
Fault Detection in a Fluid Catalytic Cracking Process using Bayesian

Recurrent Neural Network

Gustavo R. Taira*. Song W. Park*. Antônio C. Zanin*. Carlos R. Porfirio**.

*Department of Chemical Engineering, Polytechnic School, University of Sao Paulo,

Sao Paulo, Brazil (e-mails: gustavo.taira@usp.br; sonwpark@usp.br; antczanin@gmail.com)

**Petrobras S.A., Santos, Brazil

(e-mail: carlos.porfirio@petrobras.com.br)

Abstract: Process safety is still an issue in modern chemical industries. Accidents in chemical processes

are still frequent and cause great losses for chemical industries. In this context, there is a demand for the

development of intelligent fault detection and diagnosis (FDD) methods that can help operators manage

chemical process faults. Since a large amount of process data has become available for monitoring systems

as a result of the huge deployment of computer systems and information technologies in chemical

industries, the study of data-based FDD methods has become the focus of this research area. Therefore, this

work proposes to investigate the performance of a promising Bayesian recurrent neural network-based

method in the detection of faults in a real chemical process. The case study is related to the detection of a

specific type of fault in a real fluid catalytic cracking process. The method presented satisfactory

performance during testing experiments, with a good accuracy detection and a very small number of false-

negative cases.

Keywords: process safety, fault detection, fluid catalytic cracking process, machine learning, Bayesian

recurrent neural network

1. INTRODUCTION

In the current development process of modern chemical

industries, there is a demand for technologies that can improve

the quality, efficiency, and safety of chemical processes.

Specifically, regarding safety problems, accidents in chemical

processes are still very common and cause great losses for

chemical industries (Shu et al., 2016). One of the explanations

for the still frequent occurrence of accidents is that chemical

process monitoring systems are still heavily dependent on

human operators for the detection and diagnosis of faults (Wu

and Zhao, 2018). This strong dependence on human operators

makes monitoring systems vulnerable to operator errors and

consequently creates risks to the safety of chemical processes.

Therefore, there is a demand to develop intelligent fault

detection and diagnosis (FDD) systems that can help operators

manage chemical process faults.

Over the last decades, several FDD methods have been

proposed in the literature to contribute to the development of

these systems. In general, these methods can be categorized

into three classes: model-based methods, knowledge-based

methods, and data-based methods (Chiang, Braatz and Russell,

2001). However, with the increasing deployment of computer

systems and information technologies in chemical industries,

a large amount of process measurement data has become

available for monitoring systems. Therefore, the study of data-

based FDD methods has become the focus of this research area

(Yin et al., 2012; Ge, Song and Gao, 2013). Specifically for

the detection of faults in chemical processes, among data-

based methods, methods based on principal component

analysis (PCA) and partial least square (PLS) have been

proposed and used in industry for years due to their simplicity

of implementation (Qin, 2012). However, these methods are

limited to specific cases in which the process data has a

stationary behavior and the process variables are linearly

correlated. Chemical process data usually have more complex

characteristics such as nonlinearity, time-varying, and

multimodal behaviors (Ge, Song and Gao, 2013). Therefore,

several methods capable of modeling these characteristics of

chemical process data have been proposed in the literature,

such as dynamic and kernel variations of PCA and PLS

methods, and artificial neural network methods (ANN) (Cheng

et al., 2019).

Recently, the Bayesian Recurrent Neural Network (BRNN)

based method proposed by Sun et al., 2020 was found to be a

promising option for detecting faults in chemical processes.

Sun et al., 2020 show that its BRNN-based method deals well

with non-linear and dynamical characteristics found in

chemical process data and provides a probabilistic structure

that allows more sensitive and robust detections. Sun et al.,

2020 evaluated the method using a dataset generated by a

chemical process simulation and a real chemical process

dataset, and in both cases, it presented a good performance.

Regarding studies about the application of this method to real

chemical processes, the case study presented by Sun et al.,

2020 is the only one found in the literature. Therefore, this

work proposes to investigate the performance of this BRNN-

based method in the detection of faults in another real chemical

process. This work’s case study is about the detection of a

specific type of fault that occurs in a real fluid catalytic

cracking process.

2. METHODOLOGY

2.1 Recurrent Neural Network

A recurrent neural network (RNN) consists of a specific type

of neural network for processing sequential data (Goodfellow,

Bengio and Courville, 2016). This type of neural network is

characterized by using a feedback loop in its structure (Fig. 1)

that allows a ‘memory’ of previous inputs to persist in the

network’s internal state and thereby influence the network

output (Graves, 2012). Thus, when analyzing sequential data,

in addition to being able to model the nonlinearity of the data,

such as the traditional neural networks, the RNNs are also able

to model the dependence between different sequential data

points.

Figure 1 – RNN feedback loop

The structure of a standard RNN hidden layer (Olah, 2015) is

illustrated in Fig. 2 and its operation can be described by the

following mathematical formulation. Given an input sequence

𝑥 = (𝑥1, … , 𝑥𝑇), a standard RNN computes the hidden vector

sequence ℎ = (ℎ1, … , ℎ𝑇) and the output vector sequence 𝑦̂ =
(𝑦̂1, … , 𝑦̂𝑇) by iterating the following equations from 𝑡 = 1 to

𝑡 = 𝑇:

 ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ) (1)

 𝑦̂𝑡 = 𝑊ℎ𝑦 ∙ ℎ𝑡 + 𝑏𝑦 (2)

where ∙ denotes the dot product, [ℎ𝑡−1, 𝑥𝑡] denotes the

concatenation of the last hidden state ℎ𝑡−1 with the current

input 𝑥𝑡, 𝑊ℎ and 𝑊ℎ𝑦 are weight matrices, 𝑏ℎ and 𝑏𝑦 are bias

vectors, and 𝑡𝑎𝑛ℎ(∙) is a hyperbolic tangent activation

function.

Figure 2 – Standard RNN hidden layer

For training this type of neural network, the backpropagation

through time (BPTT) algorithm (Williams and Zipser, 1995)

is normally used, which is a specific variation of the

backpropagation algorithm (Rumelhart, Hinton and Williams,

1985) for RNNs.

In theory, standard RNNs should be able to learn long-term

temporal dependencies between sequential data points,

however, this does not happen in practice due to the gradient

vanishing problem. This problem causes the gradient values

calculated during the training process to become extremely

small, affecting the network learning (Hochreiter and

Schmidhuber, 1997). In this context, variations of RNNs, such

as Long-Short Term Memory networks (Hochreiter and

Schmidhuber, 1997), have been widely used in practice since

they use robust architectures that avoid the gradient vanishing

problem during the training process (Chung et al., 2014).

2.2 Long Short-Term Memory Network

A Long Short-Term Memory (LSTM) network consists of a

specific type of recurrent neural network that uses memory

gates in its architecture to mitigate the gradient vanishing

problem during its training (Hochreiter and Schmidhuber,

1997). Unlike the standard RNN (Fig. 2) where the hidden

layer only contains one data processing layer (represented by

the box [𝑊ℎ, 𝑏ℎ]), an LSTM hidden layer, as illustrated in Fig.

3, contains four processing layers (represented by boxes

[𝑊𝑓 , 𝑏𝑓], [𝑊𝑖 , 𝑏𝑖], [𝑊𝑔, 𝑏𝑔], [𝑊𝑜, 𝑏𝑜]), each with a specific

function. These processing layers are used to protect and

control the state cell (𝐶𝑡) of the LSTM network, represented

by the upper horizontal line in the hidden layer illustrated in

Fig. 3, which has the function of transmitting information

obtained from already analyzed data points to the analysis of

new data points. The processing layer [𝑊𝑓 , 𝑏𝑓] is used as a

forget gate that decides which information should be discarded

from the state cell, [𝑊𝑖 , 𝑏𝑖] is used as an input gate that

controls what information should be stored in the state

cell, [𝑊𝑔, 𝑏𝑔] is used in conjunction with the input gate

providing possible new information 𝐶̃𝑡 for the state cell, and
[𝑊𝑜 , 𝑏𝑜] is used as an output gate that decides what

information should be made available for the output of the

LSTM network (Olah, 2015).

Figure 3 – LSTM hidden layer

Given an input 𝑥𝑡, the operation of a basic LSTM network to

calculate its respective output 𝑦̂𝑡 is described by the following

equations:

 𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3)

 𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4)

 𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑔) (5)

 𝐶𝑡 = 𝑓𝑡 ⊗ 𝐶𝑡−1 + 𝑖𝑡 ⊗ 𝐶̃𝑡 (6)

 𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (7)

 ℎ𝑡 = 𝑜𝑡 ⊗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (8)

 𝑦̂𝑡 = 𝑊ℎ𝑦 ∙ ℎ𝑡 + 𝑏𝑦 (9)

𝜎 denotes a sigmoid activation function and ⊗ denotes a

Hadamard product.

2.3 Bayesian Recurrent Neural Network

A Bayesian recurrent neural network (BRNN) is a

probabilistic interpretation of an RNN based on a Bayesian

modeling concept. In this modeling approach, given a training

dataset with 𝑋 = (𝑥1, … , 𝑥𝑇) as its input data and 𝑌 =
(𝑦1, … , 𝑦𝑇) as its respective target output data, a parameterized

model of an RNN, denoted by 𝑌 = 𝐹𝑊(𝑋), is trained to

determine the most likely network’s parameters 𝑊 to have

generated the data. To do this, a Bayesian learning process is

used to train the model.

In a Bayesian learning process, a prior distribution 𝑝(𝑊) is

initially defined to represent the prior beliefs about which

parameter values are likely to have generated the training data

before any analysis of the data. As soon as the training data is

analyzed by the model, this prior distribution 𝑝(𝑊) is then

updated to determine the distribution that describes the most

likely parameters’ values according to the information

obtained from the analyzed data. For this update to be carried

out, a likelihood distribution 𝑝(𝑌|𝑋, 𝑊) is defined, which is

used to describe the information of 𝑊 derived from the

training data. In the case of a regression problem this

distribution can be represented by a Gaussian model:

 𝑝(𝑌|𝑋, 𝑊) = ∏ 𝑝(𝑦𝑡|𝑥𝑡 , 𝑊)

𝑇

𝑡=1

 (10)

𝑝(𝑦|𝑥, 𝑊)  =

1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

(𝑓𝑊(𝑥) − 𝑦)2

2𝜎2
)

 (11)

Thus, given the likelihood distribution 𝑝(𝑌|𝑋, 𝑊) and the

prior distribution 𝑝(𝑊), the posterior distribution

𝑝(𝑊|𝑋, 𝑌) can be calculated using the Bayes' theorem:

 𝑝(𝑊|𝑋, 𝑌) =
𝑝(𝑌|𝑋, 𝑊)𝑝(𝑊)

𝑝(𝑌|𝑋)
 (12)

𝑝(𝑌|𝑋) denotes a normalization term.

This posterior distribution 𝑝(𝑊|𝑋, 𝑌) describes which are the

most likely values for the parameters of the model to have

generated the data, according to the combination of prior

knowledge about the parameters and information about the

parameters provided by the observed data. By the end of the

posterior distribution computation, the Bayesian learning

process is completed. The computed posterior distribution then

can be used by the model to predict the most likely output

values 𝑦̂𝑡 for new input values 𝑥𝑡 through the following

integration:

𝑝(𝑦̂𝑡|𝑥𝑡 , 𝑋, 𝑌) = ∫ 𝑝(𝑦̂𝑡|𝑥𝑡 , 𝑊)𝑝(𝑊|𝑋, 𝑌)𝑑𝑊 (13)

This prediction operation is called Bayesian inference (Gal,

2016). Unlike a traditional RNN model, where parameters and

predictions assume punctual numerical values, in a BRNN,

probability distributions are inferred over its parameters and

predictions, thus providing advantages such as the

representation of their uncertainties and robustness against

overfitting (Gal, 2016). However, due to the fact that

calculating the posterior distribution 𝑝(𝑊|𝑋, 𝑌) is not

analytically possible for models that contain many parameters,

implementing a BRNN is not a simple task. A key component

in the posterior distribution computation is the normalization

term 𝑝(𝑌|𝑋), which is calculated by the following integration:

 𝑝(𝑌|𝑋) = ∫ 𝑝(𝑌|𝑋, 𝑊)𝑝(𝑊)𝑑𝑊 (14)

This term is normally a limiting factor for the calculation of

𝑝(𝑊|𝑋, 𝑌), as it requires the marginalization of the likelihood

distribution over all possible values for 𝑊, which can only be

performed analytically for simple models with a limited

number of parameters. Thus, the Bayesian inference in models

such as BRNNs usually cannot be done analytically, thus

turning necessary in these cases to use Bayesian inference

approximation methods (Gal, 2016). Since the introduction of

the Bayesian neural network concept in the 90s (MacKay,

1992; Neal, 1995), several methods for approximating

Bayesian inference in neural networks have been proposed.

Most of these methods are based on variations of traditional

Bayesian inference approximation methods such as Markov

Chain Monte Carlo methods, method of Laplace, and

variational inference methods. A review of Bayesian inference

approximation methods specific to Bayesian neural networks

is presented by Jospin et al., 2020. For this work, the

variational inference method called Monte Carlo (MC)

Dropout (Gal and Ghahramani, 2016b) is adopted, since it

allows to approximately perform Bayesian inference in

BRNNs with only simple adaptations of traditional training

techniques for RNNs (Gal and Ghahramani, 2016a). This

method is based on the interpretation of the dropout

regularization technique (Srivastava et al., 2014) as a

variational inference method that uses a Bernoulli distribution

as a posterior variational distribution.

2.4 BRNN-based Fault Detection Method

As presented by Sun et al., 2020, for a BRNN model to be used

as a fault detection model, it must be trained offline using data

from normal process operation to learn how to characterize the

normal process operating conditions. Specifically, as

illustrated in Fig. 4, the BRNN model must learn to receive as

input process monitoring data collected at one instant 𝑡 and

provide in response a predictive distribution of values for

monitoring data at the next instant 𝑡 + 1.

Figure 4 - BRNN model for fault detection

Thus, after training, when receiving a new monitoring data 𝑥𝑡

as input, the model is able to provide a predictive distribution

of expected values for the process monitoring data in the next

instant 𝑥̂𝑡+1 in the case of normal operation condition. Upon

being collected, the actual monitoring data 𝑥𝑡+1 is then

compared to the predictive distribution 𝑥̂𝑡+1 provided by the

model. If a significant deviation of the data 𝑥𝑡+1 from the

predictive distribution 𝑥̂𝑡+1 is detected, then the data 𝑥𝑡+1 is

classified as a data that describes the occurrence of a fault in

the process. Otherwise, the data is classified as normal

operation data. The complete scheme for fault detection in a

chemical process using a BRNN model is described in Fig.5.

Figure 5 – BRNN-based fault detection method

3. CASE STUDY

To investigate the performance of the BRNN-based method in

the detection of real chemical processes faults, it is proposed a

case study related to the detection of a specific type of fault

that occurs in a real fluid catalytic cracking (FCC) process. The

FCC process is one of the main chemical processes in an oil

refinery as it cracks heavier oil fractions into light products

with higher added value, such as gasoline and liquefied

petroleum gas (LPG). The FCC process that is the focus of this

case study is characterized by containing a large number of

sensors that collect process operation data and, consequently,

by having available a large volume of historical operation data

related to the occurrence of different types of faults in the

process. Specifically for this case study, it is proposed to

investigate the performance of the BRNN-based method in the

detection of an FCC reactor fault caused by a sticking problem

in its catalyst level control valve. According to the engineers

of this process, the detection of this type of fault is still carried

out manually by the operators, and the development of an

intelligent model that helps them detect this failure would be

very useful.

4. EXPERIMENT

4.1 FCC Process Data

Three historical operation data windows of the FCC process

reactor were provided for the development of the case study, a

normal operation data window, and two data windows that

contain reactor operation data under the occurrence of faults

caused by the sticking problem in the catalyst level control

valve. The normal operation data window was used as the

training set. The other two data windows were used as test sets

and were denoted as test set 1 and test set 2, respectively. The

training set contained 15 days of reactor monitoring data

(20161 samples), the test set 1 contained 11 days of reactor

monitoring data (14401 samples), and the test set 2 contained

10 days reactor of monitoring data (12961 samples). The

samples were collected every 1 minute. A list of the 16 process

variables that were available in the datasets is displayed in

Table 1.

Table 1 – Available FCC process variables

4.2 Data Selection and Preprocessing

In order to avoid high-dimensioned problems, only the most

relevant variables to detect the fault were selected to train the

model. According to the engineers of the FCC process focus

of the case study, the process variable that describes the level

of the reactor's upper vessel (𝑥1) is the variable that suffers the

most noticeable disturbances during the occurrence of a

sticking problem in the catalyst level control valve. Thus, this

variable was the first one to be selected. In addition, the

variables with the highest correlation to the variable 𝑥1 and

consequently can help in the detection of valve failures were

searched. By calculating the correlation matrix of the

variables, it was found that 𝑥3 and 𝑥5 are the variables most

correlated to the variable 𝑥1. The other variables had a very

low or almost null correlation to the variable 𝑥1. Thus, only

the variables 𝑥1, 𝑥3, and 𝑥5 were selected for training the

model. Regarding the pre-processing of data, the only action

needed was its normalization before training.

4.3 BRNN Model

To carry out the experiment, due to the advantage of LSTM

networks against the gradient vanishing problem, a Bayesian

LSTM recurrent neural network model was chosen. The model

was structured with 3 input units, a hidden LSTM layer with

memory gates containing 32 processing units, and an output

layer with 1 processing unit. The model was structured in a

way it can receive as inputs the values of variables 𝑥𝑡
1, 𝑥𝑡

3 and

𝑥𝑡
5 at timestep 𝑡 and return a predictive distribution 𝑥̂𝑡+1

1 of

probable values of variable 𝑥1 at the time 𝑡 + 1. This

predictive distribution is then compared to the actual value of

𝑥𝑡+1
1 to decide if a fault is occurring at instant 𝑡 + 1.

4.4 Model Training

As described above, the proposed model is trained using only

the reactor's normal operation data window so it learns to

predict the values of the variable 𝑥1 in the normal operating

condition of the reactor. For the training process, the Bayesian

inference approximation method MC-Dropout was used. This

method, in the case of BRNNs, basically consists of the

application of the BPTT algorithm to data sequence batches

with a variational dropout mask sampled for each sequence.

For training the proposed model, the dropout rate was set to

0.3 and the optimizer Adam (Kingma and Ba, 2015) was

utilized with a learning rate equal to 0.001. The training was

carried out for 20 epochs. The model was implemented using

Python programming language and the TensorFlow library

(TensorFlow, 2021).

4.5 Model Test

After training, following the fault detection method presented

in section 2.4, the model was submitted to the two test sets and

performed the classification of each data point in these

windows as normal operation data or faulty operation data. To

assess the performance of the trained model in the detection of

the reactor’s faults, the number of true positives (TP), false

positives (FP), false negatives (FN) e true negatives (TN) were

calculated. With these four values computed, the model

accuracy (𝐴𝑐𝑐), its true-positive rate (TPR) and its true-

negative rate (TNR) were then calculated using the following

equations:

 𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(15)

 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(16)

 𝑇𝑁𝑅 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁

(17)

And, since there is an imbalance between the amount of

normal operation data and the amount of faulty operation data,

the balanced accuracy (𝑏. 𝐴𝑐𝑐) (Brodersen et al., 2010) was

also calculated:

𝑏. 𝐴𝑐𝑐 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

+
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
2

(18)

5. RESULTS

Table 2 presents a summary of the BRNN-based method’s

detection performance for each of the test sets. Fig. 6 and Fig.

7 illustrate the performance of the method in the detection of

faults in the test set 1 and test set 2, respectively.

Table 2 – Method’s performance summary

As can be seen in Table 2, for test dataset 1 the model had an

accuracy of 99.50%, a balanced accuracy of 99.23%, a true-

positive rate of 98.95%, a true-negative rate of 99.51% and

only 0.01% of false-negative cases. For test data set 2, the

model presented an accuracy of 99.38%, a balanced accuracy

of 99.44%, a true-positive rate of 99.51%, a true-negative rate

of 99.37% and only 0.01% of false-negative cases.

Figure 6 - BRNN model performance illustration in detecting

faults in test set 1

Figure 7 - BRNN model performance illustration in detecting

faults in test set 2

6. CONCLUSION

An application of a Bayesian recurrent neural network-based

method is proposed for the detection of faults in a real

chemical process. The case study is related to the detection of

a specific type of fault in a real FCC process. In general, the

method presented satisfactory accuracy during testing

experiments, with a very small number of false negative cases.

Therefore, the method proves to be a promising method for

detecting faults in real chemical processes.

ACKNOWLEDGMENT

The authors thank the Fundação de Amparo à Pesquisa do

Estado de São Paulo (FAPESP) for the financial support

(Processo 19/08280-9).

REFERENCES

Brodersen, K. H. et al. (2010) ‘The balanced accuracy and its

posterior distribution’, Proceedings - International

Conference on Pattern Recognition, pp. 3121–3124. doi:

10.1109/ICPR.2010.764.

Cheng, F. et al. (2019) ‘A robust air balancing method for

dedicated outdoor air system’, Energy and Buildings,

202. doi: 10.1016/j.enbuild.2019.109380.

Chiang, L. H., Braatz, R. D. and Russell, E. L. (2001) Fault

detection and diagnosis in industrial systems. Springer

Science & Business Media.

Chung, J. et al. (2014) ‘Empirical Evaluation of Gated

Recurrent Neural Networks on Sequence Modeling’, pp.

1–9. Available at: http://arxiv.org/abs/1412.3555.

Gal, Y. (2016) Uncertainty in Deep Learning. University of

Cambridge.

Gal, Y. and Ghahramani, Z. (2016a) ‘A theoretically grounded

application of dropout in recurrent neural networks’, in

Advances in Neural Information Processing Systems.

Neural information processing systems foundation, pp.

1027–1035.

Gal, Y. and Ghahramani, Z. (2016b) ‘Dropout as a Bayesian

approximation: Representing model uncertainty in deep

learning’, in 33rd International Conference on Machine

Learning, ICML 2016. International Machine Learning

Society (IMLS), pp. 1651–1660.

Ge, Z., Song, Z. and Gao, F. (2013) ‘Review of recent research

on data-based process monitoring’, Industrial and

Engineering Chemistry Research, 52(10), pp. 3543–

3562. doi: 10.1021/ie302069q.

Goodfellow, I., Bengio, Y. and Courville, A. (2016) Deep

learning. MIT Press.

Graves, A. (2012) Supervised sequence labelling with

recurrent neural networks. Springer.

Hochreiter, S. and Schmidhuber, J. (1997) ‘Long Short-Term

Memory’, Neural Computation, 1735–1780(9), pp.

1735–1780.

Jospin, L. V. et al. (2020) ‘Hands-on Bayesian Neural

Networks - a Tutorial for Deep Learning Users’, 1(1), pp.

1–35. Available at: http://arxiv.org/abs/2007.06823.

Kingma, D. P. and Ba, J. L. (2015) ‘Adam: A method for

stochastic optimization’, 3rd International Conference

on Learning Representations, ICLR 2015 - Conference

Track Proceedings, pp. 1–15.

MacKay, D. J. C. (1992) ‘A Practical Bayesian Framework for

Backpropagation Networks’, Neural Computation, 4(3),

pp. 448–472. doi: 10.1162/neco.1992.4.3.448.

Neal, R. M. (1995) Bayesian Learning for Neural Networks.

University of Toronto. doi: 10.2307/2965731.

Olah, C. (2015) Understanding LSTM networks. Available at:

https://colah.github.io/posts/2015-08-Understanding-

LSTMs/.

Qin, S. J. (2012) ‘Survey on data-driven industrial process

monitoring and diagnosis’, Annual Reviews in Control,

36(2), pp. 220–234. doi:

10.1016/j.arcontrol.2012.09.004.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1985)

Learning Internal Representations By Error

Propagation, Explorations in the Micro-Structure of

Cognition Vol. 1 : Foundations.

Shu, Y. et al. (2016) ‘Abnormal situation management:

Challenges and opportunities in the big data era’,

Computers and Chemical Engineering, 91, pp. 104–113.

doi: 10.1016/j.compchemeng.2016.04.011.

Srivastava, N. et al. (2014) ‘Dropout: A Simple Way to

Prevent Neural Networks from Overfitting’, Journal of

Machine Learning Research, pp. 1929–1958. doi:

10.1016/0370-2693(93)90272-J.

Sun, W. et al. (2020) ‘Fault detection and identification using

Bayesian recurrent neural networks’, Computers and

Chemical Engineering, 141, p. 106991. doi:

10.1016/j.compchemeng.2020.106991.

TensorFlow (2021) TensorFlow. Available at:

https://www.tensorflow.org/.

Williams, R. J. and Zipser, D. (1995) ‘Gradient-based learning

algorithms for recurrent’, Backpropagation: Theory,

architectures, and applications, 433.

Wu, H. and Zhao, J. (2018) ‘Deep convolutional neural

network model based chemical process fault diagnosis’,

Computers and Chemical Engineering, 115, pp. 185–

197. doi: 10.1016/j.compchemeng.2018.04.009.

Yin, S. et al. (2012) ‘A comparison study of basic data-driven

fault diagnosis and process monitoring methods on the

benchmark Tennessee Eastman process’, Journal of

Process Control, 22(9), pp. 1567–1581. doi:

10.1016/j.jprocont.2012.06.009.

