
A neural network regularization method to
address variance inflation in autoencoders

Boeun Kim ∗ Kyung Hwan Ryu ∗∗ Seongmin Heo ∗∗∗

∗ Andlinger Center for Energy and the Environment, Princeton
University, Princeton, NJ 08544, USA (e-mail:

bk3460@princeton.edu)
∗∗ Department of Chemical Engineering, Sunchon National University,
225 Jungang-ro, Suncheon, Jeollanam-do 57922, Republic of Korea

(e-mail: khryu@scnu.ac.kr)
∗∗∗ Department of Chemical Engineering, Dankook University, Yongin

16890, Republic of Korea (e-mail: smheo@dankook.ac.kr)

Abstract: There exist various machine learning techniques which can be used to reduce the
dimensionality of original data while minimizing the information loss. Principal component
analysis (PCA) is one of the most well known such techniques, which transforms the original
correlated variables into uncorrelated variables called principal components. Although PCA
is known to preserve the total variance of the original data during the transformation, there
are some cases with a potential of variance inflation, where the total variance of principal
components becomes much larger than that of original variables. It is important to prevent
variance inflation, as it can negatively affect the performance of other application systems
(e.g. process monitoring systems) which are designed on the basis of principal component with
inflated variances. Variance inflation also has a high potential to occur during the training of
autoencoder, a special type of neural network performing nonlinear version of PCA. Although
there are several neural network regularization methods available to alleviate the problem of
variance inflation, none of them is tailored to do such task. To this end, in this work, an
alternative neural network regularization method is proposed, which can strongly regulate the
total variance in the feature space. Using the Tennessee Eastman process as an illustrative
example, the proposed regularization method is compared with the existing ones in terms of
neural network overfitting, variance inflation, and training time.
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1. INTRODUCTION

Data dimensionality reduction is one of the most im-
portant steps in machine learning applications, as it can
expedite such applications by removing the redundancy
in the original data (Pyatykh et al., 2012; Heo and Lee,
2018; Jiang and Yan, 2018; Ryu et al., 2018). Dimen-
sionality reduction is also important for data visualization
which can help understand the underlying characteristics
of original data (Roweis and Saul, 2000; Hadsell et al.,
2006). Principal component analysis (PCA) is a tradi-
tional yet very effective dimensionality reduction technique
which performs orthogonal transformation to obtain new
set of variables called principal components (Jolliffe and
Cadima, 2016). Principal components can be naturally
arranged in a descending order in terms of variance, and
dimensionality reduction can be achieved by removing a
few last components. In this way, PCA is able to reduce
the dimensionality of data while preserving a significant
amount of information encoded in the original data.

During the orthogonal transformation, PCA is known to
preserve the total variance of the original data. However,
in some cases, PCA causes the total variance of principal

components to exceed that of original variables, which is
called variance inflation (Kjems et al., 2001). Variance
inflation is typically observed in the cases where the
dimensionality of original data is larger than the number of
training samples. In this case, the projection of the original
data onto the principal component space is expected to be
overfitted, leading to low generalization power. When the
principal components with inflated variances are used for
the design of other application systems, such as process
monitoring systems, the performance of such systems is
expected to be low due to weak generalization power
(Garćıa-Moreno et al., 2012).

Variance inflation is also reported to occur for kernel
principal component analysis (Abrahamsen and Hansen,
2011), which may suggest that any type of PCA can
suffer from variance inflation under certain circumstances.
Autoencoder is generally viewed as a nonlinear extension
of PCA, which extracts nonlinear principal components
from the original data through a self-reconstruction pro-
cess (Kramer, 1991). These nonlinear principal compo-
nents may have inflated variances, especially when the
size of autoencoder becomes large as we try to increase



its explanatory power. It is also highly likely that variance
inflation would lead to neural network overfitting, resulting
in large test reconstruction errors, and thus, we can apply
neural network regularization methods available in the
literature during the network training to suppress variance
inflation.

Among various neural network regularization methods,
most widely used ones are L1 and L2 regularization meth-
ods. These methods essentially regulate the absolute values
of weight parameters so that the variance in each layer
does not become much larger than that of previous layer,
thus maintaining the hypervolume in each feature space
spanned by the training data at an acceptable value.
Another type of regularization methods tries to reduce
the number of effective parameters to prevent network
overfitting, and some examples include dropout (Srivas-
tava et al., 2014) and network pruning (Karnin, 1990;
Han et al., 2015). Although the regularization methods
mentioned above can prevent network overfitting, they
cannot effectively handle the variance inflation since they
are not specifically designed to do so (Heo and Lee, 2019b).
To this end, in this work, we propose an alternative neural
network regularization method, which directly regulates
the total variance of the features in the bottleneck layer
of autoencoders. The Tennessee Eastman process is used
as an illustrative example, and the normal operation data
are used to train autoencoders of varying sizes with dif-
ferent regularization methods. First, we analyze the total
variance of the bottleneck layer using the existing regu-
larization methods to demonstrate that variance inflation
indeed occurs during the network training (even when the
network overfitting is not observed), and when it becomes
more significant. Then, we examine the effectiveness of
the proposed regularization method by comparing it with
the existing ones in terms of i) ability to prevent network
overfitting, ii) ability to suppress variance inflation, and
iii) neural network training time.

2. PRINCIPAL COMPONENT ANALYSIS (PCA)

2.1 Linear PCA

Let us consider a data sample matrix X whose dimensions
are n by m, where m and n represent the number of
variables and data samples, respectively. The principal
components of X can be computed by the following
equation:

T = XP (1)

where T and P denote the score matrix and loading ma-
trix, respectively. T is the matrix of principal component
values, and P is the matrix with orthogonal column vectors
each of which can be used to transform the original vari-
ables into uncorrelated variables. PCA is closely related
to the singular value decomposition of X which can be
written as:

X = UΣV T (2)

where U , Σ and V are the matrices of left-singular vectors,
singular values and right-singular vectors, respectively.
Then, by comparing Eqs.(1) and (2), T and P can be
simply set to be UΣ and V , respectively. P can be
partitioned into to submatrices as follows:

P = [PPC , PR] (3)

Fig. 1. Schematic representation of autoencoder

where PPC is the matrix containing the first f column
vectors of P , and PR is the matrix of the remaining column
vectors.

If the singular value decomposition is used to compute
P , the singular values in Σ is arranged in a descending
order, and the j-th column vector of P corresponds to
the principal component with j-th largest variance. Thus,
only PPC can be applied to X to project the original data
samples onto a feature space of reduced dimensionality.

2.2 Nonlinear PCA (NLPCA) by autoencoder

Figure 1 shows a schematic representation of a typical
autoencoder, which is a special type of neural network
used to learn non-trivial identity mappings through a
self-reconstruction process. A mathematical model for
autoencoders can be simply written in the following form:

ym = a(xW1 + b1)

t = ymW2 + b2
yd = a(tW3 + b3)

x̂ = ydW4 + b4

(4)

where x and x̂ denote the data sample and the recon-
structed data sample. ym and yd represent the vectors of
hidden layer nodes, and t is the vectors of bottleneck layer
nodes. W ’s and b’s are the weight matrices and the bias
vectors. a represents an activation function such as sigmoid
function and rectified linear unit (ReLU). To obtain an
autoencoder with more hidden layers, the first and third
equations in Eq.(4) can be used multiple times. Typical
training objective for autoencoder is the reconstruction
error which is defined as:

E =
1

2

∑
i

∑
j

(xij − x̂ij)
2

(5)

We can enforce an autoencoder to learn a non-trivial iden-
tity mapping with feature space of reduced dimensionality
by restricting the size of bottleneck layer to be smaller
than that of input layer.

3. NEURAL NETWORK REGULARIZATION
METHODS

In this section, we provide a brief description of four neural
network regularization methods: L1 and L2 regulariza-
tions, dropout and network pruning.



3.1 Regulating the value of weight parameters

The first type of neural network regularization methods is
to control the average absolute values of weight parameters
(i.e. elements of W ’s). L1 and L2 regularizations fall into
this type, whose definitions are given by the following
equations:

Ereg = E + αL1 (6)

Ereg = E + αL2 (7)

with

L1 =
∑

|w1|+
∑

|w2|+
∑

|w3|+
∑

|w4| (8)

L2 =
∑

w2
1 +

∑
w2

2 +
∑

w2
3 +

∑
w2

4 (9)

where wk represents the elements of Wk. α is a weighting
factor, which determines the level of regularization. If α
is too small, autoencoder would have a high potential of
overfitting, while if it is too large, autoencoder would learn
a poor identity mapping, i.e. reconstruction error would
be large. These two methods act as a neural network
regularizer by limiting the variance amplification caused
by each weight matrix.

3.2 Regulating the effective number of weight parameters

Another type of neural network regularization methods
tries to reduce the effective number of weight parameters.
A representative method is dropout, whose objective is
to prevent co-adaptation of different neurons by deacti-
vating random neurons (along with their connections to
other neurons) during the training phase (Srivastava et al.,
2014). Although dropout does not add an additional term
to the training objective function, the level of regulariza-
tion can be controlled by adjusting the portion of neurons
to be deactivated in each iteration (or equivalently, epoch)
of network training.

In network pruning, unimportant connections among neu-
rons are permanently removed to reduce the number of
parameters to be optimized. One criterion to determine
relative importance of weight parameters is to calculate
the sensitivity of reconstruction error with respect to the
change in each parameter (Karnin, 1990). Then, the pa-
rameters with small sensitivities are removed. Another cri-
terion is to set a threshold for the absolute value of weight
parameters (Han et al., 2015). In this case, parameters
whose absolute values are smaller than the threshold are
permanently removed.

A systematic pruning procedure has been also proposed for
autoencoders by Heo and Lee (2019a), whose schematic
representation is shown in Figure 2. In this procedure,
all the layers excluding the input and output layers are
decomposed into f decoupled parts, where f is the number
of neurons in the bottleneck layer. It has been reported
that, through such decomposition, less correlated features
can be extracted (compared to plain autoencoder), and
the number of parameters can be reduced by a factor of
up to 10 for large size autoencoders.

3.3 Alternative regularization method for autoencoders:
variance regularization

Let us propose an alternative regularization method for au-
toencoder training, which we call variance regularization.

Fig. 2. Schematic representation of parallel autoencoders
for uncorrelated feature extraction

The mathematical definition of this regularization method
is given below:

Ereg = E + αV (10)

V =
∑
l

t2l (11)

where tl is the l-th element of t.

Variance regularization has a similar form as L1 and L2
regularizations, and is expected to act as a regularizer
in a similar way. Since the total variance of bottleneck
features depends only on the weight parameters of the
mapping layers, variance regularization can be viewed as
a modification of L2 regularization with a specific focus
on addressing the problem of variance inflation. Although
variance regularization poses no constraint on the weight
parameters of demapping layers, they are expected to be
automatically regulated by the original training objective
(i.e. reconstruction error).

4. CASE STUDY: THE TENNESSEE EASTMAN
PROCESS

In this section, we evaluate the effectiveness of the pro-
posed regularization method from various aspects using
the Tennessee Eastman process. First, we briefly describe
the main features of the process, and the data used to
train autoencoders. Then, we analyze the total variance of
each layer (with a specific focus on the bottleneck layer)
in autoencoders of different sizes trained using the ex-
isting regularization methods to illustrate the occurrence
of variance inflation. Finally, we compare the proposed
regularization method with the existing ones to illustrate
its effectiveness.

4.1 Process and data description

Figure 3 shows the process flow diagram of the Tennessee
Eastman (TE) process, which is widely used as a test
bed for various process systems engineering applications
(Downs and Vogel, 1993). This process involves five major
unit operations (reactor, condenser, compressor, separator



Fig. 3. Process flow diagram of the Tennessee Eastman
process

Table 1. Different autoencoder structures used
in this study

Network type Network structure

Type 1 52-100-f -100-52
Type 2 52-100f -f -100f -52
Type 3 52-100-50-f -50-100-52
Type 4 52-100f -50f -f -50f -100f -52

Table 2. Neural network training settings

Attribute Value Reference

Training epochs 1000
Learning rate 0.001

Activation function ReLU Glorot et al. (2011)
Parameter initializer Xavier Glorot and Bengio (2010)

Optimizer ADAM Kingma and Ba (2014)

and stripper) and eight chemical compounds. Data sam-
ples from the TE process are of 52 dimensions, and 21
types of data samples are available (one normal operation
data type and 20 faulty operation data types). In this
study, only the normal operation data samples are used,
which come from the large data set provided by Rieth et al.
(2017). This dataset includes the normal data samples
from 500 simulation runs (each of which consists of 500
samples) for the training, and from another 500 simulation
runs (each of which consists of 960 samples) for the testing.

4.2 Neural network training settings

Two different autoencoder architectures shown in Figures
1 and 2 are used, which will be referred to as sm-NLPCA
(simultaneous NLPCA) and p-NLPCA (parallel NLPCA),
respectively. Table 1 tabulates four different neural net-
work types used in this work, which have different size
characteristics. Numbers in network structure column rep-
resent the number of nodes in each layer starting from the
input layer, and f denotes the number of nodes in the
bottleneck layer. Four different values are used for f : 5,
10, 15 and 20. Specific settings used for the neural network
training are summarized in Table 2.

4.3 Variance analysis of the bottleneck layer

In the first case study, we evaluate the total variance
of bottleneck layers in autoencoders trained without any
regularization method, whose results are summarized in

Table 3. Total variance of the bottleneck fea-
tures without neural network regularization

Number of bottleneck features
5 10 15 20

Linear PCA

20.13 28.10 33.42 38.29

sm-NLPCA

Type 1 7.42 12.64 19.53 23.31
Type 2 10.78 31.68 42.20 54.18
Type 3 3.65 6.67 10.24 16.13
Type 4 14.29 56.54 86.89 108.74

p-NLPCA

Type 1 49.12 85.78 142.54 130.74
Type 2 15.36 46.18 97.61 103.44
Type 3 8.32 18.51 13.84 15.19
Type 4 22.33 30.47 56.66 85.57

Table 4. Total variance of the bottleneck fea-
tures with the existing neural network regular-

ization methods

Regularization method
f None L1 L2 Dropout

sm-NLPCA (Type 2)

10 31.68 42.47 23.79 -
15 42.20 28.68 20.80 -
20 54.18 30.42 23.88 -

sm-NLPCA (Type 4)

10 56.54 13.33 16.46 16.37
15 86.89 18.35 19.80 23.55
20 108.74 23.06 48.10 31.82

p-NLPCA (Type 2)

10 46.18 22.95 10.83 -
15 97.61 47.48 23.23 -
20 103.44 60.96 24.69 -

p-NLPCA (Type 4)

10 30.47 25.35 12.24 30.70
15 56.66 33.81 17.17 63.89
20 85.57 44.26 18.10 70.86

Table 3. In this work, the case with variance inflation is
defined as a case where the total variance of bottleneck
layer is larger than that of input layer. In Table 3 (and
in similar tables), the cases with variance inflation are
highlighted in bold. For a comparison purpose, the results
from linear PCA are also included in this table. We
can observe that the total variance of bottleneck layer
generally increases with the increasing number of features
as expected. Also, in some cases, the variance inflation
was observed even though no overfitting was occurred
during the network training. In the case of sm-NLPCA,
the variance inflation became significant as the size of
autoencoders increased, and p-NLPCA slightly alleviated
this problem. However, p-NLPCA suffered from variance
inflation when small size autoencoders were used.

In the second case study, the existing neural network reg-
ularization methods are applied to the network training.
Table 4 shows the results of this study, and the values
for Type 2 with dropout are not reported, since dropout
showed almost no regularization effect. We can see that,
among three methods, L2 regularization showed the best
performance on average in terms of variance inflation,
since no variance inflation was observed when it is applied
to the network training. Although variance inflation was
observed for a few cases, L1 regularization and dropout
were also able to reduce the total variance of bottleneck



Fig. 4. Training and test errors with different regulariza-
tion methods

layer for the most cases compared to the network without
regularization.

4.4 Comparison 1: neural network overfitting

Let us now compare the variance regularization method
with the other methods. Variance regularization is first
compared with L2 regularization in terms of overfitting
regularization power, and the results are shown in Figure
4. Type 4 sm-NLPCA autoencoder was used with 20
neurons in the bottleneck layer to obtain these results.
From this figure, it can be seen that the autoencoder
without any regularization is quite overfitted, showing very
large test error. Both L2 and variance regularizations were
able to handle the problem of network overfitting, and they
showed similar regularization powers.

4.5 Comparison 2: variance inflation

In the next analysis, variance regularization is compared
with L1 and L2 regularizations in terms of variance in-
flation inhibition power. Type 4 autoencoders with 20
bottleneck neurons were also used in this analysis, and the
results are summarized in Table 5. Note that the results
shown in this analysis were obtained by selecting different
values of α for each regularization method such that the
reconstruction errors for test data samples have similar
values.

From this table, we can observe that the variance regu-
larization indeed address the problem of variance inflation
better than L1 and L2 regularizations. In the case of sm-
NLPCA, the total variance with variance regularization
is different from that with L1 or L2 regularizations by
three orders of magnitude (an order of magnitude for p-
NLPCA). Table 6 provides more detailed results by show-
ing the total variance of each layer for L2 and variance
regularizations. It can be seen that, for all the layers,
variance regularization resulted in smaller total variances
compared to L2 regularization. Also, as mentioned above,
the demapping layers were not overfitted even though no
constraint was put on them, showing similar total variance
values as the mapping layers.

Table 5. Total variance of the bottleneck layer:
comparison between L1, L2 and variance reg-

ularizations

Regularization method
None L1 L2 Variance

sm-NLPCA 108.74 23.06 48.10 0.01
p-NLPCA 85.57 44.26 18.10 1.28

Table 6. Total variance of each layer with L2
and variance regularizations

Regularization method
L2 Variance

Input 52.28 52.28
Hidden 1 109.83 40.80

(activation) 39.07 9.65
Hidden 2 79.91 40.40

(activation) 24.97 0.26
Hidden 3 50.75 0.01
Hidden 4 143.40 0.52

(activation) 49.24 0.33
Hidden 5 74.29 41.75

(activation) 36.74 17.05
Output 41.20 41.84

Table 7. Neural network training time with
different regularization methods (in seconds)

Regularization method
None L1 L2 Variance

sm-NLPCA 341.02 347.67 363.78 401.32
p-NLPCA 467.92 521.23 571.61 602.07

4.6 Comparison 3: neural network training time

Finally, let us compare the time required for the network
training with different regularization methods. Table 7
tabulates the training time for both sm-NLPCA and p-
NLPCA. More time was required to train p-NLPCA au-
toencoders than sm-NLPCA autoencoders, which is con-
sistent with the results reported in Heo and Lee (2019a).
Although it took the longest time to train autoencoders
with variance regularization for both NLPCA methods,
it is a computationally tractable regularization method,
showing reasonably small differences with other methods.
The main reason why it takes more time to train autoen-
coders with variance regularization is that it requires the
evaluation the total variance, whose calculation increases
with the sample data size, while L1 and L2 regularizations
do not require such evaluation.

5. CONCLUSION

In this work, a regularization method for autoencoder
training was proposed, which is called variance regular-
ization. It was motivated by the phenomena known as
variance inflation, which has been reported to be ob-
served for linear PCA and kernel PCA. We showed that
variance inflation also occurs in the nonlinear PCA per-
formed by autoencoders, even when the autoencoders are
trained without overfitting. We also demonstrated some
cases where the existing regularization methods, such as
L1 regularization and dropout, failed to prevent variance
inflation.

Variance regularization was compared with L1 and L2
regularizations on the basis of three criteria: network



overfitting regularization, variance inflation inhibition and
training time. It was shown that variance regularization
has a comparable power to regulate network overfitting
as the other regularizations, while showing much better
ability to suppress variance inflation. However, it required
slightly longer training time than the other regularization
methods, as it involves the evaluation of feature values of
all the test samples, which may be time consuming.

Although we demonstrated the effectiveness of variance
regularization, there is still more to be explored. The
most important issue that requires an extensive investiga-
tion is: can variance regularization be beneficial to other
applications which build upon the results obtained from
autoencoders? One example is the design of autoencoder-
based process monitoring systems, which is our ongoing
research task.
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