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Abstract: With the coming of the big data era, data-driven based modeling approaches have become the 

hot research topic in recent years. Unfortunately, due to the limitation of the actual process, the data is 

basically in a steady state and it is difficult to obtain enough high-quality data, which is defined as the small 

sample (SS) problem. Recently, to deal with the SS problem, a virtual sample generation (VSG) approach 

based on the distribution of the original data has been taken into account. In this paper, a VSG method 

based on singular value decomposition (SVD) feature decomposition and gradient boosting decision tree 

(GBDT) prediction model (SVD-GBDT) is proposed. In the proposed SVD-GBDT method, firstly, the 

distribution characteristics of the original data are used to extract the main features and expand the number 

of samples by using the SVD algorithm. Then the GBDT algorithm is used to find the virtual output of the 

virtual samples by the SVD method. Finally, SVD and GBDT are combined to complete the sample 

expansion (SVD-GBDT-VSG). In this paper, we choose the purified terephthalic acid (PTA) industrial 

process to verify the effectiveness of the proposed methodology. Simulation results show that compared 

with related methods, the proposed SVD-GBDT-VSG algorithm in this paper can achieve sample expansion 

well and at the same time can effectively improve the accuracy performance of soft measurement. 
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Generation

1. INTRODUCTION 

In recent years, as the process industry is moving toward 

digitalization and intelligence, it has become a fashionable 

research topic to mine valid information from process data and 

build data-driven models(He et al., 2020). In the data-driven 

modeling popularity, the number and distribution of samples 

directly affect the prediction performance of data-driven 

models. Only when the samples are sufficient and the 

distribution of samples is reasonable, the accuracy of the 

model can be guaranteed. However, the complexity of the 

actual chemical process scale and the increased difficulty of 

collecting data on core variables make data-driven modeling 

lack sufficient data information. Therefore, a series of methods 

have been proposed to improve the accuracy of data modeling 

with SS. 

To address the problem of SS size, scholars use gray predictive 

modeling, Gaussian mixture modeling method to process the 

sample. Besides, scholars have proposed machine learning 

models (MLM) based on statistical theory to solve the SS 

problem, and typical methods include Bayesian Network (BN) 

(Sánchez-Franco et al., 2019) and Support Vector Machine 

(SVM) (Arora et al., 2019). Furthermore, the VSG method is 

another useful way to solve the SS problem. The main idea of 

VSG is to use the prior knowledge of the sample and the 

known distribution to generate new samples based on the 

original SS. The main advantage of this method is that it can 

fill the data gaps and rationalize the distribution of the data. 

The generated virtual samples are combined with the original 

SS to get the purpose of sample expansion and improve the 

accuracy and generalization of the model. 

In recent years, the virtual sample generation technique has 

become a popular method to solve small data problems, and a 

series of VSG methods have been generated. Among them, the 

most representative methods are: Mega-Trend-Diffusion 

(MTD) (Kang et al., 2019), Tree Trend Diffusion (TTD) (Li et 

al., 2012) Monte Carlo (Arndt, 2009), and some midpoint 

interpolation (MI) (Campo, 2020) Kriging interpolation 

method (KIM) (Zhu et al., 2020), SMOTE (Maldonado et al., 

2019) and bootstrap (Da Silva et al., 2015). The advantages of 

Bootstrap and SMOTE of sampling-based methods are 

computational simplicity and low cost. Bootstrap is mainly 

based on the principle of repeated sampling of raw sample, and 

the sampled sample is used as a virtual sample to complete the 

sample data expansion. SMOTE is to generate new samples by 

local nearest neighbors. Both methods rely on the overall 

distribution of samples, however it is difficult to obtain the real 

distribution of the data for high-dimensional data cannot 

fundamentally solve the SS problem. Unlike the above 

methods, MTD and TTD based on information diffusion 

technology generate virtual samples by expanding the sample 
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attribute domain based on diffusion function and using fuzzy 

theory. These methods get rid of the distribution problem of 

samples, but the selection of diffusion function and diffusion 

coefficient has encountered difficulties. 

Based on the above problems, a VSG method based on 

singular value decomposition (SVD) (Li et al., 2019) feature 

decomposition and gradient augmented decision tree (GBDT) 

(Zhu et al., 2021) called SVD-GBDT-VSG is proposed in this 

paper. In SVD-GBDT-VSG, the data is first processed by SVD 

to obtain feature values and feature vectors, then the most 

representative features are selected to expand the data, and 

finally GBDT is used to find the output of the expanded virtual 

samples. Meanwhile, the purified terephthalic acid (PTA) 

chemical data is chosen in this paper to verify the effectiveness 

of the proposed SVD-GBDT-VSG method. The simulation 

results show that SVD-GBDT-VSG can significantly enhance 

the accuracy of prediction model generalization capacity 

compared with other related methods. It is proved that SVD-

GBDT-VSG can effectively solve the small data problem in 

our case. 

The remainder of this paper is listed as follows: in section 2,  

the SVD and GBDT methods are briefly introduced. Section 3 

details the modeling and simulation process of SVD-GBDT-

VSG algorithm. Section 4 verifies the proposed method 

through PTA simulation experiments and analyzes the 

simulation results, and conclusions are given in Section 5. 

2. RELATED METHODS 

In this section, we briefly introduce the related methods used 

for VSG and modeling, including singular value 

decomposition (SVD) and gradient augmented decision tree 

(GBDT). 

2.1 SVD algorithm 

The commonly used eigenvalue decomposition (EVD) has 

high requirements for matrices, and the decomposed matrix 

must be a real symmetric square matrix. In contrast, SVD is a 

matrix decomposition method applicable to arbitrary matrices. 

This method can extract the eigenvalues and eigenvectors of 

the data. Based on the extracted eigenvectors, we can get 

representative eigenvectors and use them to expand the data.  

The specific process of SVD is as follows. Suppose a matrix 

, the SVD of A is defined as 

  (1) 

where U is  matrix named left singular matrix, 

,  is the singular value, V is 

 matrix. By doing the eigenvalue decomposition of  

and , we can obtain U and V, and thus the corresponding 

eigenvectors . Based on the obtained eigenvectors, the high-

quality part is selected to expand the original sample size.  

2.2 GBDT algorithm 

GBDT is a novel regression prediction model, the main idea is 

to train a decision tree model using the learning strategy of 

Gradient Boosting. GBDT is a multi-round iterative model, in 

each round iteration produces a weak classifier, where the 

weak classifier is generally chosen as Classification and 

Regression Tree (CART). GBDT uses an additive model, 

which means that a new CART tree is created in the direction 

of the gradient of residual reduction in each iteration of GBDT, 

and after several iterations, the residual converges to 0 to 

obtain the optimal fitting  performance by the training data. 

Finally, the results of all decision trees are accumulated to 

obtain the final prediction results. 

3. THE PROPOSED SVD-GBDT METHODS 

To improve the model accuracy, we need to perform sample 

expansion for SS. In this section, we propose a novel SVD-

GBDT virtual sample generation method (SVD-GBDT-VSG) 

based on SVD-GBDT using a specific small sample dataset to 

expand the data based on the original SS. The SVD-GBDT-

VSG method starts from the sample distribution and can 

generate new samples that match the original sample 

distribution. The ability of the model to generalize to the 

original sample test set is effectively enhanced by adding the 

newly generated samples to the original sample set. The SVD-

GBDT-VSG method consists of the following four steps: 

Step 1 Training the GBDT model based on original sample set. 

The choice of a good regression model plays a crucial role in 

the prediction of the sample. The basic learner of GBDT is a 

decision tree, which is constructed at each step of the iteration 

to compensate for the shortcomings of the existing model by 

reducing the loss in the direction of the steepest gradient.  This 

idea gives it the natural advantage of being able to discover 

multiple distinguishing features and combinations of features, 

and this advantage gives GBDT a good generalization 

capability. Suppose the small samples data is , 

. We divide the dataset D into a 

training set  and a test set , determine the 

hyperparameters, and then train the GBDT model. The specific 

procedure of the algorithm is shown in the following table. 

Table 1*. The GBDT algorithm training process. 

Algorithm: GBDT 

Input:  

(1) Initializing CART 

 

where c is the mean of , is the 

loss function of the algorithm. 

(2) for t = 1,2,……,T 

for i = 1,2, ……,m 

 

end 

Fitting a CART tree using , The t-th regression 

tree is obtained, and the corresponding leaf node 

region is , J is the number of leaf nodes of the t-th 

regression tree. 



for j = 1,2, ……,J, calculate the best-fit value tjc . 

 

end 

 

(3) The final regression model was obtained as 

 

Step 2 Using SVD to generate inputs of virtual samples. 

The SVD can decompose any matrix, and the singular values 

in the matrix of singular values after decomposition are 

arranged from largest to smallest, and the reduction rate is 

particularly fast. In most cases, the sum of the first 10% of the 

singular values accounts for more than 99% of the sum of all 

the singular values, so the first 10% of the singular values of 

the SVD are chosen to construct a new matrix to generate new 

samples. 

Suppose the training  dataset has a samples, each of which is 

b dimension. We can represent this data set as a matrix 

. After SVD decomposition, the A is represented by 

three matrices , and . Using 

the properties of SVD, A is approximated by the singular 

values of the top m (m<b, m<a) largest and the corresponding 

left singular vectors  and right singular vectors 

: 

  (2) 

The  obtained is the new distribution that approximates the 

A matrix, i.e., the features of the new virtual samples are 

generated. In other words, we get the inputs of the virtual 

samples.  

It is worth noting that this obtains input 
vix  of a new samples . 

That is, double the original samples. But in practical 

applications we often need more samples. Our solution is that 

for , if it satisfies  ( k  is the sum of 

the singular values, which is generally required to be greater 

than or equal to 80% of the sum of all singular values), then 

we can take the first i  's and compute  once .Thus if 

there are n 's that satisfy the requirement, we expand n times 

A.  

Step 3 Using GBDT to obtain the output virtual samples  

The input  of the virtual samples obtained by SVD is used 

as the input of the trained GBDT model. The output  of the 

corresponding input is predicted by the GBDT model. All the 

virtual samples  generated by SVD-GBDT 

are obtained, where  and . 

Step 4 Retraining the GBDT model 

We integrate the original small sample  with the generated 

virtual sample  to form a new sample set. Then, we use 

the new training to reconstruct the GBDT model. The original 

small sample and the new sample are used to test the newly 

trained GBDT model. The SVD-GBDT-VSG is summarized 

in the following flow chart. 

 
Figure 1. Virtual samples generation flow chart. 

4. CASE STUDY 

This section, the proposed SVD-GBDT-VSG is simulated in a 

real industrial dataset to verify its performance. To ensure the 

reproducibility of the experiments, this experiment was 

conducted in Matlab 2020b and Python 3.7. During the 

simulation, the PTA industrial dataset from the petrochemical 

industry is selected as the experimental data. To validate the 

experimental effect, mean square error (MSE), mean absolute 

error (MAE) and coefficient of determination (R²) are selected 

as the metrics of the prediction model in the simulation, and 

the specific equations are as follows: 

  (3) 

  (4) 

  (5) 

The chemical industry PTA is utilized in the production of 

polyester fibers. The PTA process data includes seventeen 

variables that affect the output, one output is the solvent 

dehydration tower conductivity and the measure of system 

efficiency is acetic acid. The industrial flow diagram for the 

PTA process is shown in figure 2.  



There are 39 PTA samples (30 training data, 9 testing data) are 

selected for the simulation experiments. In the simulation 

experiments, GBDT prediction model is built from the original 

PTA training data. Then, SVD is performed on the training  

data as well, the top 90% of singular values are selected and 

the data is reconstructed to generate the input of the samples. 

The generated virtual samples are put into the trained GBDT 

model to generate the output of the virtual samples. 

 
Figure 2. PTA flow chart. 

It is worth noting that the error results in Table 1, 2, 3 and 4 

are based on the test data of the original dataset without 

including the test data of the virtual samples, so the validity of 

our method can be well verified. Table 1 shows the error of the 

prediction model with different virtual samples numbers added 

using SVD-GBDT-VSG method. In addition, bootstrap, MTD 

and TTD are chosen to compare with SVD-GBDT-VSG to 

verify the performance of VSG. As can be seen from Table 2 

3 and Table 4, the virtual samples generated by the proposed 

SVD-GBDT-VSG make the model have more error reduction 

and higher prediction accuracy compared to the related 

methods. However, it is not the case that more samples are 

better. As small data samples have certain features, too many 

virtual samples may hide their main features and result in a 

decrease in the accuracy of the model. 

Table 1. The errors of adding different virtual samples. 

Size of training 

sample 
MAE (%) 

MSE (%) 
R2 

30 36.08 19.05 0.418 

30+30 30.78 14.87 0.546 

30+60 24.32 10.29 0.686 

30+90 26.58 11.06 0.662 

30+120 26.40 11.06 0.662 

30+150 29.88 13.72 0.580 

30+180 31.31 14.88 0.545 

The output values of several VSG methods with and without 

virtual samples are depicted in figure 3. As can be seen from 

figure 3, the SVD-GBDT-VSG curve is closer to the real value 

than the other methods, which  indicates that SVD-GBDT-

VSG can generate high quality virtual samples  and enhance 

the model performance. 

In summary, the SVD-GBDT-VSG method has great 

advantages in improving the modeling accuracy. The 

simulation results show that SVD-GBDT-VSG is suitable for 

the generation of virtual samples for small data sets. 

Table 2. The MSE (%) of different methods 

Size of 

virtual 

sample 

Methods 

SVD-GBDT Bootstrap 
MTD TTD 

0 19.08 19.08 19.08 19.08 

30 14.87 19.53 14.96 21.28 

60 10.29 15.33 16.45 14.53 

90 11.06 13.84 23.00 18.17 

120 11.06 18.03 17.34 18.90 

150 13.72 14.17 13.25 15.30 

180 14.88 17.91 25.68 17.16 

Table 3. The MAE (%) of different methods 

Size of 

virtual 

sample 

Method 

SVD-

GBDT 

Bootstrap MTD TTD 

0 36.08 36.08 36.08 36.08 

30 30.78 31.25 33.02 38.74 

60 24.32 25.45 34.55 32.26 

90 26.58 28.34 43.15 37.62 

120 26.40 30.03 34.05 36.60 

150 29.88 27.87 31.82 36.03 

180 31.31 33.06 36.09 34.47 

Table 4. The R2 of different methods 

Size of 

virtual 

sample 

Method 

SVD-

GBDT 

Bootstrap MTD TTD 

0 0.418 0.418 0.418 0.418 

30 0.546 0.403 0.543 0.349 

60 0.686 0.531 0.497 0.556 

90 0.662 0.577 0.297 0.444 

120 0.662 0.449 0.470 0.422 

150 0.580 0.567 0.595 0.532 

180 0.545 0.453 0.215 0.475 

 

 

Figure 3. The output of testing set in different methods.  
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5. CONCLUSIONS 

This paper proposes an SVD-GBDT based VSG method which 

consists of two parts. In SVD-GBDT-VSG, SVD is used to 

propose the main eigenvalues and eigenvectors associated 

with the model and expand the small samples according to the 

main eigenvectors; GBDT is used to synthesize the output of 

the virtual samples. The MSE and MAE are chosen as the 

detection indexes of virtual sample quality. Finally, the 

performance of the proposed SVD-GBDT-VSG is verified on 

the PTA industrial process. The simulation results show that 

the SVD-GBDT-VSG proposed in this paper can have a more 

satisfactory performance compared with other related methods. 

Meanwhile, in our future research, the SVD method will be 

further improved and other advanced techniques will be 

further investigated. 
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