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Abstract: The simultaneous optimization of continuous and discrete design variables, operating conditions, 

and controller’s tuning parameters of reactive distillation (RD) columns is investigated in this work. For 

this purpose, the capabilities of a recently proposed modular economic optimization strategy based on a 

Discrete-Steepest Descent (D-SDA) framework are investigated. The D-SDA is a decomposition method 

that aims to improve an initial design by systematically modifying its discrete decisions, e.g., number of 

stages, until a design that optimizes the process economics while meeting the desired specifications is 

found. A case study involving the production of ethyl tert-butyl-ether (ETBE) in a RD unit was considered. 

The simultaneous design and control of the RD column was solved under two scenarios, i.e., product 

changeovers between four different grades and the production of a single grade of ETBE under a step 

disturbance in the feed composition. The results show that the modular strategy can specify economic 

design and control schemes in reasonable computational times. 
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1. INTRODUCTION 

Traditional methodologies for the design of chemical 

processes where design and control considerations are treated 

separately are evolving into more sophisticated techniques 

where process dynamics are accounted for in the early 

conceptual design stages (Di Pretoro et al., 2021). One process 

intensification strategy that has gained attention is the 

integration of reaction and separation into a single reactive 

distillation (RD) unit, which offers many advantages such as 

reductions in capital cost, energy integration, improvements in 

selectivity and conversion, and shift of azeotropic equilibria 

(Gómez et al., 2006). Nonetheless, the integration of these 

processes inherently produces unwanted operational and 

controllability difficulties due to the susceptibility of the 

system to state multiplicity, process gain nonlinearity, control 

interactions, and process gain bidirectionality (Khaledi & 

Young, 2005; Sneesby et al., 1997). Thus, different strategies 

that account for the controllability of RD systems at the design 

stage are still in development. 

In the process industry, a process design is expected to 

accommodate changes in product specification, production 

demands, and to efficiently reject disturbances. For this 

purpose, the expected operating points and closed-loop 

dynamics of the system must be taken into consideration when 

designing a RD column. Previous studies have shown that an 

optimal design identified from steady state calculations may 

not necessarily have a feasible dynamic performance during 

changes in the operation (Di Pretoro et al., 2021). The most 

common approach to circumvent this issue is to overdesign the 

system using process heuristics or trial and error procedures 

that may ultimately lead to a design that is not the most 

profitable. Thus, comprehensive design strategies are still 

required to obtain flexible RD units, i.e., systems capable of 

accommodating for disturbances during operation with respect 

to nominal operating conditions (Di Pretoro et al., 2021). 

A recent trend in the field of RD is the economic design of 

systems that are expected to operate at different steady states, 

i.e., multigrade RD columns. This is because RD columns are 

often required to sequentially produce different products in a 

single piece of equipment, which inherently introduces the 

need to perform dynamic transitions between different steady 

states. The sequential dynamic transition between different 

steady states is referred to as multi-period operation. To 

consider this operation mode, a modular Discrete-Steepest 

Descent Algorithm (D-SDA) was recently developed to 

identify profitable designs in continuous multi-period RD 

units (Liñán & Ricardez-Sandoval, 2021). This strategy is 

based on a bilevel decomposition of the original mixed-integer 

dynamic optimization (MIDO) problem where discrete 

decisions are solved separately from the continuous design 

decisions using a discrete analog version of the continuous 

steepest descent method. That strategy returns an economic 

RD design (i.e., discrete configuration and internal 

dimensions) that also accommodates dynamic transitions 

between the different RD products. Open-loop control actions 

were performed in that study. To the authors’ knowledge, the 

optimal RD design that considers both multi-period steady-

state operation and the dynamic operability in closed-loop for 

RD columns has not been investigated in the literature.  

The aim of this work is to apply the modular D-SDA strategy 

for the simultaneous design and control of a multi-product RD 

column. The proposed strategy aims to return the optimal 

process design specifications, process operating conditions 

and the controller tuning parameters that result in a 

dynamically feasible and economically optimal operation of a 

RD system. The features of the proposed strategy are 

demonstrated through a case study involving dynamic 



transitions during the production of different grades of ethyl 

tert-butyl-ether (ETBE). Previous works have only dealt with 

the simultaneous design and control of RD systems around a 

nominal operating point, and they rarely incorporate discrete 

decisions explicitly in the formulation (e.g., see Bernal et al., 

2018). Hence, this work brings novelty to the current literature 

since RD systems are required to operate in a flexible manner 

in closed-loop at different steady-state conditions to guarantee 

feasible multiproduct/multigrade production and with an 

adequate disturbance rejection performance. To the authors’ 

knowledge, this is the first study that addresses the 

simultaneous economic design and control of a multi-period 

RD system using deterministic optimization.  

This study is organized as follows. Section 2 states the MIDO 

formulation considered in this work (i.e., the dynamic multi-

period problem), and its steady state counterpart (i.e., the 

steady-state multi-period problem). The modular D-SDA 

framework is presented in Section 3. Section 4 applies the 

proposed framework to perform the optimal design and control 

of an ETBE catalytic distillation system under two different 

scenarios. Concluding remarks and future work are provided 

at the end.  

2. PROBLEM STATEMENT 

This work considers the optimal design and closed-loop 

operation of a RD column that is expected to change its 

operating conditions multiple times over a single year of 

operation. There are 𝑛𝐾 periods throughout the year, where 

each period features a steady state operation and a dynamic 

transition that moves the system from one operating point to 

another. The Equivalent Annual Cost (EAC) is used as the 

objective function and a superstructure formulation coupled 

with a nonlinear system of Differential-Algebraic Equations 

(DAE), which are used to represent the nonlinear behavior of 

the system through the Mass, Equilibrium, Summation, and 

enthalpy (MESH) model. PID control equations can also be 

incorporated into the DAE equations of the model. Binary 

variables are included to account for the feed/feeds location, 

number of stages and distribution of reactive stages along the 

RD column. This work assumes that the operation of the 

system returns to its initial operating condition after a year of 

operation. Thus, the year of operation goes from 𝑡0 = 0 to 

𝑡𝑝 = 𝑡𝑛𝐾, where 𝑡𝑝 is typically set to 8,000 ℎ/𝑦𝑒𝑎𝑟. The time 

range [0, 𝑡𝑝] is subdivided into multiple periods (time slots) 

[𝑡0, 𝑡1], [𝑡1, 𝑡2], … , [𝑡𝑛𝐾−1, 𝑡𝑛𝐾]. Each period [𝑡𝑘−1, 𝑡𝑘] ∈ 𝐾 =

{1,2, … , 𝑛𝐾} includes a dynamic transition (from 𝑡𝑘−1 to 𝑡𝑘
𝑇𝑅 

(superscript 𝑇𝑅 denotes the transition time) and the steady-

state operating point achieved after the transition occurs (i.e., 

from 𝑡𝑘
𝑇𝑅 to 𝑡𝑘). This work considers the objective function 

𝑓𝑂𝐵𝐽 = 𝑓𝑂𝐵𝐽
𝑆𝑆 + 𝑓𝑂𝐵𝐽

𝑇𝑅  derived in our previous study (Liñán & 

Ricardez-Sandoval, 2021) and that can be represented as the 

addition of a steady state term (𝑓𝑂𝐵𝐽
𝑆𝑆  in (1a)) and a dynamic 

term (𝑓𝑂𝐵𝐽
𝑇𝑅  in (1b)), i.e.,  

𝑓𝑂𝐵𝐽
𝑆𝑆 = 𝐶𝐼𝑁𝑉 +∑[(𝐶𝑂𝑃(𝑡𝑘) − 𝐶𝐼𝑁(𝑡𝑘))(𝑡𝑘 − 𝑡𝑘−1)]

𝑘∈𝐾

      (1𝑎) 

𝑓𝑂𝐵𝐽
𝑇𝑅 = ∑ [∫ (𝐶𝑂𝑃(𝑡) − 𝐶𝑂𝑃(𝑡𝑘) + 𝐶𝐼𝑁(𝑡𝑘))𝑑𝑡

𝑡𝑘
𝑇𝑅

𝑡𝑘−1
]𝑘∈𝐾       (1𝑏)  

𝐶𝐼𝑁𝑉  represents the annualized investment costs, 𝐶𝑂𝑃 is the 

time-dependent operating costs per unit of time, and 𝐶𝐼𝑁 

accounts for the incomes to the process per unit of time. Based 

on this objective function, the dynamic multi-period problem 

is stated in problem (2), with constraints summarized in Eqs. 

(2a)-(2g). 𝒗𝑆𝑆 = [𝒗1
𝑆𝑆, 𝒗2

𝑆𝑆, … , 𝒗𝑛𝐾
𝑆𝑆 ] contains vectors of the 

time-dependent variables (including differential (𝒙), algebraic 

(𝒛) and manipulated variables (𝒖)) that represent the steady 

state operation of the system at time 𝑡𝑘, ∀𝑘 ∈ 𝐾 (see Eq. (2b)); 

𝒗𝑇𝑅 is a vector function with time-dependent variables (𝒙, 𝒛 

and 𝒖) evaluated during dynamic transitions (𝑡𝑘−1, 𝑡𝑘
𝑇𝑅], ∀𝑘 ∈

𝐾 (see Eq. (2c)); 𝒑 is the vector of time independent 

continuous variables (usually related to continuous design 

variables); 𝝉 represents the controller tuning parameters, and 

𝒚 is a vector of binary variables, i.e., those that define integer 

decisions such as the number of stages in an RD column.  

min
𝒗𝑆𝑆,𝒗𝑇𝑅,𝝉,𝒑,𝒚

𝑓𝑂𝐵𝐽 = 𝑓𝑂𝐵𝐽
𝑆𝑆 + 𝑓𝑂𝐵𝐽

𝑇𝑅                                              (2) 

𝑠. 𝑡. 
[𝒗𝑆𝑆, 𝒑, 𝒚] ∈ 𝑆𝑆𝑆, [𝒗𝑆𝑆, 𝒗𝑇𝑅 , 𝒑, 𝝉, 𝒚] ∈ 𝑆𝑇𝑅, 𝒚 ∈ 𝑌′            (2𝑎) 
𝒗𝑘
𝑆𝑆 = [𝒙(𝑡𝑘), 𝒖(𝑡𝑘), 𝒛(𝑡𝑘)], ∀𝑘 ∈ 𝐾                                     (2𝑏)  

𝒗𝑇𝑅(𝑡) =  [𝒙(𝑡), 𝒖(𝑡), 𝒛(𝑡)], ∀𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘
𝑇𝑅], ∀𝑘 ∈ 𝐾     (2𝑐)  

𝑆𝑆𝑆 =

{
 

 

[𝒗𝑆𝑆, 𝒑, 𝒚]: 

𝒈(𝒑, 𝒚) ≤ 𝟎 

[

𝒉𝑆𝑆(𝒗1
𝑆𝑆, 𝒑, 𝒚) ≤ 𝟎
⋮

𝒉𝑆𝑆(𝒗𝑛𝐾
𝑆𝑆 , 𝒑, 𝒚) ≤ 𝟎

]

}
 

 

                       (2𝑑)  

𝑆𝑇𝑅 =

{
 
 
 
 

 
 
 
 

[𝒗𝑆𝑆, 𝒗𝑇𝑅 , 𝒑, 𝝉, 𝒚]: 

[
𝒉1
𝑇𝑅 ≤ 𝟎
⋮

𝒉𝑛𝐾
𝑇𝑅 ≤ 𝟎

]

(
𝑑𝒙

𝑑𝑡
|
𝑡𝑘
𝑇𝑅
)

2

≤ 𝜀1, ∀𝑘 ∈ 𝐾

𝒖(𝑡𝑘
𝑇𝑅) = 𝒖(𝑡𝑘), ∀𝑘 ∈ 𝐾

𝒇(𝒙(𝑡0), 𝒖(𝑡0), 𝒛(𝑡0)) = 𝟎}
 
 
 
 

 
 
 
 

 (2𝑒) 

𝒉𝑘
𝑇𝑅 = 𝒉𝑇𝑅 (

𝑑𝒙(𝑡)

𝑑𝑡
, 𝒗𝑇𝑅(𝑡), 𝒑, 𝝉, 𝒚) , ∀𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘

𝑇𝑅]         (2𝑓)  

𝑌′ = {𝒚:𝛀(𝒚) ≤ 𝟎, 𝒚 ∈ {0,1}𝑛𝑦}                                          (2𝑔) 

The constraints of the problem are included in the feasible 

regions 𝑆𝑆𝑆, 𝑆𝑇𝑅 and 𝑌′. The first subregion 𝑆𝑆𝑆 in Eq. (2d) 

typically involves equations that are either independent of time 

or related to the steady state operation of the system, i.e., 

design constraints that define the dimensions of the unit (𝒈); 

and the nonlinear MESH equations at steady state, purity, and 

demand requirements in 𝒉𝑆𝑆. The second subregion 𝑆𝑇𝑅 in Eq. 

(2e) includes process dynamics and control equations 𝒉𝑘
𝑇𝑅 for 

every transition 𝑘 included in the formulation (see Eq. (2f)). 

𝒉𝑘
𝑇𝑅 incorporates the dynamic MESH equations, the controller 

equations, and the anticipated disturbances for each time slot 

𝑘. Note that, the effect of uncertainty and unanticipated 

disturbances is not considered in the present formulation. 

Additional constraints are imposed in 𝑆𝑇𝑅 to define the initial 

operating point of the system (𝒇 = 𝟎); the switchability 

constraints ((𝑑𝒙 𝑑𝑡⁄ |
𝑡𝑘
𝑇𝑅)

2

≤ 𝜀1) required to stabilize the 

system using a small value of 𝜀1, and continuity constraints 



(𝒖(𝑡𝑘
𝑇𝑅) = 𝒖(𝑡𝑘)) to connect consecutive periods. If required, 

additional constraints to avoid the phenomenon of multiple 

steady states can be added to 𝑆𝑇𝑅 (Liñán & Ricardez-Sandoval, 

2021). The last subregion 𝑌′ in Eq. (2g) contains the logic 

constraints 𝛀(𝒚) enforced over the 𝑛𝑦 binary variables of the 

problem, e.g., the feed location must be located between the 

reflux and boil-up stages. The advantage of formulating the 

problem as shown in problem (2) is that, when neglecting the 

costs associated with the dynamic transitions (𝑓𝑂𝐵𝐽
𝑇𝑅 = 0), the 

vector of time dependent dynamic variables (𝒗𝑇𝑅) and the 

constraints associated with the dynamic transitions (𝑆𝑇𝑅) can 

be ignored. Thus, when 𝑓𝑂𝐵𝐽
𝑇𝑅  vanishes (i.e., when the profit loss 

due to dynamic transitions is neglected), the optimization 

problem reduces to the steady-state multi-period problem (3), 

which solution provides a lower bound for problem (2). A 

detailed description of problem (3) and its interaction with 

problem (2) can be found in our previous study (Liñán & 

Ricardez-Sandoval, 2021). 

min
𝒗𝑆𝑆,𝒑,𝒚

𝑓𝑂𝐵𝐽
𝑆𝑆 (𝒗𝑆𝑆, 𝒑, 𝒚) 

𝑠. 𝑡. 
[𝒗𝑆𝑆 , 𝒑, 𝒚] ∈ 𝑆𝑆𝑆, 𝒚 ∈ 𝑌′                                                           (3) 

where 𝑆𝑆𝑆 and 𝑌′ are given by Eq. (2d) and Eq. (2g), 

respectively. Optimization problems (2) and (3) and the 

relationship between them is the key idea pursued in this work 

to propose an algorithmic framework to address the 

simultaneous design and control of multigrade RD columns.  

3. METHODOLOGY 

The lowest EAC of a flexible RD column can be obtained in 

the ideal case when a column has instantaneous dynamics 

when performing transitions between steady states, as in 

problem (3). This suggests that solving the steady-state 

optimization problem (3) is a good starting point for the multi-

period MIDO problem shown in (2). Accordingly, a modular 

strategy depicted in Fig. 1 is proposed to seek for an optimal 

design and control scheme that can accommodate transient 

changes in the operation of RD columns. Modules 1 and 2 

provide an initialization to Module 3, which solves the process 

design and control problem simultaneously. 

 

Fig. 1. The modular D-SDA approach. 

To exemplify the strategy shown in Fig. 1, consider the design 

of a RD column that must change its operating conditions to 

produce products A and B in closed-loop. The first module 

examines the feasibility of producing A and B at steady-state 

using the same RD equipment defined by 𝒑 and 𝒚. This 

module is included because a RD design that cannot satisfy the 

desired product specifications/demands should be discarded. If 

feasibility is achieved, the second module optimizes the EAC 

of the RD unit at steady state by manipulating the process 

design variables (𝒑, 𝒚) and steady-state operation variables 

𝒗𝑆𝑆. This design also corresponds to the best possible EAC that 

can be achieved in an ideal case when the dynamic transitions 

are instantaneous. As shown in Fig. 1, this point serves as 

initialization for the last module where discrete (𝒚) and 

continuous design variables (𝒑), steady state operation 

variables (𝒗𝑆𝑆), dynamic operation variables (𝒗𝑇𝑅), and 

controller tuning parameters (𝝉) are modified to guarantee an 

optimal dynamic transition from A to B. Hence, this 

modularization reduces the problem’s complexity by 

sequentially approaching to the optimal solution of the multi-

period MIDO shown in problem (2). 

The solution of each module in Fig. 1 is challenging due to the 

nonlinearities of the phenomenological RD model, the 

presence of binary variables that multiply continuous terms in 

the formulation, the numerical difficulties associated with zero 

flows when a stage is removed/added to optimize the number 

of stages, and the control structure which introduces feedback 

introduced the system. The key idea to address these 

challenges consists in the reformulation of the binary decisions 

𝒚 with integer external variables 𝒆, which explicitly optimize 

the discrete decisions of the problem in an upper optimization 

layer. For instance, a RD superstructure formulation would 

typically include multiple binary decisions, e.g., 𝒚1, 𝒚2 and 𝒚3, 

which specify the number of stages, the feed location and the 

size of the reactive zone, respectively. In this case, each of 

these binary vectors can be reformulated with 𝒆 = [𝑒1, 𝑒2, 𝑒3] 
as 𝒚𝑖 = 𝒚𝑖(𝑒𝑖), ∀𝑖 ∈ {1,2,3}, where 𝑒1 is the integer decision 

that defines the number of stages, 𝑒2 defines the feed location, 

and 𝑒3 is the number of stages in the reactive zone. These 

external variables are explored using the D-SDA and enhanced 

D-SDA algorithms presented in Fig. 2 and 3, respectively, 

which require the solution of the dynamic and steady-state 

NLP subproblems shown in (4a) and (4b), by systematically 

updating 𝒆 with 𝒆∗, where 𝒆∗ denotes the most updated value 

of the external variables on each iteration. 

min
𝒗𝑆𝑆,𝒗𝑇𝑅,𝒑

𝑓𝑂𝐵𝐽(𝒗
𝑆𝑆, 𝒗𝑇𝑅, 𝒑, 𝒚(𝒆)) 

𝑠. 𝑡. 
[𝒗𝑆𝑆, 𝒑, 𝒚(𝒆)] ∈ 𝑆𝑆𝑆, [𝒗𝑆𝑆, 𝒗𝑇𝑅 , 𝒑, 𝝉, 𝒚(𝒆)] ∈ 𝑆𝑇𝑅              (4𝑎) 

min
𝒗𝑆𝑆,𝒑

𝑓𝑂𝐵𝐽
𝑆𝑆 (𝒗𝑆𝑆, 𝒑, 𝒚(𝒆)) 

𝑠. 𝑡. 
[𝒗𝑆𝑆, 𝒑, 𝒚(𝒆)] ∈ 𝑆𝑆𝑆                                                                  (4𝑏) 
The D-SDA algorithm (Fig. 2) compares the optimal solution 

of the NLP subproblem (4b) at 𝒆∗ (𝑓𝑂𝐵𝐽
𝑆𝑆 (𝒆∗)) and the 

surrounding discrete configurations referred to as the 

neighborhood 𝑁∞(𝒆
∗) = {𝒆 ∈ ℤ𝑛𝑒: ‖𝒆 − 𝒆∗‖∞ ≤ 1}, where 

𝑛𝑒 is the number of external variables (see Steps 1 and 2 in 

Fig. 2). For instance, the neighbors of a single feed located at 
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stage 8 are feed-streams at stages 7 and 6. If a specific 

neighbor (𝒆𝑜) minimizes the objective function over 𝑁∞(𝒆
∗), 

it specifies the new steepest descent direction (𝜹 = 𝒆𝑜 − 𝒆∗) 
over which the line search is sequentially performed (Step 3 in 

Fig. 2). The line search starts at 𝒆∗ and stops when 𝑓𝑂𝐵𝐽
𝑆𝑆  starts 

worsening (Step 4 in Fig. 2). At this point, 𝒆∗ is updated and a 

new iteration is performed (Step 5 in Fig. 2). 

 

Fig. 2. The D-SDA. 𝑓𝑂𝐵𝐽
𝑆𝑆 = +∞ for infeasible problems. 

 

Fig. 3. The enhanced D-SDA. 𝑓𝑂𝐵𝐽 = +∞ for infeasible problems. 

The optimal continuous and discrete variables from Fig. 2 are 

used to initialize the last module in Fig. 1, which explicitly 

solves the dynamic multi-period problem in (2). The steady-

state multi-period subproblems (4b) converge much faster than 

dynamic-multi-period subproblems (4a) due to their difference 

in size and nonconvexity. The enhanced D-SDA (Fig. 3) aims 

to avoid the solution of every dynamic problem based on their 

steady state information, i.e., problem (4b) provides a lower 

bound for problem (4a) for any value of 𝒆, which suggests that 

problem (4b) should be solved first to decide if problem (4a) 

needs to be solved. This feature is incorporated both in the 

neighborhood verification steps (i.e., Steps 2 and 3 in Fig. 3) 

and the line search (Step 7 in Fig. 3). The set 𝑁∞
′ (𝒆∗) =

𝑁∞(𝒆
∗)\{𝜶 ∈ 𝑁∞(𝒆

∗): 𝑓𝑂𝐵𝐽
𝑆𝑆 (𝜶) ≥ 𝑓𝑂𝐵𝐽(𝒆

∗)} is a reduced 

neighborhood that excludes those neighbors 𝜶 with a steady 

state objective function 𝑓𝑂𝐵𝐽
𝑆𝑆 (𝜶) that is equal or worse than the 

current objective function 𝑓𝑂𝐵𝐽(𝒆
∗). To illustrate the 

advantages of using 𝑁∞
′ (𝒆∗), consider a hypothetical case 

where 𝑁∞(𝒆
∗) is 3𝑛𝑒  and 𝑛𝑒 = 9. Assume that an average 

solution time for problem (4a) is one hour. If 𝑁∞(𝒆
∗) is used, 

the solution time of Steps 4 and 5 will be around two years. 

Hence, 𝑁∞′(𝒆
∗) reduces the combinatorial complexity of the 

problem since it will only explore those neighbors that have 

the potential to improve process economics. To further 

decrease the computational costs, a relative gap can be 

introduced in the solution strategy. This gap is introduced in 

Step 3 in Fig. 3, i.e., 𝑔𝑎𝑝(𝒆∗) = (𝑓𝑂𝐵𝐽(𝒆
∗) − 𝐿𝑂(𝒆∗))/

|𝑓𝑂𝐵𝐽(𝒆
∗)|; 𝐿𝑂(𝒆∗) is the tightest lower bound of the problem, 

and is defined with respect to the steady-state multi-period 

subproblems as 𝐿𝑂(𝒆∗) = min
𝒆∈𝑁∞(𝒆

∗)
{𝑓𝑂𝐵𝐽

𝑆𝑆 (𝒆): 𝒆 ≠ 𝒆∗}. Once 

this gap is below a tolerance level 𝜀𝑔𝑎𝑝 ≥ 0, the search 

procedure stops. Note that the methodology presented in this 

section does not guarantee global optimality; hence, the 

process design obtained with the present method depends on 

the initial design provided by the first module shown in Fig. 1. 

4. CASE STUDY 

The methodology proposed in the previous section was tested 

using a case study featuring the optimal design and control of 

a catalytic distillation (CD) column that produces multiple 

grades of ETBE from isobutene and ethanol. The column 

considers 3 catalytic stages and uses a split feed mode, with a 

feed of pure ethanol (1.712 𝑚𝑜𝑙/𝑚𝑖𝑛 at 342𝐾) and a second 

feed consisting of a n-butene/isobutene mixture (5.774 𝑚𝑜𝑙/
𝑚𝑖𝑛 at 323𝐾). The discrete decisions formulated as external 

variables (𝒆) are: the number of stages, the location of both 

feeds, and the optimal distribution of reactive stages along the 

column. The continuous design variables (𝒑) are the column 

diameter, the tray spacing and the weir height. The top 

operating pressure of the column is fixed at 9.5 bar and 

constant liquid mass accumulation in the condenser and the 

reboiler is assumed, which leaves two degrees of freedom to 

control the process. Conventional feedback controllers are 

considered in this work. The objective function follows the 

form shown in Eq. (1a) and (1b) and is as follows: 

𝐶𝐼𝑁𝑉 = 𝐶0 + 𝐶1                                                                           (5𝑎)  
𝐶𝑂𝑃(𝑡) = 𝐶𝐸𝑡ℎ𝑎𝑛𝑜𝑙 + 𝐶𝐵𝑢𝑡𝑒𝑛𝑒𝑠 + 𝐶𝑅𝑒𝑏𝑜𝑖𝑙𝑒𝑟 + 𝐶𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟    (5𝑏) 
𝐶𝐼𝑁(𝑡) = 𝐶𝐸𝑇𝐵𝐸                                                                            (5𝑐) 

where 𝐶𝐼𝑁𝑉 in Eq. (5a) includes a fixed investment cost of the 

condenser and the reboiler (𝐶0), and the cost of purchasing and 

installing the distillation vessel, the trays along the column and 

the catalytic section (𝐶1). The operating costs in Eq. (5b) 

include the cost of the ethanol (𝐶𝐸𝑡ℎ𝑎𝑛𝑜𝑙) and butenes 

(𝐶𝐵𝑢𝑡𝑒𝑛𝑒𝑠) feed streams, and the operating costs of the reboiler 

and the condenser (𝐶𝑅𝑒𝑏𝑜𝑖𝑙𝑒𝑟  and 𝐶𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟). The process’ 

incomes in Eq. (5c) consider the revenue of selling the ETBE. 

The CD column is modeled using the MESH model coupled 

with geometrical constraints between the process design 

variables, e.g., a height to diameter ratio, empirical 
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correlations to consider the pressure drop of the system, and 

hydrodynamic constraints, e.g., weeping and flooding. The 

reader is referred to (Liñán & Ricardez-Sandoval, 2021) for 

additional modelling details. The aim in this case study is to 

specify a design and control strategy that can meet the desired 

product and process specifications at the lowest EAC.  

4.1 Scenario I: Optimal design under product changeovers 

This scenario aims to design a CD column that satisfies a 

schedule with changes in ETBE composition (𝑥𝐸𝑇𝐵𝐸) demands 

during a full year of operation. The four periods (𝐾 =
{1,2,3,4}) considered for this problem are: 1) transition from 

𝑥𝐸𝑇𝐵𝐸 = 63% to 𝑥𝐸𝑇𝐵𝐸 = 83% and operation at 𝑥𝐸𝑇𝐵𝐸 = 83% 

for two months, 2) transition from 𝑥𝐸𝑇𝐵𝐸 = 83% to 𝑥𝐸𝑇𝐵𝐸 = 

95% and operation at 𝑥𝐸𝑇𝐵𝐸 = 95% for four months, 3) 

transition from 𝑥𝐸𝑇𝐵𝐸 = 95% to 𝑥𝐸𝑇𝐵𝐸 = 83% and operation 

at 𝑥𝐸𝑇𝐵𝐸 = 83% for two months, and 4) transition from 

𝑥𝐸𝑇𝐵𝐸 = 83% to 𝑥𝐸𝑇𝐵𝐸 = 63% and operation at 𝑥𝐸𝑇𝐵𝐸 = 63% 

for four months. A PID controller pairing the reboiler duty 

(𝑄𝑟) and 𝑥𝐸𝑇𝐵𝐸 is considered whereas the reflux ratio (RR) is 

fixed at an economically optimal point that satisfies flooding 

and weeping constraints, which is an approach previously 

considered in the literature (Sneesby et al., 1997). The 

sampling time and transition times were fixed at 10 min and 

60 min, respectively. The nonlinearity and bidirectionality in 

the process gain between 𝑄𝑟  and 𝑥𝐸𝑇𝐵𝐸  under different 

production grades was detected from preliminary simulations. 

Hence, the PID controller was designed such that their tuning 

parameters are allowed to change depending on the period of 

operation, i.e., a gain-scheduling controller is designed for this 

scenario. This results in 12 controller tuning parameters (𝝉) 

that must be economically optimized together with the process 

design variables specified for the CD column. 

4.2 Scenario II: Optimal design with a feed disturbance    

This scenario assumes that the system operates at 95%𝑚𝑜𝑙/
𝑚𝑜𝑙 production of ETBE, with a butene feed containing 

40% 𝑚𝑜𝑙/𝑚𝑜𝑙 of isobutene. A measured disturbance in the 

feed is introduced after six months of operation, which drops 

the isobutene composition from 40% 𝑚𝑜𝑙/𝑚𝑜𝑙 to 30% 𝑚𝑜𝑙/
𝑚𝑜𝑙. Hence, the first time-slot (period 𝑘 = 1) consists of a 

steady-state operation of the system with a butenes feed of 

40% 𝑚𝑜𝑙/𝑚𝑜𝑙, while the second time-slot (period 𝑘 = 2) 

considers the dynamic rejection period of the disturbance 

followed by a steady state operation at the new operating point 

(30% 𝑚𝑜𝑙/𝑚𝑜𝑙) for the second half of the year. In this case 

two PID controllers are implemented, i.e., 𝑥𝐸𝑇𝐵𝐸  is controlled 

with 𝑄𝑟  while the temperature difference of the reactive zone 

(∆𝑇) is controlled by manipulating RR. ∆𝑇 provides a good 

estimation of isobutene conversion, which is directly 

correlated with the quality of the ETBE product (Khaledi & 

Young, 2005). The sampling time and transition times were 

fixed to 10 min and 130 min, respectively. This work assumes 

that the step disturbance is a common perturbation to the 

system; hence, Module 2 aims to find a design that can 

accommodate the optimal steady-state operation under the 

nominal condition (40% mol/mol) and after the dynamic 

rejection period (i.e., 30% mol/mol). This assumption is 

needed to guarantee a feasible initialization for Module 3, 

which is a requirement for the D-SDA framework presented in 

Fig. 2 and Fig. 3.  

5. RESULTS AND DISCUSSION 

The problems were implemented and solved in GAMS 34, 

using CONOPT4 as the NLP solver in an Intel CPU with 96 

GB of RAM and 2.1 GHz. The problem was discretized using 

the orthogonal collocation method with Lagrange interpolation 

polynomials. Both scenarios were solved using the modular 

strategy shown in Fig. 1, with a relative optimality gap of 

𝜀𝑔𝑎𝑝 = 0 for module 3. Also, both scenarios were initialized 

with the design proposed in (Liñán et al., 2020). The first 

scenario converged after 111.6 hours while the second 

scenario required 69.29 hours of computation. 

5.1 Scenario I: Optimal design with product changeovers 

The design obtained for this scenario is a CD column with 20 

stages, feeds located at stages 6 and 17 (from top to bottom, 

including the condenser and the reboiler), and reactive stages 

optimally distributed between feeds at stages 6, 12 and 17. 

The column has a diameter of 0.17 𝑚, tray spacing of 0.16 𝑚, 

and a weir height of 0.008 𝑚. The resulting 𝐸𝐴𝐶 for this CD 

column is 22,610 $/𝑦𝑒𝑎𝑟, with an optimal reflux ratio of 

4.96. Note that when this column is designed using an 

overdesign methodology presented in (Liñán & Ricardez-

Sandoval, 2021), the resulting design does not comply with the 

height to diameter constraint (𝐻𝑒𝑖𝑔ℎ𝑡 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟⁄ ≤ 20) 

imposed to this system. Even if this constraint is not enforced, 

the overdesign system would result in a CD column with an 

EAC that would be at least 0.4% worst than that obtained by 

the proposed framework, thus highlighting the need of a 

methodology like that presented here to ensure dynamic 

feasibility of RD columns at optimal costs. Note that other 

control strategies were tested, e.g., control the ethanol 

composition at the top by manipulating 𝑅𝑅; however, they 

showed negligible economic deviations. 

The optimal transition of the ETBE composition (𝑥𝐸𝑇𝐵𝐸), the 

controller tuning parameters, and the control actions in the 

reboiler duty (𝑄𝑟) are shown in Fig. 4 for periods 1 and 2 

(periods 3 and 4 are not shown for brevity). As shown in this 

figure, the controller parameters differ by one order of 

magnitude for the product transitions considered. This is 

because the process is highly nonlinear and responds in 

different directions depending on the operating conditions. 

Hence, the need for a gain-scheduling controller for this multi-

grade CD column. Note that a controller with a single set of 

tuning parameters was attempted but it resulted in an infeasible 

solution. As shown in Fig. 4, the corresponding control actions 

are able to drive the system to their desired set-points.  

5.2 Scenario II: Optimal design with a feed disturbance    

To illustrate the benefits of the modular D-SDA approach 

presented in Fig. 1, the results for this scenario are compared 

with an optimal steady-state design obtained around a nominal 

operating condition with a feed that consists of 40% 𝑚𝑜𝑙/𝑚𝑜𝑙 
of isobutene. This design was obtained by minimizing the 

EAC, using modules 1 and 2 in Fig. 1 under nominal operating 

conditions (i.e., process dynamics were not considered). The 

optimal steady-state design and that obtained by the present 



scenario are presented in Fig. 5. When validating the designs, 

it was found that optimal steady-state design around a nominal 

operating condition (Fig. 5A) returned a CD column that 

would not meet their specification goals thus resulting in a 

dynamically infeasible design, i.e., the ETBE composition is 

5% lower than the desired specification (95%) at steady-state 

(not shown for brevity). While the proposed optimal design 

and control approach returned a larger CD column (Fig. 5B) 

than that obtained by nominal design (Fig 5A), the proposed 

simultaneous-based design can reject disturbances and 

maintain the ETBE product at the desired specification, with 

an EAC of 21,942 $/year.  

 
Figure 4. Optimal transitions and PID tuning parameters: 

proportional gain (𝐾𝐶), integral time (𝜏𝐼), and derivative time 

(𝜏𝐷). (A): period 1, (B): period 2. 

 
Figure 5. (A) Optimal steady-state design (B) Optimal design 

using the modular D-SDA. ⇌𝑅: reactive stages. 

Fig. 6 validates the CD column design obtained by the present 

approach (Fig 5B). As shown in this figure, the disturbance in 

the feed composition triggers a decrease in the quality of 

ETBE; thus, the control system reacts by making changes in 

both RR and Qr such that it rejects this perturbation and 

eventually returns the system to the desired set-points. RR 

increases from 4.32 to 4.54 (not shown for brevity). The 

tuning parameters for the RR-∆𝑇 control loop are 𝐾𝐶 =
−0.0003𝐾−1, 𝜏𝐼 = 1.49 𝑚𝑖𝑛 and 𝜏𝐷 = 1.9 ∗ 103 𝑚𝑖𝑛. 

 

Figure 6. Optimal transition and tuning parameters for the 𝑄𝑟 −
𝑥𝐸𝑇𝐵𝐸 PID loop. (A): 𝑥𝐸𝑇𝐵𝐸  profile, (B): 𝑄𝑟 profile. 

6. CONCLUSIONS 

A deterministic method to simultaneously design and control 

RD systems that perform multiple transitions during its 

operation was presented in this study. The approach is based 

on a multi-period formulation that was solved using a D-SDA 

strategy. The main novelty of this work is the integration of 

the flexible operation of RD systems around multiple steady 

states in closed-loop with the optimal economic design of the 

process, considering both discrete and continuous design 

variables. A case study involving the production of ETBE 

returned optimal designs that are dynamically feasible 

compared to other optimization-based strategies that do not 

consider process dynamics or closed-loop operation. Future 

work includes the inclusion of unmeasured disturbances, 

parameter uncertainty and stability analysis in the proposed 

framework. Also, a comparison between this strategy and 

other design and control methods is left as future work. In 

addition, the D-SDA presented in this work need to be 

improved to guarantee optimality when initialized from an 

infeasible point. Also, the integration of the present approach 

with advanced control techniques such as model predictive 

control (MPC) will also be investigated in the future. 
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