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Abstract: With the advent of the Systems Biology Markup Language (SBML), a large community of
SBML-compliant tools has been created. However, these tools can only be used to their full potential
by expert users with advanced programming knowledge. OneModel is an open-source text-based tool
for defining SBML models in a modular and incremental way that minimizes the user’s programming
knowledge requirements. It is focused on accessibility, simplicity, and modularity. OneModel syntax
allows the user to define models based on chemical (and pseudo-chemical) reactions, differential
equations, and algebraic equations. OneModel is written in Python, and it provides two interfaces: a
command-line interface for expert-users, and a graphical user interface for non-expert users. Here, we
show two OneModel syntax use case scenarios for modeling an antithetic controller and then integrating
it into a host-aware model, which is freely distributed with OneModel.
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1. INTRODUCTION

The Systems Biology Markup Language (SBML) is the soft-
ware data format for describing models in biology (Hucka et al.,
2019). With the advent of SBML, many SBML-compliant tools
have been created. These tools fulfill the syntax and semantics
of SBML through different approaches: text-based tools such
as Antimony (Smith et al., 2009), Little b (Mallavarapu et al.,
2009), BioCRNpyler (Poole et al., 2020); or graphical user
interface based tools such as CellDesigner (Funahashi et al.,
2008).

Models are often constructed as a monolithic set of equations,
reactions, parameters, and species (Mallavarapu et al., 2009).
This leads to inefficient modeling practices in which (i) new
models are implemented from scratch, rather than extending
previous models; (ii) models have to be validated as a whole,
rather than validating the constituent parts of the model; and
(iii) models tend to be large and repetitive, rather than defin-
ing and reusing modules in their implementation. Antimony,
BioCRNpyler and Little b solve this problem by implementing
different degrees of modularity. However, these tools are aimed
at, or can only be used to their full potential by, expert users
with advanced programming knowledge.

OneModel is an open-source text-based tool for defining and
compiling SBML models in a modular way. This modularity
allows incremental implementations of several simple mod-
els to obtain a more complex one. OneModel also minimizes
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the user’s programming knowledge requirements. OneModel
was designed to be easy-to-use and easy-to-incorporate into
pre-existing workflows. We used well-documented Python li-
braries to avoid custom code development in its implementa-
tion. Therefore advanced programmers will be able to tweak,
expand or hack OneModel functionality easily. The syntax of
our tool implements modularity through object-oriented pro-
gramming. We were inspired by the Arduino community, where
a simple graphical user interface enables non-expert users to
contribute their work and ideas to the community.

2. MATERIALS AND METHODS

2.1 OneModel design philosophy

OneModel was developed to meet the following design require-
ments in systems and synthetic biology:

– Reactions: to define models based on reactions with lin-
ear or rational rates (e.g. a Hill function) that depend on
reactant concentrations.

– ODE: to define models based on ordinary differential
equations (ODE).

– DAE: to define models based on ODE and differential-
algebraic equations (DAE).

– Modularity: to define models incrementally and reuse
specific model parts or functions.

– Accessibility: low entry barriers for non-expert users, and
ease to integrate with other available tools.

– Simplicity: the tool’s scope is limited to the definition
and generation of SBML models; and the simplicity of the
tool’s internal implementation.

– Open source: the code is freely available to the public.



Table 1. Software available compared with the
requirements. Green tick (fully met), yellow tick

(partially met), and gray dash (not met).

Requirements Antimony Little b BioCRNpyler OneModel

Reactions

ODE

DAE

Modularity

Accesibility

Simplicity

Open source

Most of the available text-based tools fail to meet these require-
ments. Table 1 enumerates the tools which best met our design
requirements.

Antimony, Little b and BioCRNpyler allow the user to define
models based on reactions and ODE, but none of these tools
supports algebraic equations (DAE), an inherent element of
the reduced-order models generated by the quasi-steady-state
(QSS) approximation. They also provide enough modularity
for model definition. Antimony had some minor problems that
limited its full potential (but they will most likely be fixed in
the following versions).

About accessibility, Antimony is very accessible through the use
of Tellurium (Medley et al., 2018), it defines its domain-specific
language (as OneModel does), and the need of knowing Python
is just for simulation and analysis of the generated models (not
the definition of them). BioCRNpyler is very accessible but does
not define a domain-specific language, and it relies on Python
knowledge for the definition of the models. Little b does not
meet our requirements for accessibility.

Concerning simplicity, the three tools are focused on the def-
inition of SBML models. Antimony defines its custom syntax
parser that is a handicap when one looks for the simplicity
of the tool’s internal implementation: it will make it harder to
understand, extend, and maintain the tool’s code by external
developers. Little b source code was not found by the author.
BioCRNpyler internal implementation is available and is based
on Python; therefore, the simplicity requirement is satisfied.

All three tools are freely distributed, but we did not find the
source code for Little b.

OneModel allows the user to define models with chemical or
biochemical pseudo-reactions; and differential and algebraic
equations. It has sufficient modularity to implement complex
models efficiently. In addition, OneModel defines a domain-
specific language (to avoid learning Python by the user) and
incorporates two interfaces: the graphical user interface, which
lowers the entry barriers for non-expert users to the mini-
mum, and the command-line interface for expert users to in-
tegrate OneModel into their workflows. It is focused on def-
inition of SBML models and it minimizes the use of custom
code in its implementation. Finally, it is freely distributed and
its source code can be found at https://github.com/
sb2cl/onemodel.

2.2 OneModel implementation

OneModel was implemented in Python because it is an open-
source programming language, it is easy-to-learn, and it bridges
the compatibility gap with other programs. Lastly, its extensive
libraries facilitated OneModel development.

OneModel defines a domain specific language (DSL): the
OneModel syntax. This syntax has been implemented using
TatSu, which allows us to create syntax parsers efficiently. This
makes the OneModel syntax easily modifiable and adaptable.
One advantage of developing a domain-specific language (in-
stead of having implemented just a Python library) is that it
lowers the entry barriers for the user: there is no need to learn
Python. Examples of successful domain-specific languages are
HTML (HyperText Markup Language) and CSS (Cascading
Style Sheets), pseudo programming languages for non-expert
users. In addition, the use of a domain-specific language allows
the definition of high-level concepts (such as functions, classes,
etc.) that are not currently available in SBML. OneModel uses
libSBML, a library that simplifies reading and writing SBML
files, and it is widely used in the SBML community to export
models as SBML code.

Figure 1 shows the internal structure of OneModel. The core
functionality was developed as a Python package. OneModel
provides two different interfaces to simplify and abstract the
use of the Python package: the command-line interface, and
the graphical user interface. The command-line interface can
be used directly by an expert user, and it has been developed
with Click, a package that allows us to implement profes-
sional command-line interfaces. However, using a command-
line interface is far from ideal for a non-expert user. Figure 2
shows the OneModel graphical user interface. It abstracts the
use of the command-line interface, and it is a good interface
for non-expert users. The graphical user interface was built
using PyQt5, a Python package for developing graphical-user
interfaces that can run in any operating system.

OneModel

Graphical User Interface
onemodel-gui

Command-Line Interface
onemodel-cli

Python Package core functionallity

abstracts python package

expert user interface

abstracts onemodel-cli
non-expert user interface

Fig. 1. Internal structure of OneModel. Its core is a Python
package. The command-line interface abstracts the func-
tionality of the python package, and the graphical user
interface abstracts the command-line interface.

2.3 OneModel syntax

The OneModel syntax simplifies the definition of SBML mod-
els and extends the functionality of SBML by introducing high-



Fig. 2. OneModel graphical user interface running in Linux Mint 19. This graphical interface can be setup in Windows, Mac, and
Linux, and it provides a simple text-editor with a syntax highlighter for OneModel.

Fig. 3. Pseudo-code representing the structure of a model
written with OneModel syntax. In line 1, the user can
import previously defined models. In lines 2–8, the user
can define one o more models using: inputs, species,
parameters, reactions, and rules. The models might be an
extension code of the ones previously defined. Finally, in
lines 9–11, the user can define an example-of-use instance
for the models in this file and within the standalone block.

level elements. The models can be defined using base SBML
elements such as parameters, species, reactions, rules (substi-
tution, differential or algebraic equations); or using OneModel
high-level elements such as functions, classes, inheritance.
High-level elements, which do not have an SBML represen-
tation, are converted into equivalent low-level representations
when the model is exported to SBML.

Figure 3 shows the typical structure of a model developed with
OneModel. There are three main sections: import dependencies
from previously defined models (line 1), the model definition
(lines 2–8), and the standalone example (lines 9–11).

The first section imports all the dependencies. Here, the user
imports previously defined models to use and combine them
as building blocks for developing more complex models or to
extend their functionality.

The second section is the model definition. In this section,
several models can be defined using: (i) inputs, (ii) species,

which can be interpreted both as chemical species and state
variables, (iii) parameters used by reactions and rules, (iv)
biochemical reversible and irreversible reactions, and (v) rules
which can be substitution, differential or algebraic equations.
Models can extend the functionality of previous ones; for
example the model with name “ModelName” will inherit all
the elements (inputs, species, parameters, etc) of the parent
model with name “ParentModelName” (line 2).

The last section is the standalone instance. Within this block,
the user can define an example code that shows how to use the
model (or models) defined above. It is important to note that the
code inside the standalone block is not imported: the standalone
code is only read when we export this model file directly. The
advantages are: (i) each model file can always be exported as
a standalone model allowing us to test each model individually
for coherence, and (ii) the user always has an example of how
to use the model.

2.4 Subpackage SBML2dae

We have also created SBML2dae, a OneModel subpackage
which provides tools to generate SBML exporters to other
programming languages for simulation or analysis. By default,
SBML2dae only allows exporting SBML to Matlab. The differ-
ences with other Matlab converters are (i) SBML2dae allows
the simulation of algebraic loops (an indispensable element
for the simulation of reduced order models, using the QSS
aproximation), (ii) it generates Matlab code using classes which
greatly facilitates the integration of the models with the rest of
Matlab tools and (iii) SBML2dae is easily modifiable to change
the way of exporting the models.

3. RESULTS

To simplify and streamline the modeling tasks, OneModel
allows us to create incremental implementations of a model
by using smaller models previously defined. In the following
sections we present two case scenarios to show how to work
with OneModel and how these ideas can be carried out with its
syntax is an easy way.



These case scenarios demonstrate how to use OneModel soft-
ware. A more complete and commented version of these
examples can be found on Github (https://github.
com/sb2cl/Dycops21_OneModel). Further details can
be found in the OneModel syntax documentation (https://
onemodel.readthedocs.io/en/latest/).

3.1 OneModel workflow

This section describes the OneModel workflow (Figure 4) to
help understand its use and usefulness.

The first step is to write the model, as a plain text file with
“.one” or “.onemodel” as the extension, using OneModel syn-
tax. The user can use either the OneModel’s editor (available
in the graphical user interface) or his own text editor. The
second step is to export this model as an SBML file (both
the GUI and CLI can do this task). Then, the SBML file can
be fed into any available SBML-compliant tools to perform
the computational simulations, analysis, etc. Finally, once the
model has been validated, we can repeat this loop, generating a
new model that imports the code and functionality of the pre-
viously defined models. In the following sections, SBML2dae
is used (already included in the OneModel GUI) to generate a
Matlab implementation of the generated SBML model. But we
could also have used SBML2Modelica to generate a Modelica
implementation of the model instead.

.one
OneModel

sbml

SBML2dae
.m

SBML2Modelica
.mo

. . . . . .

Fig. 4. OneModel workflow. The user writes a model us-
ing OneModel syntax (“.one”). Then, the model is ex-
ported into SBML using OneModel. Finally, the SBML-
compliant tools can be used as (i) SBML2dae generates
a Matlab implementation of the model (“.m”), or (ii)
SBML2Modelica (Maggioli et al., 2020) generates a Mod-
elica representation (“.mo”).

3.2 Case 1: antithetic controller implementation

The antithetic controller is a synthetic gene system to robustly
control the expression of a protein of interest (Aoki et al.,
2019). This circuit is implemented by three genes coding three
different proteins: sigma z1, anti-sigma z2, and the protein of
interest x. Normally, z1 is constitutively expressed and induces
the production of x. In turn, x activates the expression of z2.
Finally, z1 and z2 annihilate each other in a sequestration
reaction, closing the loop.

First, we have to define the biochemical reactions that take
place in this gene circuit. Protein z1 constitutive expression
entails: transcription and translation, and degradation of both
mRNA and protein:

∅ km−−→ mz1

mz1
dm−−→ ∅

mz1

kp−−→ mz1 + z1

z1
dp−−→ ∅

(1)

where mz1 is the mRNA concentration; km and kp are the rate
parameters related to transcription and translation, respectively;
and dm and dp are the degradation rates of the mRNA and the
protein z1.

To make a modular implementation of the antithetic controller,
the model of a generic protein with constitutive expression will
be implemented first. Figure 5 depicts the ProteinConstitutive
model implemented in OneModel using the reactions of z1 in
(1) as a guide, but implemented as protein p and mRNA m. In
line 2, we defined the two species m and p, and then we set their
initial conditions as m(0) = p(0) = 0. In line 3, we defined the
values of the parameter (in this case the reaction rates values).
Next, using the reactions in (1) for z1 as a guide, we implement
the reactions required to produce protein p are in lines 4 to 9.
Lastly, we defined the standalone example for this model as
a simple example of a protein constitutively expressed. Recall
that, the code inside the standalone block wont be imported
when we import this model into other one.

protein_constitutive.one

Fig. 5. OneModel implementation of the biochemical reac-
tions set 1. ProteinConstitutive defines transcription and
translation (basic mechanism) of a protein constitutively
expressed.

Figure 6 illustrates the ProteinInduced model, which extends
ProteinConstitutive model so we can obtain a new model for
protein expression regulated by a transcription factor. First,
we imported the code from “protein_constitutive.one” into this
model (line 1). Then, we defined ProteinInduced model as an
extension of ProteinConstitutive by placing its name inside the
parentheses in the definition (line 2). We defined the transcrip-
tion factor (TF) as an input to this model in line 3. When we
use this model, we will have to satisfy the input value, with a
species, a parameter or an equation from another model. Next,
we set the parameters for a linear induction (line 4). We have
to override the parameter k_m, which is the transcription rate,
to be a species (note that a species refers both to chemical



species and state variables) which can change over time (line
5). Then, We assign its value as a substitution equation (line 7)
which proportionally depends on the value of TF. Finally, we
set up a standalone example where we had the protein expressed
constitutively (A) using the code in Fig. 5, and we induce the
expression of a protein B by the concentration of A.

protein_induced.one

Fig. 6. ProteinInduced model represents the induction of pro-
tein production by extending the code of ProteinConstitu-
tive.

Figure 7 shows the AntitheticController model using the mod-
els defined above. First, we import the previous models into
this new model (lines 1–2). We define the three proteins which
make the motif: we use ProteinConstitutive for protein z1 and
ProteinInduced for proteins z2 and x (lines 4–6). We define the
annihilation rate gamma (line 7) and we add the annihilation re-
action to the model (line 9). Then, We set z1 as the transcription
factor of protein x. In turn, x will be the transcription factor
of protein z2 (lines 12–13). Finally, we set the standalone
example as just the AntitheticController.

antithetic_controller.one

Fig. 7. Implementation of the antithetic controller using both
previously define models ProteinConstitutive and Pro-
teinInduced.

3.3 Case 2: host-aware antithetic controller model

The first approach to model a synthetic gene circuit is done
by neglecting the interactions between the host and the gene

circuit. However, there is an increasing need to include host
dynamics to improve the model prediction capabilities. These
host-aware dynamic models are complex and not easy to im-
plement since they may contain several states (Santos-Navarro
et al., 2021).

Figure 8 depicts the WildType model that represents the host-
aware model freely distributed with OneModel. Lines 1–4 show
an incomplete representation of it just for example purposes.
This model implements the equations from (Santos-Navarro
et al., 2021) and takes into account the host dynamics, the com-
petition for cell resources in protein expression and its effect
on cell growth. Here, the only requirement is to satisfy its input
WSum (line 2) which is a value that keeps track of the burden
introduced by the expression of exogenous proteins like the
ones for the antithetic controller. WildType_ProteinConstitutive
is a model provided also by WildType, which defines the base
protein expression mechanism. The user may use this model as
a building block for its own circuits (similarly to Section 3.2).
There were no inputs in the original ProteinConstitutive. How-
ever WildType_ProteinConstitutive is a more complex model
which has inputs to calculate protein expression as function of
the effective translation rate of ribosomes nu_t, and the cell
growth rate mu.

wild_type.one

Fig. 8. WildType is the host-aware model freely distributed with
OneModel, and WildType_ProteinConstitutive is the base
protein expression mechanism (incomplete representation
of these models only for example purposes).

Figure 9 lists the code for the Wildtype_AntitheticController
model of the antithetic controller above, but using Wild-
Type_ProteinConstitutive as the base expression mechanism for
proteins. In lines 7–8, we instantiate an object of WildType and
AntitheticController models. Finally, we satisfy the input of
WildType in line 10, and the inputs nu_t and mu of the proteins
in lines 11–13.

Figure 10 shows two simulations performed with SBML2dae:
the antithetical controller connected to the host-aware model,
and the antithetical controller not considering the burden intro-
duced to the host. Notice how the steady state and settling time
of the protein x changes due to the burden introduced by the
antithetic controller to the host cell.

4. CONCLUSION

We developed OneModel, a new SBML-compliant tool for
defining models focused on user accessibility, simplicity, and
modularity. Instead of developing monolithic files that contain
all the equations and model parameters values, OneModel syn-
tax allows the user to add new models to connect with the
old ones—splitting models into modules and re-programming
them by making small changes that fulfill the new requirements



wild_type_antithetic_controller.one

Fig. 9. Antithetic controller model together with the host-aware
model in the same code implementation.
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Fig. 10. Simulation of the antithetic controller with (solid lines)
and without (dashed lines) the host dynamics. The protein
level (solid blue) and the growth rate (solid red) decrease
because the host allocates its resources for the cell fitness.

but always have the option to go back—. OneModel reduces
the modeling efforts by increasing modularity. The user can
develop and test each module of a model separately, avoiding
starting from scratch every time the user implements a new
model.

OneModel was tested in two case scenarios. The case scenarios
showed the benefits of modular incremental implementations,
and how it would be easy for a non-expert user to take advan-
tage of previously defined models (e.g., the host-aware model).

The original motivation for building OneModel was that several
biological processes could only be modeled with differential-
algebraic equations (DAE). Our host-aware model includes this
type of equations to consider the competition for shared cellular
resources. Currently, Antimony does not support DAE. As a first
iteration, we tried to add the algebraic loops to the Antimony
source code. However, it uses a custom parser for its syntax,
which restricted us modifying it. On the contrary, OneModel
uses a well-documented parser (TatSu) which lowers the entry
barriers for modifying OneModel. This way, the community
will easily extend its original functionality.

OneModel requires Python 3.8 and is installed as a package
with PyPI. Although the installation process is simple, it can
be challenging for non-expert users. An executable version and
a web interface will avoid this step in the future. OneModel

syntax is Turing incomplete on purpose because that could
divert its purpose from being just a tool to define SBML models
(this case is similar to HTML or CSS), and this would com-
promise simplicity and accessibility. Error feedback is often
one of the weaknesses of domain-specific languages and is key
to ensuring accessibility. Currently, OneModel provides simple
error feedback, but our goal is to improve it.

Antimony, Little b, BioCRNpyler, OneModel, and many other
tools not listed here, paved the way to define more complex and
larger models efficiently. However, these models are difficult
to debug, test, and maintain. Researchers have performed these
tasks manually, but this is inefficient for models of this size
or sometimes even impossible. There is an increasing need for
tools to automatically debug and test SBML models. Model
development is a crucial task for researchers. OneModel allows
you to simplify and streamline this task.
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