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Abstract: To solve the problem that the correlation of variables varies with phase in multiphase batch 
polymerization reaction, this paper proposes an optimization method for lexicographic order switching 
based on phase recognition. This method uses kernel principal component analysis to analyze the 
correlation of each sampling time in a sliding time window, and analyze the phase of each batch of historical 
data. According to the analysis results, each batch is divided into individual phases, and the sub-phase data 
is used to identify the phase of real-time production. This method sets the corresponding lexicographic 
control target according to the characteristics of each phase of the process. According to the lexicographical 
order of real-time phase location, the optimal operation variable trajectory is obtained, so as to achieve the 
best optimization effect in phase, and ensure the safe production process and continuous and stable product 
quality. 
Keywords: Multiphase batch process, Kernel Principle Component Analysis(KPCA), Uneven-length, 
Phase Partition, Lexicographic Optimization

1. INTRODUCTION 

Batch polymerization is a typical polymer industrial 
production method. To meet the market requirements of 
multiple varieties, multiple specifications, and high value-
added, research on batch process optimization and quality 
control has become a  hotspot. Due to the severe time-varying, 
dynamic, nonlinear, and other characteristics of the batch 
process, it is difficult to establish an accurate mechanism 
model to realize online monitoring, prediction, and control. On 
the other hand, data-driven multivariate statistical analysis 
methods require only the processing of historical data, 
severing a good way in process modeling, thanks to the rapid 
development of data acquisition systems and storage 
technologies. The Multilinear Principal Component Analysis 
(MPCA) (Nomikos et al., 1994) and Multivariate Partial Least-
Square (MPLS）(Nomikos et al., 1995) extend the application 
range of traditional multivariate statistical analysis methods 
from continuous processes to multi-batch processes. However, 
most studies (Lu and Gao, 2005; Zhao and Sun, 2013) were 
based on the assumption that all batches have the same 
duration and phase change synchronization. 

For multiphase batch processes, the problem of uneven length 
may occur at each stage, and the resulting irregular stage data 
cannot be directly used for statistical analysis and modeling. 
The solutions to the problem of uneven intermittent length in 
the intermittent process can be divided into two types: direct 

signal synchronization methods (Ela and Ketan, 2013)  and 
modeling method based on irregular phase division (Zhao and 
Gao, 2013). The direct signal synchronization method refers to 
the synchronization of the trajectory of intermittent production 
historical batches through some signal processing methods 
(Kourti, 2003). The missing data estimation method requires 
enough long batches for identifying the model to estimate the 
data. To overcome the limitation of requiring sufficiently long 
batches, Jian et al (2014)  proposed an improved missing data 
estimation method for dealing with data synchronization 
problems. However, this method cannot describe the 
characteristics of multiphase intermittent process by a single 
model. 

In order to overcome the limitations of direct signal 
synchronization method and consider the multiphase nature of 
batch processes, Lu et al. (2004) proposed a sub-phase 
segmentation method to deal with the uneven length of the 
historical batch process. This method uses an improved 
clustering algorithm combined with machine learning to 
directly divide irregular data. Zhao et al (2014) distinguished 
and analyzed two kinds of phase unevenness: the moderate 
case and the severe case. They proposed a method based on 
group division and subspace separation to model the different 
characteristics of irregular batches. Some scholars (Li et 
al.,2015) have studied a phase recognition algorithm for a 
single batch. This method compares the correlation of a single 



batch with the established model, and uses the extended time 
slice method to align the irregular sub-phase data.  

Due to changes in the process environment of the 
polymerization process, the results obtained by one-time 
optimization cannot meet the needs of long-term operation. On 
one hand, it is necessary to monitor the optimization model to 
prevent the distortion of the optimization results. On the other 
hand, it is necessary to formulate optimization strategies. For 
the polymerization reaction with very complex process 
mechanism, the optimization problem presents the 
characteristics of strong nonlinearity, multiple constraints, and 
multi-level values. The conventional optimization methods 
have limitations and deficiencies. This paper adopts a multi-
objective control strategy based on lexicographic optimization 
(Rasekhipour et al., 2018). This method is based on a 
hierarchical optimization idea, which sorts multiple control 
targets from high to low in priority, and then starts with high 
priority targets and optimizes layer by layer to ensure the 
control performance of important targets. 

 

2. MULTIPHASE PARTITION ALGORITHM OF BATCH 
POLYMERIZATION 

2.1 Multiphase characteristics of batch polymerization 
process 

Poly tetra fluoroethylene (PTFE) is a polymer compound made 
of tetrafluoroethylene polymerization. The complex 
polymerization production process includes raw material 
mixer, polymerization reactor, separation tower, drying tower, 
packaging and other unit operations. This paper takes only the 
polymerization reactor as the research object, specifically 
focusing on the material changes, temperature changes and 
molecular length changes in the reactor. During the 
polymerization process, three main reactions (chain initiation, 
chain growth and chain termination) are taking place 
simultaneously.  

The polymer production process usually consists of different 
production stages such as heating, feeding, high temperature 
polymerization and other sub-stages. The primary reaction of 
the polymer produced during polymerization: chain initiation 
and chain growth are endothermic. For free radical 
polymerization, when the temperature is higher, the small 
molecular chains will be more active and the rate of 
polymerization will be faster. Therefore, in order to ensure the 
yield of the product, the temperature of the reactor needs to be 
increased as soon as possible with minimal cost. When the 
temperature enters the first stage and stabilizes for a period of 
time, it is necessary to accelerate production through entering 
the second stage of high-temperature polymerization. In this 
high-temperature stage, due to the temperature rises, the output 
of the polymer increases and the average molecular length of 
the polymerization reaction decreases. Each time period has its 
specific control goal with different process dominant variables 
and process characteristics. In different phases, the correlation 
between variables is different, but the correlation of internal 
data in the same phase and its process characteristics are 
similar. 

2.2 Data preprocessing and statistical model establishment 

Historical batch process data usually contain similar 
manufacturing processes in different batches. Assume that 
X(I×K×J) is the regular three-dimensional sample data, where 
I is the number of batches, J is the number of variables, and K 
is the number of samples. For the convenience of analysis, the 
three-dimensional data X(I×K×J) are unfolded in the variable-
wise direction into two-dimensional data. The method keeps 
the dimension of variables unchanged, and the data are 
arranged in columns from top to bottom to form a (KI×J) 
dimensional matrix. 

The kernel principal component analysis (KPCA) method is 
needed when performing time series correlation analysis. For 
the samples 𝑥𝑥𝑖𝑖 ∈ ℛ𝐽𝐽 in the data matrix X, there is a non-linear 
mapping Φ(⋅) to map the sample to the feature space. The 
principal component information can be decomposed by the 
following feature problems.  

�
 𝜆𝜆𝝂𝝂 = 𝑪𝑪𝐹𝐹𝝂𝝂                                               
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1
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where λ is the eigenvalue, v is the eigenvector, and CF(N×N) 
is the covariance matrix of X in the high-dimensional space. 
Define an N×N kernel matrix 𝐾𝐾𝑖𝑖𝑖𝑖 = �Φ(𝑥𝑥𝑖𝑖),Φ(𝑥𝑥𝑗𝑗)�, where the 
vector inner product mapped to the high-dimensional space 
can be calculated with the kernel function k(x,y) in the low-
dimensional space, and the kernel function takes the form of a 
radial basis kernel function: 

𝐾𝐾𝑖𝑖𝑖𝑖 = 𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = exp�−∥ 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ∥2 𝛾𝛾⁄  �                 (2) 
where γ is a custom parameter. Solve the eigen decomposition 
problem to get the eigenvalue λ1 ≥…≥ λN > 0  and the 
eigenvector β1,…, βN by equation (3). Use 𝜆𝜆𝑗𝑗�(𝛽𝛽𝑖𝑖), (𝛽𝛽𝑗𝑗)� = 1 
to normalize eigenvector. 
                                          𝑁𝑁𝑁𝑁𝜷𝜷 = 𝑲𝑲𝑲𝑲                                          (3) 

Calculate the number of retained pivots p（ p < J）  by 
determining the cumulative variance contribution ratio of 
pivots η (usually between 85% and 99%). η can be calculated 
by equation (4): 

                                                 
∑ 𝜆𝜆𝑗𝑗𝑃𝑃
𝑗𝑗=1

∑ 𝜆𝜆𝑗𝑗𝑁𝑁
𝑗𝑗=1

> 𝜂𝜂                                   (4) 

For a new sample data  𝑥𝑥∗ ∈ ℛ𝐽𝐽, the corresponding pivot is 

recorded as  𝑡𝑡∗ ∈ ℛ𝑃𝑃, then t* can be calculated by equation (5) . 

          𝑡𝑡𝑗𝑗∗ = �𝛽𝛽𝑖𝑖,𝑗𝑗⟨Φ(𝑥𝑥𝑖𝑖),Φ(𝑥𝑥∗)⟩
𝑁𝑁

𝑖𝑖=1

= �𝛽𝛽𝑖𝑖,𝑗𝑗𝑘𝑘(𝑥𝑥𝑖𝑖 , 𝑥𝑥∗)
𝑁𝑁

𝑖𝑖=1

        （5） 

where βi,j is the ith component of the vector βj. Calculate the 
principal component and residual error by equation (6): 

�𝑥𝑥�
𝑇𝑇 = 𝑡𝑡𝑇𝑇𝑃𝑃𝑇𝑇       
𝑒𝑒𝑇𝑇 = 𝑥𝑥𝑇𝑇 − 𝑥𝑥�𝑇𝑇

                                    (6) 
where P is the load matrix transformed from the eigenvector, t 
is the principal component, and e is the residual vector. The 
deviation between the tested sample and the modeled sample 
is calculated by calculating the Q statistic. The statistic Q is 



also called the Squared Prediction Error (SPE), and SPE is 
defined as follows: 

SPE = 𝑒𝑒𝑇𝑇𝑒𝑒 = ∑ �𝑥𝑥𝑗𝑗 − 𝑥𝑥𝚥𝚥��
2                 (7)𝐽𝐽

𝑗𝑗=1                        

The control limit of SPE is calculated by equation (8) . 
𝑆𝑆𝑆𝑆𝑆𝑆𝜇𝜇~𝑔𝑔 ∙ 𝜒𝜒𝜏𝜏,𝜇𝜇

2                                     (8)                              
where g = v/2m, τ = 2m2/v, m and v are are the mean and 
variance of SPE. 

2.3 Phase partition algorithm for unequal length batch 
process 

As shown in Figure 1, during the phase transition period, some 
batches have entered the next stage, while some are still in the 
previous stage. In the time period between the shortest length 
ks

1 and the longest kl
1 in phase 1, the same sampling time will 

contain two phases at the same time.  
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X2
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XI
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...

phase 2phase 1
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Figure 1. Schematic diagram of unequal length phase 

The basic idea of phase partition is to test for changes in the 
correlation of process variables sequentially in the order of 
sampling time. The initial phase model is built based on the 
first w time slices, and then it can be used to determine whether 
the samples of the next time slice are in the same phase as the 
current ones.The specific steps are as follows: 

Step 1: Data processing. Expand the three-dimensional data 
X(I×J×Ki) according to variables to get 𝑋𝑋𝑉𝑉(∑ 𝐾𝐾𝑖𝑖 × 𝐽𝐽𝐼𝐼

𝑖𝑖=1 ). 

Step 2: The establishment of the initial model. Starting from 
the first time slice matrix, create an initial window matrix slice 
Xw(wI × J) and normalize Xw along the variable direction. 
Calculate the kernel matrix Kw(wI × wI), apply the KPCA 
algorithm to Xw, and obtain the first statistical model load 
matrix Pw(J×p) by solving the characteristic problem. 

Step 3: Relevance assessment. Pw is used as the load matrix of 
the window statistical model to evaluate the correlation of each 
row of each internal time slice. Calculate the kernel matrix 
Kk(I×I) of each time slice Xk (k=1,…, w) of the current window, 
and use the window kernel matrix Kw to normalize the kernel 
matrix Kk of each time slice. Then use the window statistical 
model load matrix Pw to calculate the Ctrlw

k, SPE and residual 
of each row of each time slice. Ctrlw

k is is the control limit of 
the time window .Except for the first window, each subsequent 
window only needs to calculate the KPCA statistics of the last 
three time slices. The statistics are calculated as follows: 

�
𝑡𝑡𝑖𝑖 = 𝑃𝑃𝑤𝑤,1𝑥𝑥𝑖𝑖∗     
𝑒𝑒𝑖𝑖 = 𝑥𝑥𝑖𝑖∗ − 𝑃𝑃𝑤𝑤,1

𝑇𝑇

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑇𝑇𝑒𝑒𝑖𝑖    
𝑡𝑡𝑖𝑖                                    (9) 

Step 4: Phase division. If the SPEi at three consecutive time 
points k calculated by the current monitoring model Pw 
exceeds the control limit, the phase switching time kc

i of the 
ith batch is recorded.The batch data before the kc

i of the ith 
batch is expressed as a sub-phase. When all batches of all time 
slices in a window have no phase division, it means that the 
data in the time window has to slide by a time k as a whole. 
And when there are batches that meet the phase division 
requirement in this window, this row is temporarily fixed and 
the data row xj

k (The jth batch of data at the kth time) whose 
phase is not determined phase division is slid back by one 
sampling time. Update the KPCA model Kw and Pw of the 
window.  
Step 5: Repeat steps (2), (3), (4) until all data are divided. 

3. OPTIMAL CONTROL OF MULTI-OBJECTIVE 
LEXICOGRAPHIC ORDER BASED ON PHASE 

RECOGNITION 

3.1 Lexicographic order switching based on phase recognition 

Optimization flowchart of lexicographic order switching based 
on phase recognition is shown in Figure 2.  
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Figure 2. Optimization flowchart of lexicographic order switching 

based on phase recognition 

The specific steps of the algorithm are as follows: 

Step 1: The historical data X(I×J×Ki) were expanded by 
variable unfolding method. Establish a time window Xw(wI×
J), normalize the data in the window along the variable 
direction and obtain Kw and Pw. Use the window model to 
calculate the control limit Ctrlw

k of each time slice matrix Xk in 
the window, and calculate the SPE and residual of each row. 
Determine the phase division point according to the statistics 



and the control limit, and update the data in the window 
according to the method of sliding a single batch of data. After 
dividing all the data, the phase division accuracy was analyzed 
based on the process and experience information. 

Step 2 ： Establish PCA models in different phases and 
calculate control limits for standard statistics T2 and SPE 

Step 3: Perform batch production according to the 
optimization control described above and apply the 
optimization target dictionary of the first phase. Measure the 
variable data of the current sampling time. Apply the PCA 
model from the first phase model, use the sub-phase data to 
normalize the measured data at each sampling time, and 
calculate its T2 and SPE. If the statistic exceeds the control 
limit, go to step 4. Otherwise, repeat this step. 

Step 4: Apply the PCA model of the next phase. Apply the 
model information of the next phase to re-normalize the 
current sampled data and calculate the statistics. If the control 
limit is still exceeded, repeat this step. Otherwise, it means that 
the process has entered the next phase and the priority setting 
of the objective function of the next phase is applied. 

Step 5: Repeat steps 3 and 4 until the control of this batch of 
production is completed. 

3.2 Establishment of the phase identification statistical model 

In the establishment of the sub-phase identification statistical 
model, each phase of each batch is strictly distinguished, and 
the data in the same phase have greater correlation. It is 
necessary to consider the characteristics of each batch to 
establish a more accurate sub-phase model. Therefore, a 
method of normalization in the batch direction is adopted to 
capture the time change of each batch.  

In the first phase, assuming that the shortest phase length is ks 
and the longest is kl, the time slices between [1, ks] are regular 
time slices. For those irregular time slice matrices between 
[ks+1, kl],the generalized time slice matrix 𝑋𝑋𝐺𝐺(∑ (𝐼𝐼𝑘𝑘 × 𝐽𝐽𝑘𝑘𝑖𝑖

𝑘𝑘𝑠𝑠+1 ) 
is constructed by variable expansion method. 

After aligning the irregular time slices, the regular time slice 
and the generalized time slice are normalized along the batch 
direction. Then the regular time slice Xk(Ik×J) (k=1,…,kc−1) 
and the extended time slice XG arearranged into a matrix  
𝑋𝑋𝑐𝑐(∑ (𝐼𝐼𝑘𝑘 × 𝐽𝐽𝑘𝑘𝑐𝑐

𝑘𝑘=1 )  by the method of variable expansion. 
Perform PCA operation on Xc: 

⎩
⎪
⎨

⎪
⎧𝑇𝑇𝑐𝑐 = 𝑋𝑋𝑐𝑐𝑃𝑃𝑐𝑐,𝑠𝑠                                         
𝑋𝑋𝑐𝑐 = 𝑇𝑇𝑐𝑐𝑃𝑃𝑐𝑐,𝑠𝑠

𝑇𝑇 + 𝐸𝐸𝑐𝑐 = 𝑋𝑋𝑐𝑐𝑃𝑃𝑐𝑐,𝑠𝑠𝑃𝑃𝑐𝑐,𝑠𝑠
𝑇𝑇 + 𝐸𝐸𝑐𝑐

𝑋𝑋�𝑐𝑐 = 𝑇𝑇𝑐𝑐𝑃𝑃𝑐𝑐,𝑠𝑠
𝑇𝑇 = 𝑋𝑋𝑐𝑐𝑃𝑃𝑐𝑐,𝑠𝑠𝑃𝑃𝑐𝑐,𝑠𝑠

𝑇𝑇                     
𝐸𝐸𝑐𝑐 = 𝑋𝑋𝑐𝑐 − 𝑋𝑋�𝑐𝑐 = 𝑋𝑋𝑐𝑐𝑃𝑃𝑐𝑐,𝑒𝑒𝑃𝑃𝑐𝑐,𝑒𝑒

𝑇𝑇                

            (10) 

where Pc，s(J×pc) is the load matrix of the recognition model , 
and pc is the number of principal elements retained in the 
current stage. The principal component matrix 𝑇𝑇𝑐𝑐(∑ (𝐼𝐼𝑘𝑘 ×𝑘𝑘𝑐𝑐

1
𝑝𝑝𝑐𝑐)is extracted from the process variables and represents the 
main amount of change. 𝑥𝑥𝑐𝑐�  is the sub-phase data reconstructed 
from Tc, which contains most of the information of Xc. Ec is the 
residual of the reconstructed sub-phase data, which includes 
irregular and irrelevant information. Pc,e(J×J−pc) reflects the 

direction of minor changes in addition to the main changes. 
The subspaces constructed by Pc,s and Pc,e are called system 
subspace and residual subspace respectively. Two monitoring 
statistics can be calculated in each subspace. T2 is used for 
system subspace, and SPE is used for residual subspace.  

�
𝑇𝑇𝑘𝑘2 = (𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘� )𝑇𝑇𝑆𝑆𝑐𝑐−1(𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘� )
𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘 = 𝑒𝑒𝑘𝑘𝑇𝑇𝑒𝑒𝑘𝑘                              

                   (11) 

where tk(pc×1) is the principal component vector separated 
from Tc and Sc is the covariance matrix of Tc.  𝑡𝑡𝑘𝑘�  is the mean 
vector of Tk, which is actually almost the zero vector. ek(J×1) 
is the residual vector from Ec. T2 describes the system change 
captured by the system subspace load matrix Pc,s  ,while SPE 
reveals the change occupied by Pc,e in the residual part. The 
change of these two statistics reflects the correlation of the 
variables. 
After the monitoring model of the irregular phase is built, the 
real-time data generated in the production process can be 
identified online. For multiphase intermittent processes with 
unequal length periods, only after the production process is 
positioned to the correct phase, the appropriate control strategy 
can be made for the operation state of new samples. 

3.3 Lexicographic optimization of multiphase process 

The reaction process considered in this article is given by 
ordinary differential equations(ODEs) in the following form: 

�
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝐹𝐹(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡),𝑑𝑑(𝑡𝑡))
𝑥𝑥(𝑡𝑡0) = 𝑥𝑥0                              

                   (12) 

where t0 is the initial moment, 𝑥𝑥(𝑡𝑡) ∈ 𝕏𝕏 ⊆ ℝ𝑛𝑛𝑥𝑥  is the state 
variables, 𝑢𝑢(𝑡𝑡) ∈ 𝕌𝕌 ⊆ ℝ𝑛𝑛𝑢𝑢 is the control input variables of the 
process, and d(t) is the disturbance variable. 𝐹𝐹:ℝ𝑛𝑛𝑥𝑥 × ℝ𝑛𝑛𝑢𝑢 ×
ℝ𝑛𝑛𝑑𝑑 → ℝ𝑛𝑛𝑥𝑥  represents the mapping relationship of the 
nonlinear dynamic model of the process,where nx, nu, and nd 
are the dimensions of process state variables, control input 
variables, and disturbance variables . 

The control objectives of the lexicographic order are sorted to 
form a hierarchical structure, the first objective in the 
hierarchical structure is the most important, and the last 
objective function has the lowest priority. The most important 
objective function is minimized under the original constraint. 
The second most important objective function adds a new 
lexicographic constraint in addition to the original constraints, 
ensuring that the most important objective function is kept near 
the optimal value. Using the lexicographic ordering method, 
different Pareto optimal solutions can be obtained by 
modifying the hierarchical structure of the objective function. 
This strategy does not need to adjust and weigh the weight of 
the control target.        
In general, the form of multiple goals can be expressed as: 

min
𝑢𝑢,𝑇𝑇𝑓𝑓

𝐽𝐽(𝑥𝑥,𝑢𝑢) = �𝐽𝐽1(𝑥𝑥,𝑢𝑢), 𝐽𝐽2(𝑥𝑥,𝑢𝑢), … , 𝐽𝐽𝑁𝑁(𝑥𝑥,𝑢𝑢)�      (13) 

the initial constraints of the process: 

s. t.�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹(𝑥𝑥,𝑢𝑢)

𝑥𝑥(𝑡𝑡𝑠𝑠) = 𝑥𝑥𝑠𝑠   
𝑥𝑥,𝑢𝑢 ∈ Ω        

                          (14) 

For lexicographic optimization, the following N optimization 
problems are solved sequentially in each iteration： 



Opt 1: min
𝑢𝑢
𝐽𝐽1

𝑠𝑠. 𝑡𝑡   𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(14)

…

Opt N: min
𝑢𝑢
𝐽𝐽𝑁𝑁

             𝑠𝑠. 𝑡𝑡   �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(14) 

𝐽𝐽𝑖𝑖 ≤ 𝐽𝐽𝑖𝑖∗, 𝑖𝑖 = 1,2, … ,𝑁𝑁 − 1

 

Some important goals are inevitably convex functions. 
Therefore, in order to improve the (i+1)th optimization 
problem, the following form of slack variable δ is added to 
replace 𝐽𝐽𝑖𝑖 ≤ 𝐽𝐽𝑖𝑖∗ in the lexicographic order constraint: 

𝐽𝐽𝑖𝑖 ≤ 𝐽𝐽𝑖𝑖∗ + 𝛿𝛿, 𝑖𝑖 = 1,2, … ,𝑛𝑛                         (15)    

The optimization problem should not only consider the 
economic cost, but also consider safe and smooth operation of 
equipment . The economic goal is usually to maximize profit. 
To guarantee smooth batch reaction, it is important to prevent 
sudden jumps in control inputs. This means the derivatives of 
control input variables should be limited. This issue can be 
tackled by restricting the cumulative differences of important 
system state variables. The derivative test and the difference 
accumulation method are introduced as extra penalties into the 
original objective function. 

The objective function is as follows: 
𝐽𝐽 = 𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸�𝑥𝑥�(𝑡𝑡|𝑡𝑡𝑠𝑠),𝑢𝑢(𝑡𝑡),𝑑𝑑(𝑡𝑡)𝑇𝑇𝑓𝑓 , 𝑡𝑡𝑠𝑠�                                           

   +𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝑥𝑥�(𝑡𝑡|𝑡𝑡𝑠𝑠),𝑢𝑢(𝑡𝑡),𝑇𝑇𝑓𝑓 , 𝑡𝑡𝑠𝑠� + 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑥𝑥�(𝑡𝑡|𝑡𝑡𝑠𝑠),𝑢𝑢(𝑡𝑡),𝑇𝑇𝑓𝑓 , 𝑡𝑡𝑠𝑠�

= ∫ 𝑉𝑉1
𝑇𝑇𝑓𝑓
𝑡𝑡𝑠𝑠

�𝑥𝑥�(𝑡𝑡|𝑡𝑡𝑠𝑠),𝑢𝑢(𝑡𝑡),𝑑𝑑(𝑡𝑡)�𝑑𝑑𝑑𝑑 − 𝑉𝑉2 �𝑥𝑥��𝑇𝑇𝑓𝑓�𝑡𝑡𝑠𝑠�� + 𝑉𝑉3�𝑥𝑥(𝑡𝑡0)�

+∑ 𝛼𝛼𝑘𝑘
𝑛𝑛𝑥𝑥
𝑘𝑘=1 �𝑥𝑥𝑘𝑘��𝑡𝑡𝑠𝑠 + Δ𝑡𝑡𝑂𝑂𝑂𝑂�𝑡𝑡𝑠𝑠�−𝑥𝑥𝑘𝑘(𝑡𝑡𝑠𝑠)

Δ𝑡𝑡𝑂𝑂𝑂𝑂
�
2

                                         

   +∑ 𝛽𝛽𝑖𝑖
�𝑁𝑁𝑢𝑢𝑖𝑖 +1��Δ𝑇𝑇𝑢𝑢𝑖𝑖�

2
𝑛𝑛𝑢𝑢
𝑖𝑖=1 �∑ �𝑢𝑢𝑖𝑖,𝑗𝑗 − 𝑢𝑢𝑖𝑖,𝑗𝑗−1�

2𝑁𝑁𝑢𝑢𝑖𝑖 +1
𝑗𝑗=2 �                   

    

s. t.

⎩
⎪
⎨

⎪
⎧
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝐹𝐹(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡),𝑑𝑑(𝑡𝑡))

𝑥𝑥(𝑡𝑡𝑠𝑠) = 𝑥𝑥𝑠𝑠    
𝑥𝑥,𝑢𝑢 ∈ Ω  

 𝑇𝑇𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑇𝑇𝑓𝑓 < 𝑇𝑇𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚       

                                (16) 

where ts is each sampling point, Tf  is the terminal time, which 
is also the predictive horizon of the optimization control, V1, 
V2 and V3 are process cumulative cost function, product 
revenue function and dimensionless function of one-time cost 
before production. V3 is usually a constant. α and β are 
weighting factor vectors with dimensions nx and nu. The kth 
component of α and the ith component of β correspond to the 
degree of gentle change of the system state variable and the 
intensity of the control input variable or steady change. 

The optimization problem in Eq. (16) can be solved directly by 
transforming it into a nonlinear programming (NLP) problem 
through the Control Variables Parameterization (CVP) method. 
To reduce the solution difficulty, the ODE solution integration 
and the barrier function method are used to solve the equation 
and inequality constraints respectively, and the constrained 
NLP problem is transformed into an unconstrained NLP 
problem to be solved. The optimal batch production time Tf 
and the optimal sequence of manipulated variables U are 

obtained by solving the NLP problem with boundary 
constraints by the interior point optimizer (IPOPT) method. 

From the general objective function (16), it can be concluded 
that there are three main objectives for the polymerization 
process, namely VEconomic , gcontrol  and gstate . VEconomic , gcontrol and 
gstate  represent economic benefit objectives, control stability 
objectives and state smoothing objectives. Mark them as J1, J2 
and J3 to form a multi-objective optimization problem.Its 
specific lexicographical order is as follows. 

In the first phase, the state smoothing target J3 is set to the third 
level of the lexicographic order. J1 is set to the second priority 
and J2 is set to the first priority so that the process state is stable 
within a cell without large fluctuations. In the second phase, J1 
is set to the first priority. Due to the high temperature, J3 needs 
to be set to the second priority to control the temperature and 
control smoothing J2 is set to the third priority. 

4.  EXPERIMENT RESULTS 

The method proposed in this paper is tested by Matlab 
simulation. The sampling time is set to 300s and the 
optimization problem is solved sequentially according to the 
above lexicographic ordering at each sampling time. The 
relationship between the temperature curves of the two batches 
and the highest statistics at each moment and their respective 
control limits after normalization is shown in the Figure 3 and 
4. 
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Figure 3. The first batch (a) the relationship between the highest 
statistics and their respective control limits (b) temperature curve  

As shown in the temperature curve of Figure 3(b), in the first 
phase, since the first control target is smooth control, the 
temperature curve in the first phase is relatively gentle. After 
entering the second phase, the primary goal is to complete the 
economic indicators, so the control fluctuations at this stage 
are relatively large. 
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Figure 4. The second batch (a) the relationship between the highest 
statistics and their respective control limits (b) temperature curve  



As shown in Figure 4(a), the phase transition time of the 
second batch is longer. This is due to the unpredictable 
measurement white noise disturbance in the second batch, the 
measured state variables are not accurate and the setting of 
control variables is relatively unreasonable. Since the control 
variable is recalculated every 300 s, the phase has an optimized 
cycle transition time. As shown in Figure 4(b), although the 
phase switching transition time is longer due to noise 
disturbance, the temperature profile of the second batch is 
similar to the first batch. 
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The production goal of the polymerization reaction can be 
expressed by the average molecular weight of the polymer. 
The average molecular weight of the polymer reaching the 
level of 1032 means that the reaction reaches the production 
index. As shown in Figure 5, in the first phase, the average 
molecular weight of the polymer is not much different. After 
adopting the method proposed in this paper, the method 
recognizes that the phase has changed, and adjusts the 
optimization target according to the situation. In the second 
phase, the first control target is the economic target. At this 
time, the temperature will rise steadily. In the process of the 
temperature rising steadily, the smooth state and the control 
stability target will keep the production running smoothly. The 
acceleration of the polymerization rate caused by this period 
of temperature rise enables the production to reach the required 
production target in advance. The economic conditions under 
the two types of control are shown in Table 1. Using the 
control method proposed in this article can greatly reduce the 
production time and have a higher average profit.  

Table 1. Economic Profitability of two kinds of control 

 Lexicographic 
optimization 

Multi-objective 
optimization 

Tf / s 5380 7930 
Mn 1.22×1032 1.21×1032 

Total output / kg 394.34 560.45 
Total revenue / ¥ 5.91×104 8.40×104 

Average earnings/ 
¥⋅s−1 10.9 10.5 

5.CONCLUSIONS 

Polymer production process usually has different production 
modes, and the optimization and control strategies 
corresponding to each production mode are not consistent. 
Since the phase switching point is usually not determined in 

the actual process, this paper proposes the lexicographic 
optimization control method based on phase recognition. The 
corresponding control target lexicographic sequence is set for 
different phases, and the optimal manipulated variable 
trajectory is obtained according to the lexicographic sequence 
of real-time phase positioning. The simulation results show 
that the method can obtain more gains. 
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