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Abstract: Data-driven soft sensor has been widely used in industrial processes. However, complex 

industrial processes all exhibit nonlinear and multimodal characteristics due to varying operating conditions. 

Multimodal data characteristics will cause the deterioration of soft sensor performance. Therefore, in this 

article, a modified Model-Agnostic Meta-Learning (MAML) based on K-Means (KM) is proposed. Firstly, 

the KM method is introduced to cluster the multimodal processed data, and then extract the clustered data 

to form multiple tasks. After that, MAML method is adopted to train a group of initialization parameters. 

The sum of each task's loss function is introduced to adjust the initial parameters by one or more steps of 

gradient. The proposed model is finally applied and verified in the Purified Terephthalic Acid (PTA) solvent 

system. Compared to some conventional methods, the prediction accuracy is improved by more than 70%. 

The result demonstrates the superiority in the proposed method. 
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1. INTRODUCTION 

With the continuous development of the process industry, the 

requirements for monitoring and controlling key quality 

indicators in the production process are becoming higher and 

higher (Kano M et al. 2008; Yuan X F et al. 2018; Kaneko H 

et al. 2014; Wang J L et al. 2018). Since hardware sensors are 

usually expensive, difficult-to-maintain and failure-prone 

(Kadlec P et al. 2011). Soft sensor has been widely used in 

industrial fields (Gao X Q et al. 2016; Yuan X F et al. 2019). 

Currently, there are mechanism and/or data-driven based 

modeling methods in soft sensor research (Sun Q et al. 2019). 

Due to the complexity of the production processes, it is 

laborious and hard to implement using a mechanism based 

method. In contrast, the historical data typically used for 

monitoring allows nonlinear black or gray-box process models 

to identify. However, process variables are highly correlated, 

and the process data have multimodal characteristics. Such 

large number of process variables and data are much larger 

than their dimensionality, manifesting as data-rich and 

information-poor (Park S Y et al. 2000). In this case, the more 

mainstream approach is to solve the problem by using the 

principal components analysis (PCA), and the least squares 

method (Dong D et al. 1996). However, in the case of non-

Gaussian distribution, the principal components derived from 

the PCA method may not be optimal (Lin K Z et al. 2021). The 

least squares method not only requires a large amount of data 

as support, but also is difficult to deal with complex 

multimodal data well. The support vector machine (SVM) 

approach can solve the problem of small samples very well 

(Popli K et al. 2018), thus avoids the dimensional disaster. Yet, 

its computation shows an exponential growth with the samples 

number. Although the artificial neural network is a good fit for 

the nonlinear model (Gonzaga J C B et al. 2009; Ko Y D et al. 

2011; Mohammadpoor M et al. 2018), there are still problems 

of local optimum and failure to converge. Model mismatch of 

soft sensor under varying state and dynamic conditions is the 

major challenge. Thus, when the conditions change, a large 

amount of multimodal data will be generated, which leads to 

model mismatches. How to process complex multimodal data 

and make the soft sensor precisely track the varying conditions 

is the main concern of this paper.  

With the improvement of computing power, deep learning has 

become a hot research topic and many related algorithms have 

been applied to soft sensor modeling (Sun Q Q et al. 2019). 

Many scholars have done relevant studies. Shang C et al. 

introduced deep learning to soft sensor modeling firstly in 

2014 and demonstrated the effectiveness (Shang C et al. 2014). 

Lian P L et al. proposed a soft sensor method for air preheater 

based on (deep belief network) DSN- (improved particle 

swarm optimization) IPSO- (support vector regression) SVR, 

using a particle swarm optimization algorithm. However, the 

model construction process is complicated, which reduces the 

generalization ability of the model (Lian P L et al. 2020). 

Wang J L et al. proposed a dynamic soft sensor based on 

convolutional neural networks, which obtained better 



prediction results by fully mining the information of historical 

data (Wang J L et al. 2020). Zhu Q Y proposed a hybrid 

learning algorithm based on Evolutionary Extreme Learning 

Machine, which used the differential evolutionary algorithm to 

select the input weights, resulting in a fast solution speed. 

However, the above methods require a complex model design 

process and do not consider the multimodality of the data. 

In recent years, Model-Agnostic Meta-Learning (MAML) has 

been successfully applied to speech recognition (Yildirim S et 

al. 2021; Xu Z X et al. 2021) and image feature extraction 

(Zhou F et al. 2021), nonlinear extension has also been widely 

studied (Ye H L et al. 2021). This method can also be used to 

establish the required nonlinear soft sensor modeling. To make 

full use of multimodal data of industrial processes, this paper 

proposed a multimodal data recognition soft sensor modeling 

framework based on K-Means and Model-Agnostic Meta-

Learning method. Since MAML is a gradient-based updating 

method, through a gradient descent, a set of initialization 

parameters is obtained. Applying this initialization parameters 

to neural network will get better prediction effect. The Back 

Propagation (BP) neural network model is chosen as an 

example in this paper. The modified MAML method can solve 

the problem of small sample data and multi-modal data at the 

same time, so it has better performance. 

1.1 K-means model 

The training unit of the MAML method is defined as task, and 

multiple tasks compose a batch. The objects of MAML are 

tasks composed of samples from sample points. In the iterative 

updating process of MAML, the selection of tasks is random. 

Therefore, to extract the characteristics of the data at a deeper 

level, the K-Means method is firstly used to preprocess the 

data. The data is first clustered, and the samples are divided 

into several clusters based on the characteristics of the samples. 

During tasks sampling, samples are sampled based on the 

clustered data to ensure the sample features of each category 

can be selected.  

The core goal of K-Means is to divide a given data set into K 

clusters (K is a super parameter). Firstly, the data is 

preprocessed, then K centers are randomly selected and 

denoted as： {𝜇1
(0)

, 𝜇2
(0)

, … , 𝜇𝑘
(0)

} .The loss function can be 

defined as: 

 

𝐽(𝑐, 𝜇) = ∑||𝑥𝑖−𝜇𝑐𝑖
||2

𝑀

𝑖=1

 (1) 

where 𝑥𝑖 represents the sample number 𝑖, 𝑐𝑖  is the cluster to 𝑥𝑖 , 

𝜇𝑐𝑖
 represents the center point corresponding to the cluster, and 

M is the total number of samples. For each sample 𝑥𝑖 , it is 

assigned to the nearest center:  

 𝑐𝑖
𝑡 < −𝑎𝑟𝑔𝑚𝑖𝑛𝑘||𝑥𝑖 − 𝜇𝑘

𝑡 ||2 (2) 

Then, for each class center K, the center of the cluster is 

recalculated:  

 𝜇𝑘
(𝑡+1)

< −𝑎𝑟𝑔𝑚𝑖𝑛𝜇 ∑ ||𝑥𝑖 − 𝜇||2
𝑏

𝑖:𝑐𝑖
𝑡=𝑘

 (3) 

The iterative calculation is repeated until the loss function 

converges. The flow chart of the proposed training task 

acquisition process is shown in Fig. 1. 

 

 

1.2 K-means &Model-agnostic meta-learning 

MAML is a two-phase learning process. In the first phase 

process, it generates a set of initialization parameters of BP 

neural network. In the second phase process, the neural 

network parameters are optimized and adjusted. Since KM-

MAML ultimately aims to solve the problem of better learning 

on the new tasks, the learning experience in the previous tasks 

should be transferred. So, the training process consists of two 

phases. Firstly, the data are divided into two parts, Dmeta-training 

data and Dmeta-testing data. Dmeta-training data is for the first gradient 

update and Dmeta-testing data is for the second. In the first training 

phase, Dmeta-training data is clustered based on K-Means model 

to form multiple data clusters. Then, each data cluster is 

randomly sampled to form tasks, and multiple tasks form a 

batch. These batches are used to train BP neural network 

respectively, and the loss under each batch is calculated. Each 

task still has a training set and testing set. The training set is 

called support set, and the testing set is called query set. The 

sampling points corresponding to different tasks are also 

different. After training on several such meta-training tasks, 

meta-testing or reasoning should be carried out on a new task. 

In the second fine-tuning phase, the Dmeta-training data also needs 

to be clustered and sampled to form batch. However, the K-

Means parameters will be different in this case. The process of 

data processing is the same as the first gradient update. But at 

this time, it uses the sum of each task's loss function to adjust 

the initial parameters. In the first training phase, the obtained 

parameters are intermediate parameters, and are not used in the 

final network. While the parameters of the network are really 

updated in the second fine-tuning phase. Since the testing tasks 

are samples of several clusters that have never been seen 

before, the model can be fine-tuned on these samples. 

However, the model has already learned the "experience" 

during the first training, so it can quickly adapt to the testing 

tasks in the second fine-tuning phase. The flow chart of the 

modeling process is shown in Fig. 2.
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Figure 1. Flow chart of the proposed training task acquisition 

process. 



 

2. MODELING AND ANALYSIS 

The goal of MAML is to train models for a variety of learning 

tasks, so new learning tasks can be solved by using only a 

small number of training samples. Suppose the training data, 

Data = {X, Y}, includes two parts, input data X ∈𝑅𝑛×𝑚and 

output data Y∈ 𝑅𝑛×1 , which obey the distribution 𝑝(𝜏) . 

Formally, each task 𝜏 =
{𝐿(𝑥1, 𝑎2, … , 𝑥𝐻 , 𝑎𝐻), 𝑞(𝑥1), 𝑞(𝑥𝑡+1|𝑥𝑡 , 𝑎𝑡)} consists of a loss 

function L, a distribution over initial observations 𝑞(𝑥1), a 

transition distribution 𝑞(𝑥𝑡+1|𝑥𝑡 , 𝑎𝑡). Consider that a model F 

maps observations x to outputs y, then samples K new tasks 𝜏𝑖 

from 𝑝(𝜏). The model F is trained with K samples and the 

feedback is from the corresponding loss 𝐿𝜏𝑖
 from 𝜏𝑖. Then test 

on new samples from 𝜏𝑗 to complete the entire training process 

of the model. 

The initial parameters 𝜃 of the neural network are defined as:  

 𝜃0 = [𝜃1, 𝜃2, … , 𝜃𝑛]𝑇 (4) 

Suppose a batch of samples are randomly selected, including 

K samples. Each sample has n input features and m outputs 

corresponding label data. The input matrix of the sample is (the 

rows represent the sample, and the columns represent the 

characteristics (dimensions) of the input sample):  

 

𝑀𝑖𝑛 =

[
 
 
 
 𝑥1

1 𝑥2
1

𝑥1
2 𝑥2

2 ⋯
𝑥𝑛

1

𝑥𝑛
2

⋮ ⋱ ⋮
𝑥1

𝑙 𝑥2
𝑙 ⋯ 𝑥𝑛

𝑙 ]
 
 
 

 

(5) 

The corresponding output matrix is: 

 

 

𝑀𝑝𝑟𝑒𝑑(𝜃) =

[
 
 
 
𝑦̂1

1(𝜃) 𝑦̂2
1(𝜃)

𝑦̂1
2(𝜃) 𝑦̂2

2(𝜃)
⋯

𝑦̂𝑚
1 (𝜃)

𝑦̂𝑚
2 (𝜃)

⋮ ⋱ ⋮
𝑦̂1

𝑙(𝜃) 𝑦̂2
𝑙 (𝜃) ⋯ 𝑦̂𝑚

𝑙 (𝜃)]
 
 
 

 

(6) 

A mean square error loss function 𝐿𝜏(𝜃) is defined to measure 

the performance of the neural network model:  

 
𝐿𝜏(𝜃) = 𝑀𝑆𝐸𝜏 =

1

2𝑛 × 𝑚
× [∑∑(𝑦̂𝑗

𝑖(𝜃) − 𝑦𝑗
𝑖(𝜃))2

𝑚

𝑗

𝑛

𝑖

] (7) 

The derivative of the loss function 𝐿𝜏(𝜃) to 𝜃 is: 

 

𝑔 = ∇𝜃𝐿𝜏(𝜃) =
𝜕𝐿𝜏(𝜃)

𝜕𝜃
= [

𝜕𝐿𝜏(𝜃)/𝜕𝜃1

𝜕𝐿𝜏(𝜃)/𝜕𝜃2

⋮
𝜕𝐿𝜏(𝜃)/𝜕𝜃𝑛

] 

(8) 

 

The first gradient descent can be expressed as: 

 𝑔1 = ∇𝜃𝐿𝜏(𝜃0) 

𝜃1 = 𝜃 0
0 − 𝛼𝑔1 (9) 

Then consider the case of performing k inner gradient steps, 

k≥1. Starting with the initial model parameter 𝜃𝑚𝑒𝑡𝑎: 

 𝜃0 = 𝜃𝑚𝑒𝑡𝑎 

𝜃1 = 𝜃0 − α∇𝜃𝐿(0)(𝜃0) 

𝜃2 = 𝜃1 − α∇𝜃𝐿(0)(𝜃1) 

⋯ ⋯ (10) 

Figure 2. Flow chart of the modeling process. 



𝜃𝑘 = 𝜃𝑘−1 − α∇𝜃𝐿(0)(𝜃𝑘−1) 

 

 𝑔𝑀𝐴𝑀𝐿 = ∇𝜃𝐿(1)(𝜃𝑘) 

=𝜃𝑘𝐿
(1)(𝜃𝑘) ∙ (∇𝜃−1𝜃𝑘)⋯ (∇𝜃0

𝜃1)(∇𝜃𝜃0) 

= 𝜃𝑘𝐿
(1)(𝜃𝑘) ∙ (∏ ∇𝜃𝑖−1

𝜃𝑖

𝑘

𝑖=1

) ∙ 𝐼
 

= 𝜃𝑘𝐿
(1)(𝜃𝑘) ∙ ∏ ∇𝜃𝑖−1

(𝜃𝑖−1 − α∇𝜃𝐿(0)(𝜃𝑖−1))

𝑘

𝑖=1
 

= 𝜃𝑘𝐿
(1)(𝜃𝑘) ∙ ∏(𝐼 − α∇𝜃𝑖−1

(∇𝜃𝐿(0)(𝜃𝑖−1))

𝑘

𝑖=1

)
 

 

 

 

 

 

 

 

(11) 

The objective of MAML is to find a set of initial parameters 𝜃 

of the model, so that the loss function can be minimized after 

k times of gradient update. The model is faced with randomly 

selected new tasks 𝜏𝑖. In mathematical language, namely: 

 𝜃∗ = arg min
𝜃

∑ 𝐿𝜏𝑖

(1)
(𝐹𝜃𝑖

)

𝜏𝑖~𝑝(𝜏)

 

= argmin
𝜃

∑ 𝐿𝜏𝑖

(1)
(𝐹

𝜃−𝛼∇𝜃𝐿𝜏𝑖

(0)
(𝑓𝜃)

)

𝜏𝑖~𝑝(𝜏)

 

(12) 

3.INDUSTRIAL CASE STUDY 

3.1 Purified terephthalic acid (PTA) reaction generation 

process 

Experiments were conducted by using PTA production 

process data and comparative experiments with BP, SVM and 

Partial Least Squares (PLS) methods. The measures used are 

the following three commonly used methods: 

 
𝑀𝑆𝐸 =

1

𝑛
∑(𝑦̂𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 (13) 

 
𝑅2𝑆𝑐𝑜𝑟𝑒 = 1 −

∑ (𝑦̂𝑖 − 𝑦𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦2)2𝑛
𝑖=1

 (14) 

 
𝑀𝐴𝐸 =

1

𝑛
∑|𝑦̂𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 (15) 

PTA is mainly from Paraxylene (PX) oxidation reaction, and 

the main devices include the main reactor, the dewatering 

condenser, and the crystallizer, as the flow chart of PX 

oxidation reaction process shown in Fig. 3. The main reactor 

is a continuous stirred tank reactor, under the conditions of PX 

and oxygen as raw materials, cobalt, manganese, bromine as 

catalysts for a series of oxidation to produce PTA. The 4-CBA 

is the main quality index of PTA products, and its unit is ppm. 

It will have a great impact on product quality.  

3.2 Variable selection  

The process variables used as soft sensor inputs is based on 

the physical context, as shown in Table 1. 

 
Table 1. Process variables selected 

Input variables Tag Description 

U1 F1 PX feed flow 

U2 F2 AIR feed flow 

U3 F3 Catalyst feed flow 

U4 P1 Reactor pressure 

U5 T1 Reactor temperature 

U6 T2 Crystallizer temperature 

U7 A1 CO concentration 

U8 A2 CO2 concentration 

U9 A3 O2 concentration 

In this case study, all modeling data and testing data were 

obtained from actual process data measured, and recorded at a 

refinery in northern China. The quality variable 4-CBA 

content was analyzed by laboratory sampling assays every four 

hours. A dataset containing 400 process quality samples 

corresponding to the last two months of process operations was 

selected. For the KM-MAML, the Dmeta-training data was split 

into a training set of 120 samples and a testing set of 40 

samples. In addition, the Dmeta-testing data includes a training set 

of 100 samples and a testing set of 40 samples for fine-tuning. 

Other 100 samples are validation set. For other methods (BP、

PLS、SVM), the ratio of training set, testing set to validation 

set is 2:1:1. 

In the KM-MAML model framework, the input layer、hidden 

layer、output layer of BP neural network model are 9, 20, 

1.For the KM-MAML, the Dmeta-training data is processed for 

clustering, and the input data is 9-dimensional data. The 

clustered data is used to select tasks and applyed to the training 

model. Do the same operation for Dmeta-testing in the second fine-

tuning phase. 
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Figure 3. Flow chart of PX oxidation reaction process. 



3.3 Results and discussions 

The comparison results in Table 2 show that the method of K-

Means (KM)-MAML has the best performance with the MAE 

of 0.252, comparing the results of SVM, PLS, and BP with 

0.687, 0.621, and 0.841. Obviously, its prediction error is 

smaller; For MSE, the prediction accuracy of KM-MAML of 

0.172 is significantly better than that of SVM (0.740), PLS 

(0.586), and BP (0.787). And for R2Score, the fitting 

performance of the KM-MAML method is closer to 1, which 

indicates a good match between the proposed model and the 

real process. 

 

Table 2. Performance comparison metrics results  

METRICS SVM PLS BP KM-MAML 

MSE 0.740 0.586 0.787 0.172 

R2SCORE 0.307 0.451 -0.031 0.805 

MAE 0.687 0.621 0.841 0.252 

Meanwhile, the prediction curves of the SVM, the PLS, the BP, 

and the KM-MAML in Fig. 6 show that SVM and PLS are still 

very sensitive to data outliers. While BP can overcome this 

situation, but its random initial parameters will lead to 

unsatisfactory prediction accuracy. Compared to others, the 

KM-MAML can better handle outliers and enhance the 

robustness of the model to improve the prediction accuracy 

because of the use of previously learned "experience".

  

  

Therefore, the KM-MAML model parameters have better 

generalization ability. The modeling work can be performed 

faster and more conveniently by using the existing model 

parameters for training when changing system working 

conditions. The model has better generalization ability, and the 

accuracy of prediction is also significantly improved. 

3. CONCLUSIONS 

This paper introduced the K-Means and Meta-Learning 

technique as a novel data-driven soft sensor modeling method. 

Advantages and characteristics of the multimodal data fusion 

soft sensor modeling method were analyzed and applied. The 

experimental results of SVM, PLS, BP, and KM-MAML on 

actual production data of PTA show that the proposed model 

can achieve better performance. The KM-MAML can reduce 

the computational burden of processing data and improve 

prediction accuracy. So, the modeling process of this method 

has better performance, which is important for soft sensor 

modeling in real industrial processes. In the future, we will 

consider more complex scenarios, and explore the adaptive 

capability of the model more fully. 
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