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Abstract: In recent years, closed-loop controllers for glucose regulation, also called Artificial
Pancreas (AP) systems, have become an emblematic problem in the field of automatic control.
Several closed-loop systems are in development around the world, such is the case of the
Automatic Regulation of Glucose (ARG) algorithm developed in Argentina that has already
been tested in the first AP clinical trials for all Latin America. Due to the complexity of
the problem at hand, the design and evaluation of controllers for glucose regulation is mostly
centered around short-term performance, especially focusing on postprandial periods. However,
as everybody, people with diabetes undergo changes in their routines or physiology that can
result in an inadequate performance if the controller is not adapted correctly.
In this work, the potential of Reinforcement Learning (RL) tools for long-term adaptation of
the ARG controller is evaluated through a discrete Q-learning agent. The proposed strategy is
evaluated in-silico using the UVA simulator, modifying only one parameter of the controller:
its Insulin-On-Board maximum limit. Results show that RL successfully adapts the controller
avoiding hypoglycemia when the subjects’ physiology changes through time, and that the trained
agent outperforms a rule-based decision making scheme for the majority of the adult population.
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1. INTRODUCTION

Type 1 Diabetes Mellitus (T1DM) is one of the most bur-
dening health conditions worldwide (Vos and Lim [2020]).
It is an autoimmune metabolic disorder which alters blood
glucose regulation when the β cells in the pancreas are
destroyed and this organ reduces or completely looses
the ability to produce insulin. Without insulin, elevated
levels of glucose remain in the bloodstream, generating
hyperglycemia which in the long run is associated with
severe micro and macro-vascular damage.

People who live with T1DM usually depend on exogenous
insulin analogues injection. This synthetic hormone can
be administered manually (MDI- Multiple Daily Injec-
tions) or through Continuous Subcutaneous Insulin Infu-
sion (CSII) systems, also known as insulin pumps. The
development of the latter and Continuous Glucose Monit-
oring (CGM) devices has lead the incorporation of control
algorithms to automatize insulin infusion. Both hybrid
and fully closed-loop systems are commonly known as
Artificial Pancreas (AP) systems and different strategies
are in development around the globe (Lanzola et al. [2015],
Haidar [2016], Fushimi et al. [2020], Rosales et al. [2022]).

Each diabetic person has their own particular metabolic
process and might respond differently to the same treat-
ment (inter-patient variability) and can also present vari-
ations within themselves (intra-patient variability) and
need personalized treatments that vary according to their

bodies and lifestyles, not only considering intra-day vari-
ations but also inter-day and long-term ones (Ruan et al.
[2017]). This makes controller adaptation a necessary sub-
ject to adjust the treatment according to the changes in
every subject. Some work has been done, especially for
a day-to-day adaptation (Messori et al. [2017]), but the
problem of systematic adaptation while maintaining AP
performance is far from resolved (Toffanin et al. [2018]).

Reinforcement Learning (RL) is a particular branch of
Machine Learning (ML) that is considered to be in-
between supervised and unsupervised learning (Sutton and
Barto [1998]), in which an agent learns by interacting
iteratively with a system or environment. Given a certain
state of the system and an action chosen by the agent,
the environment evolves to a different state and returns
a reward that indicates whether that action was good (or
bad) in the context of the specific scenario. RL has an
extensive theoretical background, and has been studied
since the 1980s but has only recently begun to be tested in
practical applications thanks to the advances of technology
regarding computing power (Nian et al. [2020]).

As a consequence of the “trial-and-error” nature of RL,
many applications require the initial training of the agents
to be conducted over complex simulated models so as to
ensure safety of people and equipment. In the medical field,
RL has mostly been used for prognosis, classification and
diagnosis, making use of the big amounts of data generated
by health systems, but only a few clinical trials use this



tool (Oroojeni Mohammad Javad et al. [2019]). Such is the
case that only in 2019, a commentary on guides for working
with RL in medicine was published by Nature (Gottesman
et al. [2019]).

In the AP area, specifically, there is some work using RL
agents as controllers for glycemic control, the most used
configuration is that of the Actor-Critic (Daskalaki et al.
[2016], Sun et al. [2019]) and Gaussian Processes (De Paula
et al. [2015]). Agents derived from Q-Learning algorithm,
a discrete-space RL tool characterized by its simplicity and
relative ease of implementation, have also been used. This
type of agent has been mostly used as a direct replacement
of the controller (Tejedor et al. [2020], Ngo et al. [2018],
Fox andWiens [2019]). With this configuration, the control
algorithm becomes a black box, and thus the rigorousness
and advantages of automatic control theory to robustly
deal with nonlinear and uncertain systems can not be fully
exploited.

In this work, a Q-learning based adaptation technique for
the Automatic Regulation of Glucose (ARG) algorithm
(Sánchez-Peña et al. [2018]) is developed, considering long-
term ongoing non-predictable Insulin Sensitivity (IS) vari-
ation. The developed strategy modifies only one parameter
in the chosen AP system (the Insulin on Board (IOB)
limit) instead of replacing the controller entirely. The pro-
posal aims at adapting glucose control systems in the long
run, considering extended periods of time and not only
immediate changes but also possible future scenarios which
is where RL has its strength, since it has the possibility of
taking probable future states into account. To this end, the
discount factor of the Q-learning algorithm is designed to
consider long-term rewards instead of focusing primarily
on short-term results, simulations steps are proposed as
week intervals and training episodes consist of approxim-
ately 4 months. The proposed adaptation strategy is tested
in-silico on the adult cohort of the UVA/Padova simulator
Dalla Man et al. [2014].

The structure of this paper is as follows: Section 2 presents
a summary of RL and its uses in AP systems, section
3 describes the ARG algorithm, the experiment design
and the proposed strategy, section 4 shows the results
for the proposed strategy in the adult population of the
UVA/Padova. The in-silico results are compared to a
manual adaptation scheme. Lastly, in sections 5 the results
are discussed and future lines of work are presented.

2. REINFORCEMENT LEARNING

Presented in Sutton and Barto [1998] and extended by
the same and other authors since then (Szepesvári [2010],
Sutton and Barto [2018]), the basic structure of an RL
system is shown in Fig. 1. It consists of an agent that in-
teracts iteratively with a given environment and, through
trial-and-error, “learns” the best action for each state the
system is in. Every time the agent takes an action a, this
action modifies the environment, and it transitions form
state s to state s′ and gets a scalar reward r.

The goal of the agent is to maximize the reward received
in any state and obtain an optimal state-action map called
a policy π (a, s) that maximizes the sum of all rewards,
called a value function Vπ(s), associated with a given

Figure 1. Basic structure of a Reinforcement Learning
System.

policy π:
Vπ(s) = E

{
Rt+1 + γRt+2 + γ2Rt+3+...

}
(1)

where γ ∈ [0, 1) is called a discount factor and it
determines the weight of future rewards. If γ = 0 then all
possible future reward will be ignored and if γ ≈ 1 then
the agent will give future rewards the same importance as
short term ones.

Optimal control theory postulates, through Bellman’s op-
timality Equation, that there is a necessary condition for
the policy to be optimal, this is defined as following:

V∗(s) = max
a

∑
p(s′, r|s, a)[r + γV∗(s

′)] (2)

where p(s′, r|s, a) is the transition probability from state
s to state s′ when taking action a. In most practical cases,
Bellman’s optimality equation cannot be solved directly,
but Sutton and Barto consider that RL algorithms are
approximate solutions to it (Sutton and Barto [2018]).

In RL’s basic structure, the controller is completely re-
placed by the policy learnt by the agent. This means that
the controller becomes a black-box, which can be problem-
atic. This issue can be bypassed considering the controller
as part of the environment and letting the agent interact
with it generating a policy that, instead of returning a
control action directly, acts modifying one or more para-
meters of the controller itself. Such a structure can be seen
in Fig. 2. This approach has been used mostly in the field of
robotics, to adapt PID controllers by modifying their gains
(Carlucho et al. [2019]). In the AP area in particular, RL

Figure 2. Structure of a Reinforcement Learning System
for controller adaptation.

has mostly been used following the structure shown in Fig.
1 and specially focused on short term and postprandial
control (Tejedor et al. [2020]).

Taking all of the information summarized in this section
into consideration, an approach adapting previously de-
signed controllers instead of replacing them is adopted here
to further exploit control theory developments and, also,
to allow building on top of any previous work.



3. Q-LEARNING FOR LONG-TERM AP
ADAPTATION

There are different approaches for RL problems depend-
ing on the characteristics of the system and computing
resources. One of them is Q-Learning, which uses a para-
meterized version of the value function, called the Q-value
function Q(s, a), that is maximized by π.

3.1 General Q-Learning concepts

Q-learning is a RL algorithm initially developed by Wat-
kins [1989] and it is considered one of the major break-
throughs in Temporal-Difference Learning. Its basic struc-
ture is shown in Alg. 1.

In this work, a self developed Q-Learning code, oriented to
long-term adaptation and based on closed-loop strategies
for glycemic control is implemented considering a tabular
policy and discrete action and state spaces. Developing the
Q-learning algorithm from scratch yields the advantage
of being able to tweak every parameter to adjust it for
the particular problem at hand. This is significant given
the fact that this approach does not replace the controller
but only modifies some parameters, and thus the use of
prefabricated toolboxes does not directly apply.

For the following work, take into account that a “state” in
RL is not necessarily a system state variable as understood
in control theory but a collection of observations.

Algorithm 1: Basic Q-Learning algorithm.
Algorithm parameters: Learning rate α ∈ (0, 1], ε > 0, γ ∈ [0, 1)
Initialize Q(s, a) for all s ∈ S, a ∈ A. Q(terminal, :) = 0
Repeat for each episode

Initialize s ∈ S
Repeat for each step

Choose a ∈ A for the current state s through Q(s, a)
following ε-greedy policy (see Alg. 2)

Take action a, observe reward r and next state s′

Get maximizing action from s′ : maxa∈AQ(s′, A)
Update Q: Q(s, a)←− Q(s, a)

+α[r + γ ·maxa∈AQ(s′, A)−Q(s, a)]
s←− s′

until s is terminal (end of episode)
until last episode

For the problem at hand, every step was considered to
be the result after one week of simulation. The episodes
consisted of 16 steps and the states were of the form s =
(s1, s2), where s1, s2 represent the discretized percentages
of time in hypoglycemia (Glucose value < 70 mg/dl) and
hyperglycemia (Glucose value > 180 mg/dl), respectively,
calculated after a full step, looking at the resulting glucose
vector.

As was shown in the previous section and in Alg. 1, one
of the main parameters of Q-Learning is γ, the discount
factor that defines whether the system has a “short-term
mind” or a long-term one. In this particular case, it
was necessary to take future possible states into account,
as much as immediate results. Considering this, the γ
parameter was chosen to be near 1.

Another important factor to consider in RL is the balance
between exploration (testing all the possible actions and

their outcomes in every state) and exploitation (maxim-
izing the reward). To reduce action exploration gradually,
an epsilon-greedy policy with decaying epsilon was imple-
mented (see Alg. 2). To allow for the action exploration to
be reduced over time, ε was defined as:

ε = N0/(N0 +N(s)) (3)
where N(s) represents the number of visits to a given state
s, and N0 is a fixed value so that the value of ε is state-
dependent and inversely proportional to the number of
visits to a given state.

On the other hand, to avoid that the most frequent actions
change Q values disproportionately and to improve con-
vergence efficiency, a state/action dependent and decaying
learning rate was implemented using the rule

α = 1/N(s, a) (4)
where N(s, a) represents the number of times that a given
action a has been taken from state s.

Algorithm 2: ε-greedy strategy with decaying ε.
Define N0 and initialize N(s)
For each visited state s

N(s)←− N(s) + 1
ε = N0/(N0 +N(s))
if rand < ε then

take uniformly random action (probability ε)
else

take action a that maximizes Q from s:
= maxa∈AQ(s′, A)

end
end

A summary of all parameters and configurations for the
present work can be found in subsection 3.3

3.2 ARG algorithm: Automatic Regulation of Glucose

The ARG algorithm was developed and clinically tested in
Argentina. It’s block diagram can be seen in Fig. 3.

Figure 3. Block diagram for the ARG algorithm.

The algorithm is non-hybrid, since no premeal boluses
are infused, and it is based on a main Switched Linear
Quadratic Gaussian (SLQG) controller that has the pa-
tient’s open-loop basal insulin added. The SLQG switches
between an aggressive mode, replacing the open-loop bolus
to compensate for meals, and a conservative mode to keep
the patient in normoglycemia (glucose value ∈ [70 − 180]
mg/dl) during fasting periods.

The dose of insulin indicated by the SLQG is multiplied
by the output signal of the Safety Auxiliary Feedback
Element (SAFE) block, whose function is to modulate
the insulin infusion by imposing a restriction on the IOB
estimation to avoid possible hypoglycemia. The IOB limit



(IOB) is considered in this case as a piecewise constant
function, defined according to a meal classification. This
limit is the parameter that was chosen to be modified with
the actions taken by the RL agent. For a more detailed
description of the algorithm, see Colmegna et al. [2018].

3.3 Experiment design

In order to test the controller’s ability to adapt and learn
from long-term variations, the experiment was designed
considering variations in IS, as this parameter strongly
affects how every person responds to treatment.

This was implemented considering no variation for the first
6 simulation steps and random proportional changes on the
remaning 10 steps (with possible values {+10%;−10%; 0}),
applied to the parameters Vmx and KP3 of the UVA
models. These parameters represent the peripheral tissue
and hepatic insulin sensitivity, respectively (see Dalla Man
et al. [2014] for the complete set of model equations).

The simulation scenario for the training phase was set as
following: 10 adults with IS variation as defined previously
and 10 hours of simulation, with one meal after one hour,
which allows the analysis of the whole postprandial stage.
Since the agent only receives data of percentage of time in
hyper and hypoglycemia from the past step, this interval
of simulation could represent any given amount of time
after which one would like to take an action. In this case
it was considered to represent the average response to one
week of treatment. Then, each episode consistent of 16
steps can be considered as approximately 4 months. This
interpretation allows reducing the computation time for
the training phase, and also considers the fact that it is
unlikely for a patient to change their insulin calculations
on a daily bases but more likely to modify them weekly.

The limit IOB was chosen to be modified via RL algorithm,
using a proportional gain K to adapt it for each individual
separately, considering K = 1 as the standard ARG
controller. Then,

IOBadapt = K ∗ IOB (5)
where IOBadapt is the limit obtained after applying the
optimal action according to the policy and IOB is the
original limit of the ARG algorithm.

The summary of RL training parameters is as follows:

• Episode: 16 steps, representing approximately 4
months of treatment.

• Simulation step: 1 full simulation of 10 hours,
including one meal and its full postprandial period,
representing the average glucose response after one
week of treatment. IS modified applying random
variation to Vmx and Kp3 in every simulation step.

• State space: s ∈ S, where every s is of the form
s = (s1, s2), and s1, s2, discretized percentages of time
in hypoglycemia and hyperglycemia, respectively.

• Action space:
A = [0%,±1%,±2%,±3%,±4%± 5%± 10%] applied
directly over K, the proportional gain that modifies
the IOB.

• Reward function:

r =


−2 if s1 > hypomax
−1 if s1 ≤ hypomax

and s2 > hypermax
+10 otherwise

(6)

where hypomax and hypermax are the the maximum
accepted values for s1 and s2, respectively.

• γ = 0.9, ε and α as defined in Eqs. (3) and (4)

• Discretization schemes
· s1 (% of time in hypoglycemia) was discretized as:

[ 0 | 1 | 2.5 | 5 | 10 | 12 | 15 | 20 | 25 ]
and hypomax was chosen to be 2, 5%
· s2 (% of time in hyperglycemia) was discretized as:

[ 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 ]
and hypermax was chosen to be 20%

State discretization was carried out manually into the in-
tervals shown above and limits were chosen taking the last
consensus for clinical results into account (Battelino et al.
[2019]) and defining even more restricting conditions than
the required metrics. The reward function was defined
using a similar criterion as the one followed by most bench-
mark RL training problems, considering for this particular
case first hypoglycemia and secondly hyperglycemia.

The training process was carried out through 70000 simu-
lations, 7000 for each adult patient, with a common policy
for all of them.

3.4 Testing

After training, the agent was tested with a modified
and more challenging scenario, with IS varying randomly
±20% or 0%, throughout all 16 steps. This simulates an
unstable patient, such as someone with labile diabetes,
as reported in previous clinical trials carried out by the
present work group. An example of such variation can be
seen in Fig. 4.

Figure 4. Variations in Vmx andKp3 (solid lines) from their
nominal - base - values are (dashed line).

The results of adaptation via the RL policy application
were compared to a manual adaptation scheme with the
same level of complexity as the reward function, using a
fixed action of ±5% designed as shown in Eq. (7).

K =


K ∗ (1− 5/100) if s1 > hypomax
K ∗ (1 + 5/100) if s1 ≤ hypomax

and s2 > hypermax
K otherwise

(7)



Figure 5. Glucose excursion (top), insulin infusion (mid) and IOB (bottom) evolution over time for Adult#05 using the
ARG algorithm with RL policy application (purple thinner) and with manual scheme (orange thicker). At bottom:
IOB (solid line) and IOB (dashed line).

Table 1. Comparison between strategies for adaptation of the IOB limit. Percentage of time in
hyper- and hypoglycemia considering the full 16 weeks, and maximum % reached.

Manual strategy with action ±5% Policy application

Subject
% Time % Time % T. hypo % Time % Time % T. hyper % Time % Time % T. hypo % Time % Time % T. hyper

↓ 54 mg/dL ↓ 70 mg/dL max value ↑180 mg/dL ↑250 mg/dL max value ↓ 54 mg/dL ↓ 70 mg/dL max value ↑180 mg/dL ↑250 mg/dL max value

adult#01 0,00 0,68 7,65 9,74 0,00 11,48 0,00 0,00 0,00 13,29 0,00 17,97
adult#02 0,00 0,39 6,16 4,01 0,00 6,99 0,00 0,00 0,00 13,54 0,00 33,78
adult#03 0,00 1,36 21,80 4,58 0,00 8,49 0,00 0,00 0,00 18,89 0,00 77,20
adult#04 0,00 1,46 16,47 4,67 0,00 7,32 0,00 0,00 0,00 12,86 0,00 25,79
adult#05 0,73 1,56 24,96 10,82 0,00 12,15 0,00 0,00 0,00 13,45 0,00 17,47
adult#06 0,00 2,01 15,81 13,90 0,00 15,14 0,00 0,00 0,00 14,51 0,00 16,14
adult#07 0,00 1,53 15,14 17,88 1,01 20,63 2,92 9,31 22,96 16,40 0,40 18,64
adult#08 0,50 6,68 34,61 13,40 0,00 15,81 0,00 5,58 25,79 14,18 0,00 18,14
adult#09 0,00 0,85 10,98 12,00 0,00 13,14 0,00 0,00 0,00 14,51 0,00 17,14
adult#10 0,00 2,14 22,63 1,98 0,00 4,99 0,00 0,00 0,00 12,17 0,00 37,60

4. RESULTS

In this section, the results obtained for the in-silico testing
are presented. In order to illustrate the in-silico behavior,
the curves for a particular subject are shown first. Figure
5 shows the glucose excursion, insulin infusion and IOB
estimation for the subject Adult#05 from the UVA virtual
patient cohort, comparing RL and manual strategies.

Table 1 shows in-silico results comparing the performances
of the two strategies described in section 3. Total per-
centages of time in hypo- and hyperglycemia, as well as
the maximum values of % across all simulation steps are
shown. These results are only intented as a comparative
between methods and not as a standarized metric.

5. DISCUSSION AND FUTURE WORK

Looking at Fig. 5, it can be clearly seen that the policy
application successfully avoids hypoglycemia without in-

creasing time in hyperglycemia when the patients sensit-
ivity increases, while the manual scheme does not. For this
case, it is also worth noting that insulin infusion is reduced
when using the policy, showing that the RL strategy could
also improve the insulin infusion profile.

When analyzing the results shown in table 1, it can be
seen that the policy application outperforms the manual
strategy for 9 of the 10 adult subjects, especially when
considering time spent in hypoglycemia. Low percentages
of overall time in hypoglycemia can be deceiving since
the total period of simulation was 16 steps, but the “max
value” column indicates whether that % of time was
sustained during all the steps or not. When using the
manual strategy, this column shows that all subjects, at
least in one step, spent more than the accepted 4% of their
time in hypoglycemia. These values are reduced to zero
in 8 out of 10 subjects when using the policy generated
via RL but for some subjects this leads to an increase



of time in hyperglycemia. This issue seems to be a direct
consequence of the reward design, since it focuses primarily
in hypoglycemia. This could be overcome with a careful
redesign of the reward and/or longer training time.

This particular RL work shows some similarities with the
benchmark RL problem, such as the walking robot, in
which a robot learns how to walk simply by knowing it
is “wrong” to fall and “good” to stay up, and, as these
examples show, with a simple reward design, the system
should learn the correct policy. But at the same time, since
it includes 10 different patients, it has an added layer
of complexity: the policy is shared among all of them.
This has the clear advantage of working as a general-use
tool and the disadvantage of perhaps missing some key
individual feature that cannot be compensated in the same
way for every patient.

Taking this into consideration, future work includes per-
sonalized on-line policy training of the pre-trained general
policy, with the reward redesigned so as to highly penalize
“wrong” actions and ensure a better policy for all patients
that were not well controlled by the general-use policy.

Thanks to the preliminary work in the area of Reinforce-
ment Learning presented in this article, the working group
will be addressing future investigations further examining
the systems’ dynamics role in the RL agent training, as
well as the possibility of incorporating new states that
represent these dynamics more accurately.
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