentrations 
for unconstrained model were slightly higher than that from 
the constrained model. We did not find any significant change 
in root mean square error when we compared the model 
predictions from constrained and unconstrained case.  

Our biofilm model qualitatively captured the experimental 
behavior of the photoautotroph-heterotroph biofilms from hot 
lake (Figure 3). The UCC-A model depicted the qualitative 
peak locations for the day 14 (Figure 3A and 3B, top panels) 
and day 28 (Figure 3A and 3B, bottom panels) for autotrophs 
and heterotrophs. The model also captured the shifting of 
temporal peak locations for autotrophs and heterotrophs. The 
model could not successfully fit the heterotroph data for day 
21 (Figure 3B, middle panel). The possible reasons for this 
data would be an error in experimental measurements or the 
lack of details in the modeling framework.  

 
Figure 3. Spatially resolved model fitting for UCC-A autotroph-
heterotroph biofilms with (constrained model, red solid lines) and 
without (unconstrained model, blue lines) phosphate limitation. (A) 
Autotroph biomass (g/L) at day 14 (top panel), day 21(middle panel) 
and day 28 (bottom panel) for biofilm of thickness L = 30 µm. (B) 
Heterotroph biomass (g/L) at day 14 (top panel), day 21(middle 
panel) and day 28 (bottom panel) for biofilm of thickness L = 30 µm 

3.2 Effect of CO2 

The validated constrained models were used to predict the 
interactions between autotrophs and heterotrophs at various 
CO2 concentrations under restricted phosphate and nitrate 
uptakes by autotrophs. Reduced nitrate and phosphate uptakes 
are observed during succession for UCC-O and reduced 
phosphate uptakes were observed for UCC-A (Lindemann et 
al. 2017). This effect was incorporated by adding parameters 
for phosphate (α𝑝𝑝) and nitrate (α𝑛𝑛) in calculation of uptakes 
for autotrophs. We chose various values of α𝑝𝑝 between 0 and 
1 and the respective community biomass were calculated. For 
UCC-A, the biomass concentration was constant for αp=1, 
0.75, 0.5 but it decreased at αp=0.25. In case of UCC-O the 
biomass concentration was very sensitive to αp, the 
concentration dropped with decrease in αp. 
Cyanobacterium Phormidium sp. OSCR is known to produce 
more extracellular polymeric substances (EPS) than 
cyanobacterium Phormidesmis priestleyi ANA. We have 
accounted for this behavior by restricting nitrate uptake for 
autotrophs in UCC-O by setting αn =0.75. We have considered 
αp=0.25 for UCC-A and UCC-O and evaluated the effect of 
CO2 concentration on community abundances. We varied the 

concentration of CO2 supplied at the top of the biofilm (L=0) 
from 0.1 mmol/L to 10 mmol/L under the photon incidence 
rate of 35 µmol photons PAR/m2s. We have plotted the 
average biomass concentrations and average metabolite 
(glucose and O2) concentrations at the end of day 14, day 21 
and day 28 for UCC-A and UCC-O biofilms. 

The average autotroph biomass concentrations for UCC-A 
increased from day 14 to day 28 for various CO2 
concentrations whereas that of heterotrophs decreased for 0.1 
mM of CO2 and increased for all other CO2 concentrations 
(Figure 4E and 4F). The highest autotroph biomass 
concentration (222.8 g/L at 28 days) and heterotroph biomass 
concentration (21.7 g/L at 28 days) were obtained for CO2 
concentration 10 mM. This suggests that the CO2 
concentration played an important role in autotroph growth 
and biomass accumulation. Autotrophs secreted less amount 
of glucose for CO2 level 0.1 mM as compared to CO2 levels 
0.5 mM and 10 mM. The accumulation of glucose at 0.1 mM 
of CO2 was the least due to its faster consumption by 
heterotrophs. O2 secretion increased with increase in supplied 
CO2. Heterotroph growth was mainly limited by glucose 
secretion than that of O2. 

 
Figure 4. Predictions after 14, 21 and 28 days for UCC-O and UCC-
A biofilms of thickness L = 30 µm at various CO2 concentration and 
constant photon incidence (35 µmol photons PAR/m2/s). 0.1: CO2 
concentration 0.1 mmol/L. 0.5: CO2 concentration 0.5 mmol/L. 10: 
CO2 concentration 10 mmol/L. (A) UCC-O: Autotroph biomass 
concentrations averaged across the biofilm. (B) UCC-O: Heterotroph 
biomass concentrations averaged across the biofilm. (C) UCC-O: 
Glucose concentrations averaged across the biofilm. (D) UCC-O: 
Oxygen concentrations averaged across the biofilm. (E) UCC-A: 
Autotroph biomass concentrations averaged across the biofilm. (F) 
UCC-A: Heterotroph biomass concentrations averaged across the 
biofilm. (G) UCC-A: Glucose concentrations averaged across the 
biofilm. (H) UCC-A: Oxygen concentrations averaged across the 
biofilm. 
 
For UCC-O, autotroph biomass concentration increased from 
79.5 g/L (at day 14) to 93 g/L (at day 28) for all CO2 
concentrations considered here (Figure 4A). This indicated 
that the CO2 was not a limiting substrate for autotroph growth. 
Exact opposite trend was observed for heterotroph biomass 
concentration, it decreased from 20.7 g/L (at day 14) to 17.4 
g/L (at day 28) (Figure 4B). The accumulation of glucose 
increased from day 14 to day 28 whereas that of O2 was 
constant for all CO2 levels. The model predicted that CO2 
concentration does not significantly affect the temporal 
patterns of the compositional change in UCC-O.  



3.3 Effect of light incidence rate 

The model was further used to predict the impact of photon 
incidence on the community stability and dynamics. We 
evaluated three different photon incidence rates (10, 35 and 50 
µmol photons PAR/m2/s) at constant CO2 concentration (10 
mmol/L). The averaged species and metabolite concentrations 
were plotted at the end of 14, 21 and 28 days for UCC-A and 
UCC-O biofilms. 

The autotroph concentration in case of UCC-A biofilms 
increased from day 14 to day 28 with increase in photon 
incidence rate from 10 to 50 µmol photons PAR/m2/s (Figure 
5E) with the highest concentration of 282.5 g/L was obtained 
at day 28 for photon incidence rate of 50 µmol photons 
PAR/m2/s. The amount of glucose secreted by autotrophs 
increased for photon incidence rate of 10 and 35 µmol photons 
PAR/m2/s but it decreased for photon incidence rate µmol 
photons PAR/m2/s (Figure 5G). The amount of O2 secreted by 
autotrophs increased for all photon incidence rates (Figure 
5H). Heterotrophs utilized the glucose and oxygen efficiently 
and increased their abundances from 14 g/L (at day 28) to 21.7 
g/L (at day 28) for the case of 10 and 35 µmol photons 
PAR/m2/s respectively but later the abundance decreased to 
20.3 g/L (at day 28) for incidence rate 50 µmol photons 
PAR/m2/s (Figure 5F). This suggested that the heterotroph 
concentration directly depended on autotroph concentration 
until photon incidence rate of 35 µmol photons PAR/m2/s but 
later it decreased for 50 µmol photons PAR/m2/s. The 
autotroph concentration increased with increase in photon 
incidence rate. 

 
Figure 5. Predictions after 14, 21 and 28 days for UCC-O and UCC-
A biofilms of thickness L = 30 µm at various photon incidence rates 
and constant CO2 concentration (10 mmol/L). 10: photon incidence 
rate 10 µmol photons PAR/m2/s. 35: photon incidence rate 35 µmol 
photons PAR/m2/s. 50: photon incidence rate 50 µmol photons 
PAR/m2/s. (A) UCC-O: Autotroph biomass concentrations averaged 
across the biofilm. (B) UCC-O: Heterotroph biomass concentrations 
averaged across the biofilm. (C) UCC-O: Glucose concentrations 
averaged across the biofilm. (D) UCC-O: Oxygen concentrations 
averaged across the biofilm. (E) UCC-A: Autotroph biomass 
concentrations averaged across the biofilm. (F) UCC-A: Heterotroph 
biomass concentrations averaged across the biofilm. (G) UCC-A: 
Glucose concentrations averaged across the biofilm. (H) UCC-A: 
Oxygen concentrations averaged across the biofilm. 
 
The autotroph concentration in case of UCC-O biofilms 
increased from day 14 to day 28 with increase in photon 
incidence rate from 10 to 50 µmol photons PAR/m2/s (Figure 
5A) with the highest concentration of 93.1 g/L was obtained at 

day 28 for photon incidence rate of 35 and 50 µmol photons 
PAR/m2/s. The amount of glucose accumulated decreased for 
photon incidence rates of 35 and 50 µmol photons PAR/m2/s 
but it increased for photon incidence rate 10 µmol photons 
PAR/m2/s (Figure 5C). The amount of O2 accumulated in 
biofilm was constant for all photon incidence rates (Figure 
5D). Heterotrophs utilized the glucose and O2 increased their 
abundances initially for day 14 but it decreased due to low 
glucose availability. Time averaged heterotroph concentration 
dropped from 22.4 g/L to 18.7 g/L with increase in photon 
incidence rate. This suggested that the photon incidence rate 
positively affected the autotroph concentrations but negatively 
impacted the heterotroph abundances. 

CONCLUSION 

To study the interactions within the autotroph-heterotroph 
community found in unicyanobacterial consortia in microbial 
mat, we developed a biofilm model by coupling core metabolic 
networks of these two functional groups with one-dimensional 
reaction-diffusion equations. Our models captured the species 
interactions at various depths in hot lake and predicted the 
species abundances. The models were used to predict the effect 
of CO2 and photon on interactions within the community and 
the species coexistence. UCC-A model predicted that the 
autotroph biomass increased by 35%, and the heterotroph 
biomass by 43% when CO2 concentration increased from 0.1 
mM to 10 mM at constant photon rate (35). This suggested that 
the CO2 concentration significantly impacted the community 
biomass and the species interactions. In case of UCC-O 
community, CO2 concentration did not change the individual 
biomass concentrations, suggesting that the community is 
robust to the change in the concentration of available carbon 
at constant photon rate.  
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