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Abstract: Crystallization is widely used for separation and purification. During this process, the different 

growth conditions, such as temperature and supersaturation, would result in different size and morphology, 

which not only affect the product quality, but also affect the subsequent process operations. Through the 

simulation of the crystallization process, a better understanding of crystallization process dynamics can be 

extracted. The population balance (PB) model has been used to simulate industrial crystallization processes, 

while the multi-dimensional population balance (MPB) model can be used to obtain the information of size 

and morphology distribution. However, the morphological distribution information provided by numerical 

solution of MPB is macroscopic, and the specific morphology of a crystal particle cannot be displayed at 

the microscopic level, so the difference among crystals morphology cannot be clearly displayed. Cellular 

automata (CA) is a method that simulates a process by considering simple cell changes and cell-to-cell 

interactions. It can be employed to conduct cross-scale simulation, i.e., both macro and micro. In this work, 

a CA method is introduced into an MPB model to simulate the batch cooling crystallization process from 

solution. The rule of crystal growth comes from classical diffusion theory, and whether the solution is 

transformed into a crystal is realized by the Monte Carlo method. The crystallization of potassium 

dihydrogen phosphate (KDP) is taken as a case-study and the results is verified with the results in the 

literature. Through CA simulation, not only the macroscopic crystal size and morphology distribution 

information can be obtained, but also the crystal morphology in microscopic can be exhibited. At the same 

time, the crystallization process can be visualized in 3-D environment, with size and morphology 

distribution being presented intuitively. In addition, the calculation time is reduced under certain accurate 

conditions. This result provides a theoretical reference for modeling, analysis and controlling of the 

crystallization process in the future. 

Keywords: multi-dimensional population balance (MPB) equation, batch cooling crystallization of solution, 

dynamic simulation, potassium dihydrogen phosphate (KDP), High-resolution finite volume method, 

crystal morphology, crystal size distribution. 

 

1. INTRODUCTION 

Crystallization is a widely used unit operation and has been 

applied in various industrial fields. As granular products 

obtained by crystallization process, morphology and size are 

key parameters closely related to physical properties such as 

stability, solubility and fluidity (Tiwary and Jindal, 2012). 

They are not only influenced by the microstructure of crystals, 

but also by different growth environments, such as temperature 

and supersaturation (Misra et al., 2020). Therefore, it is 

necessary to study how to select appropriate crystallization 

conditions to produce crystal products with specific 

morphology, and simulation is a good research method, by 

which, various production conditions in the crystallization 

process can be systematically analyzed, so as to guide 

experimental research and production process, and effectively 

improve the production efficiency and product quality.  
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Generally, the simulation of the crystallization process is to 

establish a mathematical model based on population balance 

(PB) equation, and then to solve it by a discrete method such 

as finite volume (Gunawan et al., 2004). For example, Joseph 

et al. (2014) studied the size and morphology of the crystals 

during continuous crystallization of protein according to the 

PB. Rosa and Braatz (2018) used PB and the open-source CFD 

package OpenFOAM to study the methanol-water antisolvent 

crystallization process of lovastatin in a continuous flow 

tubular crystallizer with radially mixing. This method enables 

people to have a macroscopic understanding of the 

crystallization. On one hand, the nonlinearity of these 

mathematical models makes it difficult to solve. On the other 

hand, only the size and morphology distribution of crystals can 

be obtained by this method. It is difficult to understand the 

crystal morphology as intuitively as the scanning electron 

microscope image of the experimental results. Therefore, if 



 

 

     

 

there is a simulation method that can not only show the 

distribution of crystal size and morphology on the macro level, 

but also show the morphology of micro crystal with relatively 

simple calculation, the crystallization process can be better 

understood and visualized. 

Cellular automata (CA) is a parallel computing method 

proposed by Von Neumann and Stanislav Ulam in 1948. It 

describes physical and chemical processes by simple changes 

of subsystems and their interactions without solving partial 

differential equations and decoupling complex systems. 

Meanwhile, the discrete description of CA is convenient for 

computer visualization. Therefore, the CA can be used as a 

simulation method for crystallization process, which can 

realize relatively simple calculations and exhibit the 

microstructure and macro distribution of crystals at the same 

time. Many scholars have used CA to simulate the 

crystallization process (Liu et al., 2020). For example, Pineau 

et al. (2020) used CA to simulate silicon crystallization. In 

their work, the evolution rule is the most important part of CA, 

which is based on the oriented attachment rule. It is very 

suitable for melting crystallization or recrystallization 

processes. However, for the solution crystallization process, 

bulk transformation and surface reaction are the dominant 

factors of the crystallization process, because the distance 

between each crystal is too far and the system is away from the 

equilibrium state. The aging rule of oriented attachment at 

equilibrium state is not suitable for solution crystallization. 

In this work, a method for simulating solution crystallization 

process by CA is proposed. The paper is organized as follows: 

the second part introduces how to use CA to simulate the batch 

cooling crystallization process. Then, in the third part, this 

method is demonstrated by taking potassium dihydrogen 

phosphate (KDP) as a case study. The simulation results of the 

size distribution are compared with those in the literature, and 

detailed in the fourth part. The last is a summary of the full 

text.  

2. CA MODEL OF BATCH COOLING 

CRYSTALLIZATION OF SOLUTION 

In order to simulate the batch crystallization process of 

solution cooling by the CA model, it is assumed:  

a. There is no crystal aggregation and breakage in the 

crystallization process, and only the nucleation and growth of 

crystals are considered in this CA model. 

b. The dissolution of crystals is not considered during the 

crystallization process. 

Although these assumptions make the model not completely 

consistent with the actual solution cooling crystallization 

process, the main crystallization mechanisms can be well 

captured for crystallization nucleation and growth in certain 

solution crystallization process, as aggregation, breakage and 

dissolution have little effect on the crystallization process. 

Under these assumptions, the PB equation of batch cooling 

crystallization is shown in (1). 

𝜕𝑓(𝐿𝑖,𝑡)

𝜕𝑡
+

𝜕[𝐺𝑖(𝐿𝑖,𝑡)𝑓(𝐿𝑖,𝑡)]

𝜕𝐿𝑖
= 𝐵(𝑡)𝛿(𝐿𝑖)                (1) 

where 𝐿𝑖 represents the characteristic crystal length of 

dimension 𝑖 , 𝑓(𝐿𝑖 , 𝑡)  represents the size distribution of the 

crystal at time 𝑡 , 𝐺𝑖(𝐿𝑖 , 𝑡) represents the growth rate of the 

length of 𝐿𝑖 in the i-dimensional growth direction of the crystal 

at time 𝑡, 𝐵(𝑡) represents the nucleation rate at time 𝑡, 𝛿(𝐿𝑖) 

is the Dirac function, and the value at 0 point is 1, and the value 

at other places is 0. 

2.1  Choice of CA Grid 

The grid type is the first part to be determined in CA 

simulation. For the convenience of simulation, a two-

dimensional square grid is selected to simulate crystallization 

(Fig. 1). Although the real crystal process should be more 

complex than this grid, its realization is relatively simple and 

reasonable for the mesoscopic growth model.  

 

Fig. 1. Schematic diagram of CA grid and Moor type 

neighbours.  The blue represents the central cell and the grey 

represents the neighbours. 

2.2  For a cell: Subsystem evolution rules 

In order to simulate the solution crystallization process, each 

cell consists of three parameters, namely the crystalline state 

′U′, the concentration state ′C′, and the length state ′𝐿𝑖′. The 

crystalline state parameter ′U′  takes two values, 0 and 1, 

corresponding to the solution and the crystal respectively. 

According to the hypothesis, there is no crystal dissolution in 

the model, and only when certain conditions are met, the cell 

state will change from solution state to crystal state. For the 

initial state, most of the cells are in the solution state and some 

cells are in the crystal state. These crystal state cells are chosen 

to represent the seed crystals added to the solution. After that, 

a probability P is obtained according to the nucleation rate to 

determine whether ′U′  changes from 0 to 1. The initial 

concentration state of the model is same and equal to the initial 

concentration, which represents a state of uniform mixing. 

Then the change of the cell concentration state is determined 

by two parts, i.e., a. the solute reduction caused by 

crystallization forms a concentration gradient, b. diffusion 

caused by concentration gradient according to Fick's Law. As 

each cell contains the characteristic length parameter ′𝐿𝑖′, the 

length of each cell doesn’t need to be specified for  the 

simulation of  such a grid. It is worth noting that in order to 

enable the crystal length to be calculated by this method, the 

𝐿𝑖  here is discretized compared to (1). Because there is no 

(i-1,j-1) (i-1,j) (i-1,j+1)

(i,j-1) (i,j) (i,j+1)

(i+1,j-1) (i+1,j) (i+1,j+1)



 

 

     

 

aggregation and breakage of crystals in the model, the change 

of characteristic length is only based on the growth of crystals.  

2.3  Neighbors 

As can be seen from the previous section, in this model, each 

cell is described by three state parameters. Because there is no 

aggregation and breakage of crystals in the model, neither the 

crystal parameters nor the characteristic length parameters are 

affected by other cells. Only the concentration parameter needs 

to be decided  by the concentration of neighbor cells. Since 

concentration diffusion is usually isotropic in space, a very 

common definition of cell neighborhood is the molar type, as 

shown in Fig. 1. 

2.4  Dynamic Rules in CA 

The evolution rule of CA needs to conform to the growth rule 

of crystal. The most commonly used theory to explain the 

crystallization process is the classic crystallization diffusion 

theory. It describes the growth of crystals in solution through 

the following three steps: 

(a) solute moves around the crystal through random molecular 

motion; 

(b) solute molecules react on the crystal surface and are 

embedded in the crystal lattice; 

(c) in the previous step, the heat generated by the solute 

molecules embedded into the crystal lattice was transferred to 

the solution.   

In this model, the evolutionary law of CA can be divided into 

two parts according to the classical diffusion theory of crystal 

growth: the internal change law of cells and the external 

change law affected by neighbors. Here, according to (a), the 

concentration parameter is not only affected by the internal 

change law of the cell based on the principle of conservation 

of mass, but also by Fick's law. According to (b), the crystal 

state parameter and the characteristic length parameters of the 

cel are only affected by the internal changes of the cell. The 

exotherm during the crystallization process is ignored. 

3. A CASE STUDY: KDP BATCH COOLING 

CRYSTALLIZATION 

In this section, a batch KDP crystallization process is chosen 

as a case study, the detailed parameters of KDP are taken from 

Gunawan et al. (2004) and presented as follows. 

3.1  Parameters of batch crystallization system for KDP 

The crystal morphology of KDP is shown in the Fig. 2. There 

are two characteristic lengths 𝐿1 and 𝐿2 for it. The volume of 

a single crystal can be calculated by (2) 

V0 =
1

3
𝐿1

3 + (𝐿2 − 𝐿1) ∙ 𝐿1
2                           (2) 

 

Fig. 2. Crystal diagram of KDP. 

The growth rate and nucleation rate (in (1)) of the i-th 

dimension according to Gunawan et al. (2004) will be 

determined by (3) and (4), respectively. 

G𝑖(𝐿𝑖 , 𝑡) = 0.1𝑘𝑔𝑖(
𝐶

𝑐𝑠𝑎𝑡(𝑇)
− 1)𝑔𝑖(1 + 0.6𝐿𝑖) , 𝑖 = 1,2    (3) 

B(𝑡) = 𝑘𝑏𝑉(
𝐶

𝑐𝑠𝑎𝑡(𝑇)
− 1)𝑏                       (4) 

where 𝑐 represents the concentration of the solution, 𝑐𝑠𝑎𝑡(𝑇) 

represents the saturation concentration at temperature T, using 

the data of (5). 

𝑐𝑠𝑎𝑡(𝑇)
= 9.3027 × 10−5𝑇2 − 9.7629 × 10−5𝑇
+ 0.2087       𝑔/𝑔 𝑤𝑎𝑡𝑒𝑟 

(5) 

The relationship between temperature and time 𝑡 is shown in 

(6). 

T(𝑡) = 32 − 4(1 − 𝑒−𝑡/310)                     (6) 

The values of all parameters are shown in Table 1 (Gunawan 

et al., 2004). 

Table 1. Parameters related to crystallization process of 

KDP (Gunawan et al., 2004) 

parameter value unit 

𝑏 2.04 - 

𝑘𝑏 7.49 × 10−8 number/μm3 /s 

𝑔1 1.48 - 

𝑔2 1.74 - 

𝑘𝑔1 12.1 μm /s 

𝑘𝑔2 100.75 μm /s 

𝜌𝑐 2.11 × 10−12 g/μm3 

3.2  CA state variables and initialization 

For the grid space of CA, the more grids, the more crystals that 

can be simulated, which means the higher precision, but also 

means the higher demand for computer resources. After 

compromise, a grid of 𝐴2 =1000 × 1000 was selected as the 

CA grid with the range of 𝑛2 = 150μm × 150μm, and the 

initial crystals size distribution is determined by (7). 

𝑓0 = {
−3.48 × 10−4(𝐿1

2 + 𝐿2
2 )

+0.136(𝐿1 + 𝐿2) − 26.6

18.05𝜇𝑚 ≤ 𝐿1, 𝐿2

𝐿1, 𝐿2 ≤ 21.05𝜇𝑚

0                                  𝑜𝑡ℎ𝑒𝑟𝑠

 (7) 



 

 

     

 

For this CA model, the number of crystal particles can not be 

directly expressed in the form of crystals size distribution. 

Monte Carlo method is emplayed to set a probability P0, so that 

the state of some cells can be changed from solution state to 

crystal state, i.e. P0 of cells it is U = 1 and others U = 0 . Here 

P0 is determined by (8). The crystalline state of  100 × P0% of 

the cells is U =  1  and the crystalline state of (1 − 100 ×
P0%) of the cells is U =  0. 

P0 = ∫ 𝑓
0

∞

0
𝑑𝐿 ∙ 𝑛2/𝐴2                            (8) 

In this CA model, each cell represents a crystal or solution. 

There are three parameters: length, width and height, for better 

display of each crystal. According to Fig. 2, the KDP is in the 

shape of a cube biconical cone. Here, it is assumed that each 

KDP crystal is a cuboid with a side length 𝐿1 at the bottom and 

a height 𝐿2. The initial state of the CA simulation is illustrated 

in Fig.3 and Fig.4. 

  

a. 3-D visualization of KDP b. view from 𝐿1×𝐿1 

Fig. 3. Simulation result of the crystal morphology at the 

initial state by CA. 

 

Fig. 4. Simulation result of the particle size distribution at the 

initial state by CA. 

If the crystals of each cell are counted according to different 

sizes, the particle size distribution of the simulated can be 

obtained. In order to better compare with the simulation 

results in the literature, each scale is separated by 0.5μm, and 

the number of crystals is per square micrometer (Fig. 4). 

For the cell in crystal state, its characteristic length parameters 

are updated as shown in (9). 

𝐿𝑖
𝑡+1(𝑖, 𝑗) = 𝐿𝑖

𝑡(𝑖, 𝑗) + ∆𝑡𝐺𝑖(𝑖, 𝑗)                 (9) 

No mixing is considered in this model, so the concentration 

state of cells is only affected by its own crystallization and 

Fick's Law (if there is mixing, the bulk flow needs to be added 

to the rules of interaction among cells). According to the mass 

conservation equation, the concentration of the solution 

changes with time shown in (10), where 𝜌𝑐   is the crystal 

density. Here, it is assumed that the size of the newly formed 

crystal and the consumption of solute can be neglected. 

𝑑𝑐

𝑑𝑡
= −𝜌𝑐 ∫ ∫ (2𝐺1(𝐿1𝐿2 − 𝐿1

2) + 𝐺2𝐿1
2)𝑓𝑑𝐿1𝑑𝐿2

∞

0

∞

0
  (10) 

In this model, the change rule of cell concentration parameters 

can group into two types according to the crystal state 

parameters. For cells in the solution state (U=0), the update of 

the cell concentration state is only based on the diffusion. For 

cells in the crystal state (U=1), the update of the cell 

concentration state is not only based on diffusion, but also on 

the influence of solute consumed by crystal growth on the 

concentration state. Usually the diffusion rate of the 

concentration should be calculated according to Fick's law. 

But here, for simplicity of calculation, it is expressed as an 

average value, as shown in (11). It is the law of the change of 

the cell concentration state when U=0, and (12) is the law of 

the change of the cell concentration state when U=1. 

Compared with (11), (12) is based on (11) minus the 

concentration reduction caused by crystallization 

𝐶𝑡+1(𝑖, 𝑗)

=
3

8
C𝑡(𝑖, 𝑗) +

1

8
∑ ∑ (

1

𝑚=−1

1

𝑛=−1

𝐶𝑡(𝑖 + n, 𝑗 + n)) 
(11) 

𝐶𝑡+1(𝑖, 𝑗) =
3

8
(C𝑡(𝑖, 𝑗) 

−𝜌𝑐(2𝐺1(𝑖, 𝑗)(𝐿1(𝑖, 𝑗)𝐿2(𝑖, 𝑗)  

−𝐿1(𝑖, 𝑗)2) + 𝐺2(𝑖, 𝑗)𝐿1(𝑖, 𝑗)2)∆𝑡)  

                       +
1

8
∑ ∑ (

1

𝑚=−1

1

𝑛=−1

𝐶𝑡(𝑖 + n, 𝑗 + m) 

                       −𝜌𝑐(2𝐺1(𝑖 + n, 𝑗 + m)(𝐿1(𝑖 + n, 𝑗 

                       +m)𝐿2(𝑖 + n, 𝑗 + m) − 𝐿1(𝑖 + n, 𝑗 

+m)2) + 𝐺2(𝑖 + n, 𝑗 + m)𝐿1(𝑖  
+n, 𝑗 + m)2)∆𝑡)  

(12) 

At the same time, due to the nucleation of crystals, cells in 

solution state are partially transformed into crystal state. This 

transition probability 𝑃 is defined by (13) according to (1) and 

(4). 

𝑃 = 𝐵𝐺/(𝐴2 − ∑ 𝑈)                       (13) 

The time interval ∆t = 0.01s. 

4. SIMULATION RESULT AND COMPARISON WITH 

HIGH-RESOLUTION FINITE VOLUME METHOD 

In the above two sections, how to use this CA method to 

simulate the crystallization process of KDP batch cooling 

solution is introduced in detail. In this section, the simulation 

results are displayed. In order to valid the proposed method, 

the simulation results of crystal size distribution are compared 

with the high-resolution finite volume method which is proved 

feasible in the literature. 



 

 

     

 

4.1 3D visualization of CA simulation results 

This model is used to simulate the crystallization process of 

KDP batch cooling solution for 100 seconds, and the 

simulation results are shown in the Fig. 5. and Fig. 6. 

  

𝑡 = 25𝑠 

  

𝑡 = 50𝑠 

  

𝑡 = 75𝑠 

  

𝑡 = 100𝑠 

Fig. 5. Simulation result of the crystal morphology at 100s 

state by CA. 

The Fig. 5 shows part of crystal morphology simulated by CA 

method. It can be clearly seen that with the extension of 

simulation time, KDP crystals gradually change from short 

and thick to slender. Similarly, in order to compare with the 

results of the literature, Fig. 6 shows the crystals size 

distribution per square micrometer with an interval of 0.5μm 

simulated by the CA method.  

 

Fig. 6. Simulation result of the crystal morphology at 100s 

state by CA. 

4.2  High-resolution finite volume method and it result 

As a numerical simulation method, the high-resolution finite 

volume method has been applied to the crystallization system 

to obtain discrete particle size distribution. Compared with 

other numerical simulation methods to obtain the particle size 

distribution, this method is a reliable simulation method, with 

higher accuracy in simulating the crystallization process. The 

detail of High-resolution finite volume method is shown in 

(14).  

𝑓𝐿
𝑡+1 = 𝑓𝐿

𝑡 −
∆𝑡

∆𝑑
(𝐺𝐿𝑓𝐿

𝑡 − 𝐺𝐿−1𝑓𝐿−1
𝑡 ) −

𝑘𝐺𝐿

2∆𝑑
(1 

  −
𝑘𝐺𝐿

∆𝑑
)(𝑓𝐿+1

𝑡 − 𝑓𝐿
𝑡)𝜙𝐿 +

𝑘𝐺𝐿−1

2∆𝑑
(1 

                   −
𝑘𝐺𝐿−1

∆𝑑
)(𝑓𝐿

𝑡 − 𝑓𝐿−1
𝑡 )𝜙𝐿−1  

(14) 

The same initial state as CA method is selected as the initial 

state of high-resolution finite volume method. The particle size 

distribution of the initial state simulated by the high-resolution 

finite volume method is shown in Fig. 7. 

 

Fig. 7. Simulation result of the particle size distribution at the 

initial state by high-resolution finite volume method. 

In order to compare the simulation results of the two methods 

better, model parameters are not changed, such as the time 

interval is still ∆𝑡 =  0.01𝑠  and the space interval is ∆𝑑 =
 0.5 𝜇𝑚 . The flow limit function 𝜙𝐿  adopts Van Leer flux 

limiter (Van Leer, 1974). After 100 seconds of operation, the 

crystal size distribution is shown in Fig. 8.  



 

 

     

 

 

Fig. 8. Simulation result of the particle size distribution at 

100s by high-resolution finite volume method. 

4.3 Comparison of the two methods 

It can be seen that the results of crystal size distribution 

simulated by CA (Fig. 4 and Fig. 6) are similar to those 

simulated by the high-resolution finite volume method (Fig. 7 

and Fig. 8). At the same time, the total volume of crystals 

within 1 square micron simulated by the two methods is 

counted, and the comparison shows that the changing trend of 

the two methods is the same (Fig. 9). These results prove that 

it is feasible to study the crystallization process by using this 

CA method.  

 

Fig. 9. The comparison of the total volume of the crystal of the 

cell automata and the high-resolution finite volume method. 

It can be noted that CA can not only display the size 

distribution of crystals obtained by ordinary numerical 

simulation, but also 3-D visually display the morphological 

changes of each crystal (Fig. 4 and Fig. 6). According to the 

Fig. 6, the KDP crystal morphology changes from the short 

and thick of the seed to more slender. The results show that 

under this production condition, the longer the crystallization 

process, the finer the crystal morphology. If slender crystals 

are needed, this state can be maintained, and the crystallization 

process should continue. If this slender crystal morphology is 

not expected, production conditions needs to ajust. This kind 

of information can't be visually displayed by ordinary 

numerical simulation, but it can be displayed by this method. 

5. CONCLUSIONS 

In this paper, a novel CA method is used to simulate the 

crystallization process of KDP solution batch cooling, and 

compared with the simulation results of literature high-

resolution finite volume method. It is proved that CA is 

feasible to simulate the batch cooling solution crystallization 

process. Compared with the traditional method, this method 

can visually display the results of the microscopic crystal state, 

which is similar to the results of the scanning electron 

microscopy after the crystal growth experiment. At the same 

time, equvalent to the ordinary numerical simulation method, 

the size distribution of crystals can also be obtained by using 

this method. Compared with the high-resolution finite volume 

method in literature, its accuracy level is similar when  

computing environment, research objects and conditions are 

set the same .  

Due to the limitation of this work, the influence of mixing on 

the crystallization process was not considered. In fact, this 

method is easier to add the influence of mixing and other 

factors on the process than the traditional method, because it 

only needs to change the law of interaction among cells and 

does not need to solve the Navier-Stoke equation. For other 

systems, the same methods can be used to study the 

crystallization process of solution. This method provides a 

new research method for the study of crystallization process, 

and also provides a better reference for the control of 

crystallization process. 
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