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Abstract: In the process industry, black box linear perturbation models are often used for
the development of model predictive controllers. Maintaining a high-quality model so as to
achieve good control performance in the face of changing operating conditions is a difficult
task. In adaptive control schemes, the model parameters are updated online using recursive
least square schemes. These recursive schemes typically update the model parameters at every
sampling instant. Since in many chemical/biological processes, the model parameters change
at a relatively slow rate compared to state variables, it is beneficial to update the model
parameters using blocks of data points instead of updating at each sampling instant. In this
work, a constrained update scheme based on blocks of data is proposed for updating ARMAX
model parameters online. The inclusion of constraints ensures that the noise model is stable and
inversely stable. The constrained formulation is further simplified to arrive at two unconstrained
recursive parameter update schemes. The efficacy of the proposed schemes is demonstrated using
a simulation study on an artificial system and experimental data obtained from a temperature
control system and benchmark quadruple tank system.

Keywords: Recursive least squares, Block recursive estimation, Constrained parameter
estimation

1. INTRODUCTION

Adaptive control techniques that employ data-driven
linear dynamic models have been very widely used in
many application domains. A wide variety of methods
have been developed over the last six decades, and
excellent reviews and monographs are available that
summarize important developments in this area (Astrom
(2001), Ydstie (1997)). At the core of any adaptive
control scheme is an online recursive parameter
estimation scheme. Thus, many online recursive
parameter estimation schemes have been developed for
the online update of model parameters (Söderström and
Stoica (2001)). In fact, the success of an adaptive control
scheme can be traced to a well developed online
parameter estimation scheme.

Many variants of recursive parameter estimation
algorithms are available in the literature. The most
popular recursive update schemes update model
parameters using a single data point as it arrives.
Alternatively, block recursive least squares schemes have
been developed that make use of data over a sliding time
window. Liu and He (1995) has developed an
exponentially weighted sliding window-based recursive
least squares (RLS) scheme for estimation of
time-varying FIR model coefficients. Jiang and Zhang

(2004) have shown that a sliding window based recursive
estimation scheme is better for tracking parameters of an
ARX model. Recently, Ali et al. (2016) have developed a
sliding window-based RLS scheme with time-varying
weighting for online estimation of FIR and ARX models.
This literature on sliding window recursive estimation
highlights that the window-based estimation outperforms
the conventional recursive estimation schemes. However,
to the best of our knowledge, these schemes are
developed for linear in parameter models.

Ydstie (1997) underscores the need to deal with
’parameter drift or the instability of the parameter
estimator’ while developing an adaptive control scheme.
The parameter drift can lead to a scenario where
parameters of an online recursive estimator can converge
to an infeasible region or to an unstable solution when
the system dynamics are stable. These difficulties can be
alleviated if the online parameter update schemes are
formulated as constrained optimization problems. Badwe
et al. (2010) have developed a constrained recursive
approach based on pseudo linear regression (PLR) for
incorporating constraints arising from stability
considerations.

Adaptive control formulations that employ conventional
recursive estimation schemes end up changing controller



parameters/prediction models at every sampling instant
which increases online computations. In many chemical
processes, however, the model parameter changes occur
at a relatively slow rate when compared to rates at which
the inputs or outputs of the system change. Thus, it is
not necessary to update the model parameters at every
sampling instant for implementing adaptive control of
such systems. A possible approach to reduce the online
computational burden is to extend the block recursive
parameter estimation scheme (Crassidis and Junkins
(2012)), which is based on shifting blocks of data, to the
identification of the linear time series model parameters.
In this work, we develop shifting window-based block
recursive parameter estimation schemes for the
estimation of ARMAX model parameters based on
pseudo-linear regression. Taking motivation from Badwe
et al. (2010), we include constraints arising from stability
considerations in the optimization formulation to ensure
that the noise model is stable and inversely stable. The
efficacy of the proposed approach is initially studied by
simulating an artificial system and later using data from
two lab-scale experimental setups.

This work is organized in 4 sections. The block recursive
update schemes are developed in section 2. Section 3
shows the results from applying the schemes for simulated
and experimental data sets. The main conclusions are
presented in section 4.

2. DEVELOPMENT OF BLOCK RECURSIVE
PARAMETER ESTIMATION SCHEMES

2.1 Block Recursive Estimation for ARX model

In this work, we assume that the dynamics of an r × m
MIMO system are modeled as r MISO models. Thus,
consider a MISO ARX model of the form

A(q−1)y(k) =
∑m

j=1
Bj(q

−1)uj(k) + e(k) (1)

which can be expressed as

y(k) = −
∑n

i=1
aiy(k−i)+

∑m

j=1

∑n

i=1
bijuj(k−i)+e(k)

(2)

y(k) = ϕ(k)T θ+e(k) (3)

where

ϕ(k)T = [−y(k − 1) .. −y(k − n) u1(k − 1) .. um(k − n) ]
(4)

θ = [ a1 .. an b11 .. ..bnm ]
T

p×1
(5)

where p = n(1 + m). If the data collected for system
identification is represented as

S = {(y(k),u(k)) : k = 0, 1, ...Ns} (6)

then the least squares estimate of θ can be obtained as
follows (Söderström and Stoica (2001))

θ̂ = (ΩTΩ)
−1

ΩTY (7)

Ω =

 ϕ(n)T

....
ϕ(Ns)

T

 and Y =

[
y(n)
....

y(Ns)

]
(8)

In this work, it is desired to use sequential recursive
estimation scheme for on-line estimation of model

parameters θ. Thus, the data is split into subsets as as
follows

S0 = {(y(k),u(k)) : k = 0, 1, ...N0} (9)

Sj = {(y(k),u(k)) : k = j0, ...., jf} (10)

j0 = N0 + (j − 1) ∗N + 1 and jf = N0 + j ∗N (11)

such that for j > 0, the data each subset Sj consists of
block of N (> n) data points and S =

⋃
Sj . It is assumed

that an initial model (θ̂(0),P(0)) is developed using S0

where

P(0) =

[(
Ω(0)

)T

Ω(0)

]−1

(12)

Following the sequential block least squares scheme
developed in Chapter 2 of Crassidis and Junkins (2012),
the following block recursive parameter estimation
scheme can be derived

θ̂(j+1) = θ̂(j) +K(j+1)
(
y(j+1) −

(
Ω(j+1)

)
θ̂(j)

)
(13)

where

K(j+1) = P(j+1)
(
Ω(j+1)

)T

(14)(
P(j+1)

)−1

=
(
P(j)

)−1

+
(
Ω(j+1)

)T (
Ω(j+1)

)
(15)

Ω(j+1) =

 ϕ(j0)
T

....
ϕ(jf )

T


N×p

and Y(j) =

[
y(j0)
....

y(jf )

]
N×1

(16)

The recursive update can also be cast as solution of the
following optimization problem

θ̂(j+1) =
arg Min

θ
J(θ) (17)

J(θ) =
(
θ − θ̂(j)

)T (
P(j)

)−1 (
θ − θ̂(j)

)
+

(
y(j+1) −Ω(j+1)θ

)T (
y(j+1) −Ω(j+1)θ

)
(18)

The optimization formulation has an advantage that
constraints on parameter estimates of the form

g(θ) ≤ 0 (19)

can be included in the problem formulation. The
covariance update can be carried out using eq. (15) even
for the constrained formulation.

2.2 Block Recursive Estimation for ARMAX Model

In this section the block recursive estimation schemes
developed in the previous section are extended to a MISO
ARMAX model. Consider a MISO ARMAX model of the
form:

A(q−1)y(k) =
∑m

j=1
Bj(q

−1)uj(k) + C(q−1)e(k) (20)

which can be expressed as

y(k) = −
∑n

i=1
aiy(k − i) +

∑m

j=1

∑n

i=1
bijuj(k − i)

+
∑n

i=1
cie(k − i) + e(k) (21)

y(k) = ϕ(k)T θ+e(k) (22)

where

ϕ(k)T =
[
ϕy(k)

T ϕu(k)
T ϕe(k)

T
]

(23)

ϕy(k)
T = [−y(k − 1) .... −y(k − n) ] (24)



ϕu(k)
T = [ u1(k − 1) .. u1(k − n) u2(k − 1) .. um(k − n) ]

(25)

ϕe(k)
T = [ e(k − 1) .. e(k − n) ] (26)

θ = [ a1 .. an b11 .. ..bnm c1 .. cn ]
T

p×1
(27)

Here, where p = n(2 +m).

Block Constrained Estimation Now, problem of
estimating parameters using set S can be posed as an
optimization problem (Söderström and Stoica (2001)):

θ̂ =
arg Min

θ

∑Ns

k=n+1

(
y(k)− ϕ(k)T θ

)2
(28)

The resulting optimization problem needs to be solved
using a nonlinear programming approach. Thus, to
develop a block recursive estimation scheme for this case,
we start by extending of optimization formulation (17) to
the ARMAX model using pseudo-linear regression
(Söderström and Stoica (2001)). Then, block estimates

θ̂(j) for j = 1, 2, ... can be constructed as follows

θ̂(j+1) =
arg Min

θ
J(θ) (29)

subject to

ϕε(k)
T = [ ε(k − 1) .. ε(k − n) ] (30)

ϕ(k)T =
[
ϕy(k)

T ϕu(k)
T ϕε(k)

T
]

(31)

ε(k) = y(k)− ϕ(k)T θ (32)

for k = j0, ...., jf (33)

Construction of the regressor vector at the beginning of the
window requires model residuals for k < j0. The estimated
residuals at the end of the previous window calculated
after convergence of the optimization problem are used
to construct these regressor vectors.

Ω(j+1)(θ) =

 ϕ(j0)
T

ϕ(j0 + 1)T

....
ϕ(jf )

T

 ;Y(j+1) =

 y(j0)
y(j0 + 1)

....
y(jf )

 (34)

When the optimization problem converges, the covariance
matrix can be updated as follows:(

P(j+1)
)−1

=
(
P(j)

)−1

+
(
Ω(j+1)

(
θ̂(j+1)

))T (
Ω(j+1)

(
θ̂(j+1)

))
(35)

Further, constraints of the form

g(θ) ≤ 0 (36)

can be included in the optimization problem. These
constraints arise from application of Jury stability
criteria or a-priori knowledge about steady state gain
signs. For a second order ARMAX model, the constraints
arise from C(q−1), A(q−1) being open loop stable and
possible constraints on the gains from physical insights
(Badwe et al. (2010)):

1 + a1 + a2 > 0 ; 1− a1 + a2 > 0 ; a2 < 1 (37)

1 + c1 + c2 > 0 ; 1− c1 + c2 > 0 ; c2 < 1 (38)

Unconstrained Iterative Refinement Scheme For the
unconstrained optimization problem, the necessary
condition for optimality is

∂J(θ)

∂θ
= 2

(
P(j)

)−1 (
θ − θ̂(j)

)
+

∂

∂θ
[−2θT

(
Ω(j+1)(θ)

)T

Y(j+1) + θT
(
Ω(j+1)(θ)

)T (
Ω(j+1)(θ)

)
θ] = 0 (39)

This is a nonlinear equation in θ and needs to be solved
iteratively. A possible way to formulate iterations to solve

this problem is as follows: Let θ̃(l) represent a initial guess
of (39) at iteration l. Then we approximate

Ω(j+1)(θ) ≈ Ω
(j+1)

(
θ̃(l)

)
(40)

and substitute in eq. (39). To simplify the notations, let us

define Ω̃(l)= Ω(j+1)
(
θ̃(l)

)
. With this approximation eq.

(39) reduces to[(
P(j)

)−1

+
(
Ω̃(l)

)T (
Ω̃(l)

)]
θ =(

P(j)
)−1

θ̂(j) +
(
Ω̃(l)

)T

Y(j+1) (41)

Thus, with further algebraic manipulations of eq. (41), the
following block iteration scheme can be derived

θ̃(l+1) = θ̂(j) + K̃(l+1)
[
Y(j+1) −

(
Ω̃(l)

)
θ̂(j)

]
(42a)

Ω̃(l) = Ω(j+1)
(
θ̃(l)

)
(42b)

K̃(l+1) =
(
P̃(l+1)

)(
Ω̃(l)

)T

(42c)(
P̃(1+1)

)−1

=

[(
P(j)

)−1

+
(
Ω̃(l)

)T (
Ω̃(l)

)]
(42d)

The iterations can be terminated after the following
convergence criterion is satisfied∥∥∥θ̃(l+1) − θ̃(l)

∥∥∥∥∥∥θ̃(l+1)
∥∥∥ < ε (43)

The iterations can be initialized as θ̃(0) = θ̂(j). After
termination of the iterations, say for l = l∗, we can set

θ̂(j+1) = θ̃(l
∗+1) and

(
P(j+1)

)−1

=
(
P̃(l∗+1)

)−1

(44)

Unconstrained Prediction Correction Scheme A
simplified version of the iterative refinement scheme can
be derived by terminating iterations at l = 1 i.e. set This
simplification does not require iterative calculations and
is more suitable for on-line parameter estimation.

3. RESULTS AND DISCUSSIONS

In this section, the performance of the proposed recursive
parameter estimation schemes is demonstrated by
conducting a simulation study on an artificial MISO
ARMAX model. The efficacy of the proposed strategies is
also evaluated on experimental data collected from
temperature control lab setup (Park et al. (2020)) and
benchmark quadruple tank setup (Johansson (2000))
available at Automation Lab in the department of
Chemical Engineering, IIT Bombay. Performance of the
proposed parameter schemes are compared using the
following performance index:

Average Error =
1

nb

Nb∑
j=Nb−nb

|(θi − θ̂
(j)
i )/θi| (45)
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Fig. 1. Simulation study: Parameter estimates using
proposed schemes with block-size 25

where, Nb represents the total number of blocks, nb

represents the number of blocks considered for averaging,

|x| represents the absolute value of x, θ̂
(j)
i represents the

ith element of θ̂(j) vector and θ represents the true model
parameter vector of the artificial system.

3.1 Simulation Study

The simulation study is conducted on the following 2nd

order ARMAX MISO model:

A(q−1) = 1− 1.5q−1 + 0.7q−2 (46a)

B1(q
−1) = q−1 + 0.5q−2 (46b)

B2(q
−1) = −q−1 + 0.5q−2 (46c)

C(q−1) = 1− q−1 + 0.2q−2 (46d)

The disturbance signal e(k) in the ARMAX model is
assumed to be a zero mean Gaussian white noise
sequence with variance 0.052. The input-output data set
is simulated by generating a pseudo-random binary signal
(PRBS) of range [0, 0.05] and with sampling interval of 1
second for both the inputs using idinput() function from
MATLAB’s System Identification toolbox. The
performance of the proposed recursive parameter
estimation schemes i.e., nonlinear constrained (NC)
estimation, iterative refinement (IR) and prediction
correction (PC) for block-size of 25 is plotted in Figure 1.
Except for the model parameters corresponding to
C(q−1) polynomial, all three parameter estimation
schemes converge to true model parameter values. In
terms of average error, the performance of NC and IR
schemes are comparable and better than PC. The
performance of the proposed schemes for block-size of 25
and 10, in terms of Average Errors (%), is reported in
Table 1 and Table 2 respectively. Changing block-size
varies the converged estimates for model parameters
corresponding to C(q−1) polynomials. The performances

of NC scheme are comparable for both the block-sizes.
Performances of PC and IR have improved with increase
in the block-size.

Table 1. Simulation study: Average Errors (%)
for different schemes with block-size 25, nb = 2

Model
Para. →

a1 a2 b11 b12 b21 b22 c1 c2

PC 1.46 2.49 0.99 10.11 2.24 1.59 35.47 34.12

IR 0.42 0.51 1.21 1.86 3.84 9.14 2.20 5.75

NC 0.55 0.89 1.23 1.41 1.46 1.48 9.75 12.93

Table 2. Simulation study: Average Errors (%)
for different schemes with block-size 10, nb = 5

Model
Para. →

a1 a2 b11 b12 b21 b22 c1 c2

PC 0.23 0.20 3.72 13.19 3.64 6.90 16.14 86.62

IR 0.41 0.28 2.63 11.16 4.82 9.41 0.37 29.44

NC 0.54 0.88 1.52 1.27 0.41 0.98 7.74 19.57

3.2 Experimental Study

The efficacy of the proposed schemes is also evaluated
using the experimental data collected from a standard
laboratory scale temperature control system and
benchmark quadruple tank setup. Similar to the
simulation study, the plant is perturbed by introducing
PRBS signal into the plant and the input-output data set
is recorded. All the open-loop input-output data set is
then used to identify a batch model using the System
Identification toolbox on MATLAB. The batch model is
treated as true model to assess the performance of the
proposed schemes.

Temperature control system (Park et al. (2020)):
Experimental data was collected from the temperature
control lab, a 2× 2 system comprising of two heaters and
two temperature sensors, and output data from
temperature sensor 1 is used for testing and validation of
proposed schemes. A PRBS of amplitude 10% and
frequency range [0, 0.05π/T ] (where T is sampling
interval) is generated for both inputs. The output data
generated during the open-loop experiment by
introducing the PRBS is presented in the Figure 2. Three
scenarios were considered for initialization of the
proposed recursive parameter estimation schemes:
N0 = 200, 100 and 0. The performance of the parameter
estimation schemes (for N0 = 200) is presented in Figure
3. The model parameters identified using the proposed
schemes remain close to the batch model parameters in
this case. These generated models are then validated
using experimental data collected by introducing
simultaneous step changes of magnitude 10% from time
100 secs to 1000 secs followed by simulataneous step
changes of magnitude −10% from time 1000 secs to 1900
secs in both the inputs of the temperature control
system. These models are also compared with a first
order plus time delay (FOPTD) model generated using
batch data in Figure 4 (N0 = 200) and Figure 5
(N0 = 0). While the estimated model parameters seem to
vary for each proposed parameter estimation scheme, the
models generated using PC and IR approaches track the



0 200 400 600 800 1000 1200
Sampling Instants

-6

-4

-2

0

2

4

6

O
ut

pu
t

Fig. 2. Temperature control system: Temperature profile
generated by PRBS signal

0 200 400 600 800

-1.9

-1.85

-1.8

A
1

0 200 400 600 800
0.8

0.85

0.9

A
2

0 200 400 600 800
-4

-2

0

2

B
11

10-3

0 200 400 600 800
-2

0

2

4

6

B
12

10-3

0 200 400 600 800
-3

-2

-1

0

1

B
21

10-3

0 200 400 600 800
-1

0

1

2

3

B
22

10-3

0 200 400 600 800
Sampling Instants

-1.6

-1.55

-1.5

-1.45

-1.4

C
1

0 200 400 600 800
Sampling Instants

0.45

0.5

0.55

0.6

C
2

PC
IR
NC
Batch Model

Fig. 3. Temperature control system: Parameter estimates
using proposed schemes with block-size 20 using warm
start (200 points)

step test data with high accuracy (ref. Table 3) for case
N0 = 200. This indicates that model parameter estimates
for discrete-time transfer functions model may be
different, but the model behavior could still give reliable
predictions if these schemes are initialized using a good
model. However, these approaches fail to generate good
models for N0 = 100 and 0. The NC approach, on the
other hand, generates very good models for all N0.

Table 3. Temperature control system:
Percentage Fit (%) on validation data of
proposed schemes with block-size 20 using

warm start, coarse start and cold start

Proposed Scheme Points for Start (N0)
200 pts 100 pts 0 pts

NC 87.99 79.19 83.92

IR 83.57 66.45 62.42

PC 83.57 63.83 59.65

FOPTD 83.42
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Fig. 4. Temperature control system: Model Validation for
the proposed schemes with block-size 20 using warm
start (200 points)
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Fig. 5. Temperature control system: Model Validation for
the proposed schemes with block-size 20 using cold
start (no points)

Quadruple tank system (Johansson (2000)):
Experimental data collected from the Quadruple Tank
system (refer Karra et al. (2008) for details) is used to
demonstrate the constraint handling ability of the
proposed NC approach. A PRBS of amplitude 0.3 mA
and frequency range [0, 0.05π/T ] was injected in both
inputs. The output data generated from conducting this
PRBS test on the experimental system is presented in
Figure 6. Figure 7 compares the performance of NC
scheme with constraints and without constraints for a
block-size of 30 samples. We observe that while the final
estimate is within constraint limits for both update
schemes, the constraints play an important role by
modifying the search so that the parameters converge to
values close to that of batch model. It was also found
that the stability constraints are violated at multiple
sampling instants in case of unconstrained scheme (ref.
Figure 8). Moreover, the NC estimator is able to converge
close to the batch data estimates obtained using Matlab’s
System Identification toolbox while the unconstrained
NC estimator generates a significantly different model.

4. CONCLUSIONS

Online model parameter estimation is the core component
of an adaptive control scheme. The model parameters
are typically updated online using recursive least squares
at every sampling instant. In many chemical/biological
processes, the model parameters change at a relatively slow
rate compared to state variables. Thus, in this work, it is
proposed to use a block of data points to update the model
parameters instead of updating model parameters at every
sampling instant. A constrained block update scheme
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Fig. 7. Quadruple tank system: Parameter estimates using
nonlinear constrained and Unconstrained schemes
with block-size 30

0 200 400 600 800 1000 1200 1400 1600
0.6

0.8

1

S
p

e
c
tr

a
l 
ra

d
iu

s

A
(q

-1
)

0 200 400 600 800 1000 1200 1400 1600

Sampling Instants

0

0.5

1

1.5

S
p

e
c
tr

a
l 
ra

d
iu

s

C
(q

-1
)

Unconstrained
Constrained

Fig. 8. Quadruple tank system: Spectral radius of A(q−1)
and C(q−1) polynomials using NC and unconstrained
NC schemes

which ensures that the noise model is stable and inversely
stable is proposed to update ARMAX model parameters
online. The proposed constrained formulation (NC) is
further simplified to arrive at two unconstrained recursive
parameter update schemes, viz iterative refinement (IR)
and predictor-corrector (PC). The efficacy of the proposed

schemes is evaluated by conducting a simulation study on
an artificial second order ARMAX model. The analysis of
the simulation study reveals that the NC and IR schemes
perform better than the PC scheme. The proposed schemes
are also evaluated by conducting experimental studies on a
temperature control system and the benchmark quadruple
tank system. It was found from the experimental study
that even though the converged model parameters may be
different from the batch model, but the model behavior
could still give reliable predictions. Moreover, the NC
approach was found to generate good models for any choice
of N0, i.e. data length used for NC initialization. It was
also observed that the constraints in the proposed NC
scheme modify the search so that the parameters converge
to values close to that of the batch model. Extension
of the proposed constrained approach to estimation of
parameters of discrete and continuous time MISO models
with output error structure is currently in progress.
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