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Abstract: In this paper we avail of an ESC approach to maximise ethanol concentration in a
fermentation process carried out in a CSTR. Ethanol is aimed to be used as a fuel, so the reactor
is fed with a stream of large concentration of sugar; hence, the model considers fermentation
inhibition due to large concentrations of sugar and ethanol. By considering the minimisation of
substrate concentration, to indirectly maximise the ethanol concentration, we apply our recent
extremum seeking control (ESC) approach. The results in this paper show that the fermentation
process considered in this work is suitable for ESC techniques, and that our control strategy is
capable of finding the minimum value of the substrate concentration in numerical simulations.
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1. INTRODUCTION

Fermentation is a process in which a microorganism con-
verts organic compounds into energy for its metabolism
in dark, anaerobic conditions. Depending on the microor-
ganism the product of the fermentation process range from
ethanol to acetate and lactate (Müller, 2001).

In particular, the fermentation process leading to ethanol
plays a key role in the production of a renewable source
of fuel via microorganisms like Saccharomyces cerevisiae
and Zymomonas mobilis (Zabed et al., 2017). As a source
of energy, bioethanol may aid in the reduction of nonre-
newable sources like oil. In addition, bioethanol may be
used for disinfection purposes. There are however some
drawbacks in bioethanol production as the low yield (Gray
et al., 2006). In addition the low ethanol concentration
in the fermentation broth makes expensive the ethanol
purification (Frolkova and Raeva, 2010).

Thus, optimisation approaches are necessary to render
bioethanol production economically feasible. In this light,
extremum seeking control (ESC) techniques have been
widely used due to their attractive properties, such as
being model-free approaches and being able to adapt to
time-varying, possibly unknown inputs. ESC is applicable
in situations where there is a nonlinearity in the control
problem, and the nonlinearity has a local minimum or
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maximum. The nonlinearity may be in the system as a
physical nonlinearity, or it may be in the control objective,
added to the system through a cost functional of an
optimization problem (Ariyur and Krstic, 2003). Since
robustness is key trait of ESC approaches, there are several
of such approaches that rely on sliding modes (SM),
given the insensitivity to matched perturbations. See, for
instance, (Angulo, 2015) and (Pan et al., 2012).

Bioethanol is produced from different types of sources,
which in turn classifies it in terms of “generations” (Prado-
Rubio et al., 2016). This work is aimed to harness the
residual sugar and yeast in a tequila factory effluent. Thus,
in the following, we consider that the initial concentrations
and influx to our CSTR reactor contain carbon source,
yeast, and ethanol. Such medium is a hallmark of the efflux
of alcoholic spirits industries, such as tequila. Thus the
scenario we pose is to use the wastewaters of the alcoholic
fermentation industry as raw material for the fermentation
process we consider.

In this light, the objective of our control scheme is to
minimise the content of the fermentation substrate in the
efflux of our CSTR, thus removing as much substrate as
possible and converting it to product. As a result of our
fermentation process, the efflux of the reactor contains
both biomass and ethanol, which may be separated by
mechanical and distillation processes, respectively, before
its final disposal. Although these latter processes are not
considered in the scope of the current work, they are
better performed when they are substrate free and, overall,



the purification cost is benefitted with a high ethanol
concentration in the fermentation broth (Walker, 2010);
thus, enhancing our motivation to minimise the substrate
concentration. On the other hand, since measuring sugar
is easier than measuring ethanol, the substrate into the
CSTR is better suited to be considered as the objective
function in the framework of ESC.

In particular, the mathematical model that we consider
assumes that the substrate consumption is inhibited by
large concentrations of substrate. In turn, the biomass
dies due to large concentrations of product (López-Caamal
et al., 2021). By analysing the dilution rate to substrate
concentration steady-state map, we show the applicability
of ESC approaches. Thus, we control such process via our
recent ESC strategy (Torres-Zúñiga et al., 2021), in order
to minimise the concentration of substrate in the reactor,
by means of modifying its dilution rate. We refer the
interested reader to (Torres et al., 2020) for a comparison
of our ESC with a traditional ESC.

The gradient-based ESC strategy presented in (Torres-
Zúñiga et al., 2021) considers a second order sliding modes
algorithm to solve online optimization problems with un-
known, convex, unimodal objective functions applied to
single-input, single-output dynamical systems. First, a
generalised Super-Twisting algorithm is used to estimate
the gradient. Then, the Super-Twisting algorithm is con-
sidered as gradient-based optimization algorithm with the
gradient as sliding variable.

The rest of the paper is organised as follows: In Section
2 the model for the fermentation process of interest is
presented. An steady state is additionally analysed in order
to determine whether the fermenter is suitable for ESC
implementation. In Section 3, the ESC strategy recently
propose in (Torres-Zúñiga et al., 2021) is applied to online
minimise the substrate concentration in the fermentation
process. In Section 4, the results of the ESC strategy
applied to the fermentation process are discussed. Finally,
in Section 5, conclusions about this work are stated.

2. THE MATHEMATICAL MODEL

In this section, we present a model for a fermentation
process in which the biomass is inhibited by high con-
centrations of substrate and product, along with natural
biomass death. This model was originally presented in
(López-Caamal et al., 2021).

In the following, S,X, and P denote the substrate,
biomass, and product. Furthermore, let

c :=

(
[S]
[X]
[P ]

)
, (1)

where [◦] denotes the concentration of its argument; we
consider all concentrations in [g/L]. We consider constant
temperature and pressure conditions in a CSTR subject
to a dilution rate D [1/hr], with a species concentration
cin in the influx. The interaction of species comprise the
following processes:

i) Biomass Growth

S +X
v1−−→ (1 + n)X +mP, (2a)

where n = 1/30.303 y m = 7/30.303, and v1 follows a
Haldane reaction rate (Andrews, 1968):

v1 = k11
c1c2

c21 + k12c1 + k13
.

When considering c2 constant, this reaction rate in-
creases monotonically until a value c∗1, which depends
on the parameters k12 and k13. After such a value, the
reaction rate decreases asymptotically. Thus, by using
such a reaction rate, we account for inhibition due to
large substrate concentrations.

ii) Product-Induced Biomass Inhibition

X + P
v2−−→ P. (2b)

This process represents the lethal effect of the pro-
duced alcohol to the yeast that generates it. To this
end, we chose a reaction rate inspired on that of
Levenspiel (Levenspiel, 1980):

v2 = k21

(
1− c3

k22

)k23

c2.

iii) Natural Biomass Death

X
v3−−→ 0, (2c)

which we model via a Mass Action mechanism, hence
leading to

v3 = k3c2.

Thus, in compact notation, our model is

d

dt
c(t) = Nv(c) +D (cin − c) , (3a)

where

N =

(−1 0 0
n −1 −1
m 0 0

)
, (3b)

and

v =


k11

c1c2
c21 + k12c1 + k13

k21

(
1− c3

k22

)k23

c2

k3c2

 . (3c)

Finally, we account for the following parameters values

k11 = 3.8190× 103 [g/(L hr)] (4a)

k12 = 235.5119 [g/L] (4b)

k13 = 61.8563 [(g/L)
2
] (4c)

k21 = 6.1786 [1/hr] (4d)

k22 = 116.4845 [g/L] (4e)

k23 = 2.6005 [1] (4f)

k3 = 262.7081× 10−3 [1/hr]. (4g)

Furthermore, we consider

cin =

(
60.518

30
10

)
. (5)

Please, be wary that such constant influx to the reactor
contains all the species, since we consider that it comes
from wastewaters of industries that involve fermentation
processes. Along with the parameters values above and
D = 0.5 [1/hr], Figure 1 shows the species concentrations
dynamics.
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Fig. 1. Species concentrations with constant dilution rate.

2.1 Equilibria

Now, to determine whether the model in (3) is a can-
didate for applying ESC, we determine its input-output
behaviour by choosing the dilution rate as the input, and
substrate concentration as the output to optimise. In order
to determine such map, we avail of a nonlinear optimi-
sation routine to compute the equilibria of the model in
(3), given that the nonlinearities of such model hinder an
analytical treatment. The nonlinear optimisation routine
that we availed of is Matlab’s fminsearch, which we use to
solve the following problem, for a range of values for D:

c̄(D) = min
c

log10 (||Nv(c) +D (cin − c)||1) , D 6= 0, (6)

where ||r||1 represents the 1-norm of the vector r, that is
to say

||r||1 =
∑
i=1

|ri| .

Thus, by minimising ||Nv(c) +D (cin − c)||1 each entry of
the vector is as small as possible, and thus the achieved
values of c̄ are close to the equilibrium point.

By considering the parameters in (4) and the influx con-
centrations in (5), the results of such optmisation pro-
cedure are shown in Figure 2. The upper panel shows
the value for the equilibrium for S, whereas the lower
panel shows the value of the cost function. One may see
that there exists a value for D such that minimises the
equilibrium for S. Please notice that the lower panel of
Figure 2 shows that, except for a few computations, the
value of the cost function is around the computer precision.

In light of such results, the minimal value for the sub-
strate’s equilibrium is around 0.1947 [g/L] and is attained
with a dilution rate D = 6×10−5 [1/hr]. In the forthcom-
ing section we present the ESC methodology.
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Fig. 2. Equilibria for substrate as a function of dilution
rate. The upper panel shows the location of the
equilibrium, while the lower one shows the value of
the cost function in (6). Please notice that the objetive
function is in a logarithmic scale.

3. GRADIENT-BASED ESC

In the previous section, we showed that the steady state
map from dilution rate to the steady state of [S] is convex
and thus suitable for ESC. By minimising the steady state
of the substrate, we ensure that the CSTR’s efflux contains
as little substrate concentration as possible.

Let us consider the compact state space model

dc

dt
= f(c, cin, u); c(0) = c0 (7a)

y(t) = J(c) , (7b)

where c ∈ M ⊆ R3, u = D ∈ N ⊆ R, cin ∈ M, and
y ∈ R is the performance output. Besides, the functions
f :M×N → Rn and J :M→ R are sufficiently smooth
on M.

The performance output is the aspect of the fermenter
behavior that we desire to bring to the minimum value. In
our case, J(c) = [S], and it is considered to be available
throughout measurements. Please notice that by minimis-
ing [S], one indirectly maximises product concentration.
First, let us consider the following assumptions:

Assumption 1. There exists a smooth function l : N →M
such that f(c∗, u) = 0 if and only if c∗ = l(u).

Assumption 2. The equilibrium point c∗ = l(u) of the
system (7) is locally asymptotically stable for each u in
the operating region N . Indeed, as it was shown in Figure
1, c∗ is locally asymptotically stable.

Assumption 3. The input-output map in steady state

y = J(l(u)) = J(u) (8)

is convex and unimodal in the operating region N . Indeed,
as it was shown in Figure 2, J(u) is convex and unimodal
for u ∈ (0, 1].

Assumption 4. There exists u∗ ∈ N such that:

(J ◦ l)′(u∗) = 0,

(J ◦ l)′′(u∗) > 0.

Indeed, as it was shown in Figure 2, there exists such a
point u∗ ∈ (0, 1].

Using these assumptions, we reduce the dynamic minimi-
sation of the performance function (7b) to the problem of



minimising (8) in the steady state. In addition, we assure
that J(u) has a unique minimiser u∗ in N .

In this light, we choose the following minimisation problem

min
u∈N

J(u)

such that:

dc

dt
= f(c, cin, u); c(0) = c0

y(t) = J(c) .

(9)

In order to solve such a minimisation problem, we make
use of our gradient-based ESC strategy (Torres-Zúñiga
et al., 2021). Such an approach hinges on the estimation of
the input-output gradient, which we achieve via an online
parametric differentiation; that is to say, given that

∂y

∂u
=

d
dty
d
dtu

,
d

dt
u 6= 0,

one can estimate
∂y

∂u
via the online differentiation of

y(t) and u(t). To this end we avail of the differentiator
presented in (López-Caamal and Moreno, 2019). Let

θ :=

(
y
u

)
, (10)

whose first time-derivative is

ω :=

(
ẏ
u̇

)
, (11)

Given that ω̇ is elementwise bounded, a fixed-time esti-
mate of ω(t) may be obtained via

˙̂θ(t) = −k1φ1
(
θ̂ − θ

)
+ ω̂(t)

˙̂ω(t) = −k2φ2
(
θ̂ − θ

)
,

(12)

where θ̂ ( ω̂, resp.) denotes the estimation of θ (ω , resp.),
and

φ1 (x) =
(
η ||x||−p2 + β + γ ||x||q2

)
x, φ1 (0) := 0,

φ2 (x) =
(
η(1− p) ||x||−p2 + β + γ(1 + q) ||x||q2

)
φ1 (x) .

(13)

Furthermore η, β, γ > 0,
1

2
≥ p > 0, and q > 0; and k1

and k2 are such that the matrix

A =

(
−k1 1
−k2 0

)
(14)

is Hurwitz.

Thus, the estimate of the input-output gradient can be
computed as

∂y

∂u
=
ω̂1

ω̂2
. (15)

Upon such computation, the ESC proposed in (Torres-
Zúñiga et al., 2021) states that for the sliding variable

σ =
∂y

∂u
, the control input u(t) computed as

u(t) = −λ|σ|1/2sign(σ) + u1(t) ,

u̇1(t) = −α sign(σ) ,
(16)

where λ > 0 and α > 0, brings the output y(t), the
concentration of the substrate in the fermenter [S], to its
minimum value in the steady state.

To avail of such control law, we keep constant the input
u(t) for a time period, until the output y(t) reaches its
steady state. Once achieved, we update the input u(t) with
the new estimation of the gradient, to steer y(t) to a new
steady state. Thus, by repeatedly following this process,
the output y(t) oscillates around its minimal value. In
the following section, we present the numerical results of
applying this strategy to the model in (3).

4. RESULTS

In this section, we apply the ESC (16) to the model in
(3), accounting for the numerical value of the parameters
in (4) and the species’ influx concentration in (5). We
consider an optimisation period of 168 units of time; that
is to say, every 168 units of time we update the dilution
rate according our ESC law. The parameters for both, the
differentiator in (12) and the Super-Twisting controller
(16) are shown in Table 1.

Parameter Value

η 0.001
β 0.01
γ 0.005
p 0.3
q 0.1
k1 1
k2 1
α 0.0008
λ 0.0005

Table 1. Parameters of the ESC.

Furthermore, we consider the following initial conditions

c1(0) = 0

c2(0) = 2

c3(0) = 0

D(0) = 0.5

With such parameters, Figure 3 and Figure 4 show the
substrate concentration and the dilution rate as a function
of time, respectively.
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Fig. 3. Substrate concentration in the CSTR subject
to the dilution rate depicted in Figure 4. The red,
discontinuous line shows the location of the minimal
value for the substrate. In turn, the blue, solid line
shows the substrate concentration.

Now, Figure 5 shows the gradient estimation with which
the ESC is computed. Please notice that after time 8000,
the gradient oscillates around zero, thus indicating that
the extremum value has been achieved. Please notice
in Figure 3 that the achieved substrate concentration
is slightly above the smallest steady state for substrate.



Time [hr]
0 2000 4000 6000 8000 10000 12000 14000 16000

D
ilu

tio
n 

ra
te

 [1
/h

r]

0.1

0.2

0.3

0.4

0.5

Fig. 4. Dilution rate as computed with (16). The red,
discontinuous line represents the dilution rate that
yield the smallest substrate concentration.

This might be due to the numerical errors during the
computation of steady state, the gradient, and the solution
of the ESC law.
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Fig. 5. Estimated input-iutput gradient.

Finally, Figures 6 and 7 show the time response for biomass
and ethanol, respectively. As it can be observed in Figure
7, the concentration of the ethanol produced in the CSTR
was increased to its maximum value, indicating that the
substrate was mainly converted to product.
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Fig. 6. Biomass concentration as a function of time.
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Fig. 7. Ethanol concentration as a function of time.

5. CONCLUSION

In this paper we analysed whether our alcoholic fermen-
tation model is suitable to be controlled via an extremum

seeking strategy, by considering the minimisation of sub-
strate in the reactor. Once determined the feasibility, we
applied our recent gradient-based ESC strategy. Although
the optimisation is possible, our numerical results suggest
large convergence time to the minimal substrate concen-
tration in the reactor. On the other hand, the simulations
demonstrated that by minimising the substrate concentra-
tion, the ethanol concentration was indirectly maximised.
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