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Abstract: Process safety is still an issue in modern chemical industries. Accidents in chemical processes 

are still frequent and cause great losses for chemical industries. In this context, there is a demand for the 

development of intelligent fault detection and diagnosis (FDD) methods that can help operators manage 

chemical process faults. Since a large amount of process data has become available for monitoring systems 

as a result of the huge deployment of computer systems and information technologies in chemical 

industries, the study of data-based FDD methods has become the focus of this research area. Therefore, this 

work proposes to investigate the performance of a promising Bayesian recurrent neural network-based 

method in the detection of faults in a real chemical process. The case study is related to the detection of a 

specific type of fault in a real fluid catalytic cracking process. The method presented satisfactory 

performance during testing experiments, with a good accuracy detection and a very small number of false-

negative cases. 
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1. INTRODUCTION 

In the current development process of modern chemical 

industries, there is a demand for technologies that can improve 

the quality, efficiency, and safety of chemical processes. 

Specifically, regarding safety problems, accidents in chemical 

processes are still very common and cause great losses for 

chemical industries (Shu et al., 2016). One of the explanations 

for the still frequent occurrence of accidents is that chemical 

process monitoring systems are still heavily dependent on 

human operators for the detection and diagnosis of faults (Wu 

and Zhao, 2018). This strong dependence on human operators 

makes monitoring systems vulnerable to operator errors and 

consequently creates risks to the safety of chemical processes. 

Therefore, there is a demand to develop intelligent fault 

detection and diagnosis (FDD) systems that can help operators 

manage chemical process faults.  

Over the last decades, several FDD methods have been 

proposed in the literature to contribute to the development of 

these systems. In general, these methods can be categorized 

into three classes: model-based methods, knowledge-based 

methods, and data-based methods (Chiang, Braatz and Russell, 

2001). However, with the increasing deployment of computer 

systems and information technologies in chemical industries, 

a large amount of process measurement data has become 

available for monitoring systems. Therefore, the study of data-

based FDD methods has become the focus of this research area 

(Yin et al., 2012; Ge, Song and Gao, 2013). Specifically for 

the detection of faults in chemical processes, among data-

based methods, methods based on principal component 

analysis (PCA) and partial least square (PLS) have been 

proposed and used in industry for years due to their simplicity 

of implementation (Qin, 2012). However, these methods are 

limited to specific cases in which the process data has a 

stationary behavior and the process variables are linearly 

correlated. Chemical process data usually have more complex 

characteristics such as nonlinearity, time-varying, and 

multimodal behaviors (Ge, Song and Gao, 2013). Therefore, 

several methods capable of modeling these characteristics of 

chemical process data have been proposed in the literature, 

such as dynamic and kernel variations of PCA and PLS 

methods, and artificial neural network methods (ANN) (Cheng 

et al., 2019). 

Recently, the Bayesian Recurrent Neural Network (BRNN) 

based method proposed by Sun et al., 2020 was found to be a 

promising option for detecting faults in chemical processes. 

Sun et al., 2020 show that its BRNN-based method deals well 

with non-linear and dynamical characteristics found in 

chemical process data and provides a probabilistic structure 

that allows more sensitive and robust detections. Sun et al., 

2020 evaluated the method using a dataset generated by a 

chemical process simulation and a real chemical process 

dataset, and in both cases, it presented a good performance. 

Regarding studies about the application of this method to real 

chemical processes, the case study presented by Sun et al., 

2020 is the only one found in the literature. Therefore, this 

work proposes to investigate the performance of this BRNN-

based method in the detection of faults in another real chemical 

process. This work’s case study is about the detection of a 

specific type of fault that occurs in a real fluid catalytic 

cracking process. 



2. METHODOLOGY 

2.1 Recurrent Neural Network 

A recurrent neural network (RNN) consists of a specific type 

of neural network for processing sequential data (Goodfellow, 

Bengio and Courville, 2016). This type of neural network is 

characterized by using a feedback loop in its structure (Fig. 1) 

that allows a ‘memory’ of previous inputs to persist in the 

network’s internal state and thereby influence the network 

output (Graves, 2012). Thus, when analyzing sequential data, 

in addition to being able to model the nonlinearity of the data, 

such as the traditional neural networks, the RNNs are also able 

to model the dependence between different sequential data 

points. 

 

Figure 1 – RNN feedback loop  

The structure of a standard RNN hidden layer (Olah, 2015) is 

illustrated in Fig. 2 and its operation can be described by the 

following mathematical formulation. Given an input sequence 

𝑥 =  (𝑥1, … , 𝑥𝑇), a standard RNN computes the hidden vector 

sequence ℎ =  (ℎ1, … , ℎ𝑇) and the output vector sequence 𝑦̂ =
(𝑦̂1, … , 𝑦̂𝑇) by iterating the following equations from 𝑡 = 1 to 

𝑡 = 𝑇: 

 ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ  ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ) (1) 

 𝑦̂𝑡 = 𝑊ℎ𝑦 ∙ ℎ𝑡 + 𝑏𝑦 (2) 

where ∙ denotes the dot product, [ℎ𝑡−1, 𝑥𝑡] denotes the 

concatenation of the last hidden state ℎ𝑡−1 with the current 

input 𝑥𝑡, 𝑊ℎ and 𝑊ℎ𝑦 are weight matrices, 𝑏ℎ and 𝑏𝑦 are bias 

vectors, and 𝑡𝑎𝑛ℎ(∙) is a hyperbolic tangent activation 

function. 

 

Figure 2 – Standard RNN hidden layer 

For training this type of neural network, the backpropagation 

through time (BPTT) algorithm (Williams and Zipser, 1995) 

is normally used, which is a specific variation of the 

backpropagation algorithm (Rumelhart, Hinton and Williams, 

1985) for RNNs. 

In theory, standard RNNs should be able to learn long-term 

temporal dependencies between sequential data points, 

however, this does not happen in practice due to the gradient 

vanishing problem. This problem causes the gradient values 

calculated during the training process to become extremely 

small, affecting the network learning (Hochreiter and 

Schmidhuber, 1997). In this context, variations of RNNs, such 

as Long-Short Term Memory networks (Hochreiter and 

Schmidhuber, 1997), have been widely used in practice since 

they use robust architectures that avoid the gradient vanishing 

problem during the training process (Chung et al., 2014). 

2.2 Long Short-Term Memory Network 

A Long Short-Term Memory (LSTM) network consists of a 

specific type of recurrent neural network that uses memory 

gates in its architecture to mitigate the gradient vanishing 

problem during its training (Hochreiter and Schmidhuber, 

1997). Unlike the standard RNN (Fig. 2) where the hidden 

layer only contains one data processing layer (represented by 

the box [𝑊ℎ, 𝑏ℎ]), an LSTM hidden layer, as illustrated in Fig. 

3, contains four processing layers (represented by boxes 

[𝑊𝑓 , 𝑏𝑓], [𝑊𝑖 , 𝑏𝑖], [𝑊𝑔, 𝑏𝑔], [𝑊𝑜, 𝑏𝑜]), each with a specific 

function. These processing layers are used to protect and 

control the state cell (𝐶𝑡) of the LSTM network, represented 

by the upper horizontal line in the hidden layer illustrated in 

Fig. 3, which has the function of transmitting information 

obtained from already analyzed data points to the analysis of 

new data points. The processing layer [𝑊𝑓 , 𝑏𝑓] is used as a 

forget gate that decides which information should be discarded 

from the state cell, [𝑊𝑖 , 𝑏𝑖] is used as an input gate that 

controls what information should be stored in the state 

cell, [𝑊𝑔, 𝑏𝑔] is used in conjunction with the input gate 

providing possible new information 𝐶̃𝑡  for the state cell, and 
[𝑊𝑜 , 𝑏𝑜] is used as an output gate that decides what 

information should be made available for the output of the 

LSTM network (Olah, 2015). 

 

Figure 3 – LSTM hidden layer  

Given an input 𝑥𝑡, the operation of a basic LSTM network to 

calculate its respective output 𝑦̂𝑡 is described by the following 

equations: 



 𝑓𝑡 = 𝜎(𝑊𝑓  ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3) 

 𝑖𝑡 = 𝜎(𝑊𝑖  ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4) 

 𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔  ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑔) (5) 

 𝐶𝑡 = 𝑓𝑡 ⊗ 𝐶𝑡−1 + 𝑖𝑡  ⊗ 𝐶̃𝑡 (6) 

 𝑜𝑡 = 𝜎(𝑊𝑜  ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (7) 

 ℎ𝑡 = 𝑜𝑡 ⊗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (8) 

 𝑦̂𝑡 = 𝑊ℎ𝑦 ∙ ℎ𝑡 + 𝑏𝑦 (9) 

𝜎 denotes a sigmoid activation function and ⊗ denotes a 

Hadamard product. 

2.3 Bayesian Recurrent Neural Network 

A Bayesian recurrent neural network (BRNN) is a 

probabilistic interpretation of an RNN based on a Bayesian 

modeling concept. In this modeling approach, given a training 

dataset with 𝑋 = (𝑥1, … , 𝑥𝑇) as its input data and 𝑌 =
(𝑦1, … , 𝑦𝑇) as its respective target output data, a parameterized 

model of an RNN, denoted by 𝑌 = 𝐹𝑊(𝑋), is trained to 

determine the most likely network’s parameters 𝑊 to have 

generated the data. To do this, a Bayesian learning process is 

used to train the model.  

In a Bayesian learning process, a prior distribution 𝑝(𝑊) is 

initially defined to represent the prior beliefs about which 

parameter values are likely to have generated the training data 

before any analysis of the data. As soon as the training data is 

analyzed by the model, this prior distribution 𝑝(𝑊) is then 

updated to determine the distribution that describes the most 

likely parameters’ values according to the information 

obtained from the analyzed data. For this update to be carried 

out, a likelihood distribution 𝑝(𝑌|𝑋, 𝑊)  is defined, which is 

used to describe the information of 𝑊 derived from the 

training data. In the case of a regression problem this 

distribution can be represented by a Gaussian model: 

 𝑝(𝑌|𝑋, 𝑊) =  ∏ 𝑝(𝑦𝑡|𝑥𝑡 , 𝑊)

𝑇

𝑡=1

 (10) 

 

𝑝(𝑦|𝑥, 𝑊)  =

1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

(𝑓𝑊(𝑥) − 𝑦)2

2𝜎2
)

 (11) 

Thus, given the likelihood distribution 𝑝(𝑌|𝑋, 𝑊) and the 

prior distribution 𝑝(𝑊), the posterior distribution 

𝑝(𝑊|𝑋, 𝑌) can be calculated using the Bayes' theorem: 

 𝑝(𝑊|𝑋, 𝑌) =  
𝑝(𝑌|𝑋, 𝑊)𝑝(𝑊)

𝑝(𝑌|𝑋)
 (12) 

𝑝(𝑌|𝑋) denotes a normalization term. 

This posterior distribution 𝑝(𝑊|𝑋, 𝑌) describes which are the 

most likely values for the parameters of the model to have 

generated the data, according to the combination of prior 

knowledge about the parameters and information about the 

parameters provided by the observed data. By the end of the 

posterior distribution computation, the Bayesian learning 

process is completed. The computed posterior distribution then 

can be used by the model to predict the most likely output 

values 𝑦̂𝑡 for new input values 𝑥𝑡 through the following 

integration: 

 
𝑝(𝑦̂𝑡|𝑥𝑡 , 𝑋, 𝑌) = ∫ 𝑝(𝑦̂𝑡|𝑥𝑡 , 𝑊)𝑝(𝑊|𝑋, 𝑌)𝑑𝑊 (13) 

This prediction operation is called Bayesian inference (Gal, 

2016). Unlike a traditional RNN model, where parameters and 

predictions assume punctual numerical values, in a BRNN, 

probability distributions are inferred over its parameters and 

predictions, thus providing advantages such as the 

representation of their uncertainties and robustness against 

overfitting (Gal, 2016). However, due to the fact that 

calculating the posterior distribution 𝑝(𝑊|𝑋, 𝑌) is not 

analytically possible for models that contain many parameters, 

implementing a BRNN is not a simple task. A key component 

in the posterior distribution computation is the normalization 

term 𝑝(𝑌|𝑋), which is calculated by the following integration: 

 𝑝(𝑌|𝑋) = ∫ 𝑝(𝑌|𝑋, 𝑊)𝑝(𝑊)𝑑𝑊 (14) 

This term is normally a limiting factor for the calculation of 

𝑝(𝑊|𝑋, 𝑌), as it requires the marginalization of the likelihood 

distribution over all possible values for 𝑊, which can only be 

performed analytically for simple models with a limited 

number of parameters. Thus, the Bayesian inference in models 

such as BRNNs usually cannot be done analytically, thus 

turning necessary in these cases to use Bayesian inference 

approximation methods (Gal, 2016). Since the introduction of 

the Bayesian neural network concept in the 90s (MacKay, 

1992; Neal, 1995), several methods for approximating 

Bayesian inference in neural networks have been proposed. 

Most of these methods are based on variations of traditional 

Bayesian inference approximation methods such as Markov 

Chain Monte Carlo methods, method of Laplace, and 

variational inference methods. A review of Bayesian inference 

approximation methods specific to Bayesian neural networks 

is presented by Jospin et al., 2020. For this work, the 

variational inference method called Monte Carlo (MC) 

Dropout (Gal and Ghahramani, 2016b) is adopted, since it 

allows to approximately perform Bayesian inference in 

BRNNs with only simple adaptations of traditional training 

techniques for RNNs (Gal and Ghahramani, 2016a). This 

method is based on the interpretation of the dropout 

regularization technique (Srivastava et al., 2014) as a 

variational inference method that uses a Bernoulli distribution 

as a posterior variational distribution.  

2.4 BRNN-based Fault Detection Method 

As presented by Sun et al., 2020, for a BRNN model to be used 

as a fault detection model, it must be trained offline using data 

from normal process operation to learn how to characterize the 

normal process operating conditions. Specifically, as 

illustrated in Fig. 4, the BRNN model must learn to receive as 



input process monitoring data collected at one instant 𝑡 and 

provide in response a predictive distribution of values for 

monitoring data at the next instant 𝑡 + 1. 

 

Figure 4 - BRNN model for fault detection  

Thus, after training, when receiving a new monitoring data 𝑥𝑡 

as input, the model is able to provide a predictive distribution 

of expected values for the process monitoring data in the next 

instant 𝑥̂𝑡+1 in the case of normal operation condition. Upon 

being collected, the actual monitoring data 𝑥𝑡+1 is then 

compared to the predictive distribution 𝑥̂𝑡+1 provided by the 

model. If a significant deviation of the data 𝑥𝑡+1 from the 

predictive distribution 𝑥̂𝑡+1 is detected, then the data 𝑥𝑡+1 is 

classified as a data that describes the occurrence of a fault in 

the process. Otherwise, the data is classified as normal 

operation data. The complete scheme for fault detection in a 

chemical process using a BRNN model is described in Fig.5. 

 

Figure 5 – BRNN-based fault detection method 

3. CASE STUDY 

To investigate the performance of the BRNN-based method in 

the detection of real chemical processes faults, it is proposed a 

case study related to the detection of a specific type of fault 

that occurs in a real fluid catalytic cracking (FCC) process. The 

FCC process is one of the main chemical processes in an oil 

refinery as it cracks heavier oil fractions into light products 

with higher added value, such as gasoline and liquefied 

petroleum gas (LPG). The FCC process that is the focus of this 

case study is characterized by containing a large number of 

sensors that collect process operation data and, consequently, 

by having available a large volume of historical operation data 

related to the occurrence of different types of faults in the 

process. Specifically for this case study, it is proposed to 

investigate the performance of the BRNN-based method in the 

detection of an FCC reactor fault caused by a sticking problem 

in its catalyst level control valve. According to the engineers 

of this process, the detection of this type of fault is still carried 

out manually by the operators, and the development of an 

intelligent model that helps them detect this failure would be 

very useful.  

4. EXPERIMENT 

4.1 FCC Process Data 

Three historical operation data windows of the FCC process 

reactor were provided for the development of the case study, a 

normal operation data window, and two data windows that 

contain reactor operation data under the occurrence of faults 

caused by the sticking problem in the catalyst level control 

valve. The normal operation data window was used as the 

training set. The other two data windows were used as test sets 

and were denoted as test set 1 and test set 2, respectively. The 

training set contained 15 days of reactor monitoring data 

(20161 samples), the test set 1 contained 11 days of reactor 

monitoring data (14401 samples), and the test set 2 contained 

10 days reactor of monitoring data (12961 samples). The 

samples were collected every 1 minute. A list of the 16 process 

variables that were available in the datasets is displayed in 

Table 1. 

Table 1 – Available FCC process variables 

 

4.2 Data Selection and Preprocessing 

In order to avoid high-dimensioned problems, only the most 

relevant variables to detect the fault were selected to train the 

model. According to the engineers of the FCC process focus 

of the case study, the process variable that describes the level 

of the reactor's upper vessel (𝑥1) is the variable that suffers the 

most noticeable disturbances during the occurrence of a 

sticking problem in the catalyst level control valve. Thus, this 

variable was the first one to be selected. In addition, the 

variables with the highest correlation to the variable 𝑥1 and 

consequently can help in the detection of valve failures were 

searched. By calculating the correlation matrix of the 

variables, it was found that 𝑥3 and 𝑥5 are the variables most 

correlated to the variable 𝑥1. The other variables had a very 

low or almost null correlation to the variable 𝑥1. Thus, only 

the variables 𝑥1, 𝑥3, and 𝑥5 were selected for training the 

model. Regarding the pre-processing of data, the only action 

needed was its normalization before training. 



4.3 BRNN Model  

To carry out the experiment, due to the advantage of LSTM 

networks against the gradient vanishing problem, a Bayesian 

LSTM recurrent neural network model was chosen. The model 

was structured with 3 input units, a hidden LSTM layer with 

memory gates containing 32 processing units, and an output 

layer with 1 processing unit. The model was structured in a 

way it can receive as inputs the values of variables 𝑥𝑡
1, 𝑥𝑡

3 and 

𝑥𝑡
5 at timestep 𝑡 and return a predictive distribution 𝑥̂𝑡+1

1  of 

probable values of variable 𝑥1 at the time 𝑡 + 1. This 

predictive distribution is then compared to the actual value of 

𝑥𝑡+1
1  to decide if a fault is occurring at instant 𝑡 + 1. 

4.4 Model Training 

As described above, the proposed model is trained using only 

the reactor's normal operation data window so it learns to 

predict the values of the variable 𝑥1 in the normal operating 

condition of the reactor. For the training process, the Bayesian 

inference approximation method MC-Dropout was used. This 

method, in the case of BRNNs, basically consists of the 

application of the BPTT algorithm to data sequence batches 

with a variational dropout mask sampled for each sequence. 

For training the proposed model, the dropout rate was set to 

0.3 and the optimizer Adam (Kingma and Ba, 2015) was 

utilized with a learning rate equal to 0.001. The training was 

carried out for 20 epochs. The model was implemented using 

Python programming language and the TensorFlow library 

(TensorFlow, 2021). 

4.5 Model Test 

After training, following the fault detection method presented 

in section 2.4, the model was submitted to the two test sets and 

performed the classification of each data point in these 

windows as normal operation data or faulty operation data. To 

assess the performance of the trained model in the detection of 

the reactor’s faults, the number of true positives (TP), false 

positives (FP), false negatives (FN) e true negatives (TN) were 

calculated. With these four values computed, the model 

accuracy (𝐴𝑐𝑐), its true-positive rate (TPR) and its true-

negative rate (TNR) were then calculated using the following 

equations: 

 𝐴𝑐𝑐 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

(15) 

 𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(16) 

 𝑇𝑁𝑅 =  
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

(17) 

And, since there is an imbalance between the amount of 

normal operation data and the amount of faulty operation data, 

the balanced accuracy (𝑏. 𝐴𝑐𝑐) (Brodersen et al., 2010) was 

also calculated: 

 
𝑏. 𝐴𝑐𝑐 =  

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

+
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
2

 
(18) 

5. RESULTS 

Table 2 presents a summary of the BRNN-based method’s 

detection performance for each of the test sets. Fig. 6 and Fig. 

7 illustrate the performance of the method in the detection of 

faults in the test set 1 and test set 2, respectively. 

Table 2 – Method’s performance summary  

 

As can be seen in Table 2, for test dataset 1 the model had an 

accuracy of 99.50%, a balanced accuracy of 99.23%, a true-

positive rate of 98.95%, a true-negative rate of 99.51% and 

only 0.01% of false-negative cases. For test data set 2, the 

model presented an accuracy of 99.38%, a balanced accuracy 

of 99.44%, a true-positive rate of 99.51%, a true-negative rate 

of 99.37% and only 0.01% of false-negative cases. 

 

Figure 6 - BRNN model performance illustration in detecting 

faults in test set 1 

 

Figure 7 - BRNN model performance illustration in detecting 

faults in test set 2 



6. CONCLUSION 

An application of a Bayesian recurrent neural network-based 

method is proposed for the detection of faults in a real 

chemical process. The case study is related to the detection of 

a specific type of fault in a real FCC process. In general, the 

method presented satisfactory accuracy during testing 

experiments, with a very small number of false negative cases. 

Therefore, the method proves to be a promising method for 

detecting faults in real chemical processes. 
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