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Abstract: Classical stochastic model predictive control (SMPC) methods assume that the true
probability distribution of uncertainties in controlled systems is provided in advance. However,
in real-world systems, only partial distribution information can be acquired for SMPC. The
discrepancy between the true distribution and the distribution assumed can result in sub-
optimality or even infeasibility of the system. To address this, we present a novel distributionally
robust data-driven MPC scheme to control stochastic nonlinear systems. We use distributionally
robust constraints to bound the violation of the expected state-constraints under process
disturbance. Sequential linearization is performed at each sampling time to guarantee that
the system’s states comply with constraints with respect to the worst-case distribution within
the Wasserstein ball centered at the discrete empirical probability distribution. Under this
distributionally robust MPC scheme, control laws can be efficiently derived by solving a conic
program. The competence of this scheme for disturbed nonlinear systems is demonstrated
through two case studies.
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1. INTRODUCTION

Model predictive control (MPC) has been successfully
applied to real-world systems and is now widely adopted
in the process industry (Dobos et al., 2009; Touretzky and
Baldea, 2014; Qin and Badgwell, 2003). MPC outperforms
other control approaches as it is able to predict the sys-
tem’s behavior while explicitly accounting for constraints
within a prediction horizon (Mayne et al., 2000). MPC
solves an open-loop control problem at each sampling time
to determine a sequence of control actions, from which the
first element of the sequence is implemented.

To control systems with uncertainties, there are two cat-
egories of approaches (Kouvaritakis and Cannon, 2016)
proposed to guarantee closed-loop performance and con-
straint satisfaction: robust MPC (RMPC) (Houska and
M.E, 2019) and stochastic MPC (SMPC) (Arcari et al.,
2020; Hewing et al., 2020). RMPC determines the optimal
control action with respect to the worst-case uncertainty
within a bounded set (Mayne et al., 2005), whereas SMPC
assumes or estimates the distribution of the uncertainty
and selects the best control action for an expected ob-
jective function under probabilistic constraints. This can
alliviate the conservativeness of RMPC by making use of
this distributional information (Mesbah, 2016).

However, acquiring the true distribution of uncertainties
for real-world applications is very challenging (Yang, 2021;
Mark and Liu, 2020). Furthermore, the high computa-
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tional time of SMPC (Mayne, 2015) and the discrepancy
between the estimated distribution and true distribution
(Heirung et al., 2018) limit the performance of SMPC for
practical applications.

To address the aforementioned challenges, we propose an
approach based on distributionally robust optimization
(DRO) (Rahimian and Mehrotra, 2019) to solve stochastic
optimal control problems in a computationally efficient
manner while also dealing with distributional mismatch
of the uncertainty. Based on the work by (Esfahani and
Kuhn, 2018), we reformulate the optimization problem
with an expected quadratic objective function and distri-
butionally robust constraints into a convex conic program.
The solution of this conic program determines optimal
control laws with respect to the worst-case probabilistic
distribution within a Wasserstein ball centered at the
discrete empirical distribution (Zhong et al., 2021).

Several works have recently been conducted on distri-
butionally robust control. In (Van Parys et al., 2016),
stochastic optimal control problems with CVaR con-
straints with known first and second order moments
are addressed by solving a semi-definite program (SDP).
(Yang, 2021) synthesizes a distributionally robust policy
with Wasserstein ambiguity sets for data-driven Markov
decision processes. (Mark and Liu, 2020) extends tube-
based SMPC to distributionally robust chance constraints.
(Coppens and Patrinos, 2021) considers distributionally
robust MPC problems with conic representable ambiguity
sets.



However, all the above-mentioned relevant works are ap-
plied to linear systems. In this paper, we extend the work
in (Zhong et al., 2021) to nonlinear systems. For the
purpose of nonlinear system control, we adapt a more
compact formulation for the nonlinear control problem,
linearize the models of nonlinear systems around sampled
states at each sampling time, and adaptively propagate
the linearization errors within the prediction horizon.

We address a nonlinear distributionally robust optimal
control problem with distributionally robust constraints
by using the Wasserstein ball metric and reformulating the
problem into a conic program for the linearized system. By
solving this convex conic program, Purified-output-based
(POB) affine control laws are determined for the nonlinear
system such that distributionally robust constraints hold
with finite sample guarantee. To the best of our knowledge,
this is the first paper applying distributionally robust
control to nonlinear systems.

1.1 Notation

Let x[k:k+N ] denote the concatenated state vector [x>k ,

x>k+1, . . . , x
>
N ]> and [x[k:k+N ]]i be the i-th entry of this

vector. We denote by Sn+ and Sn++ the sets of all positive
semidefinite and positive definite symmetric matrices in
Rnx×nx , respectively. The diagonal concatenation of two
matrices A and B is denoted by diag(A,B). A[i,j] is the
entry from the i-th row and j-th column in the matrix A,
A[i,j:k] is the i-th row vector from the j-th to k-th columns
in matrix A, and A[i:,j] is j-th column of the matrix A
containing the i-th to the last row.

All random vectors are defined as measurable functions
on an abstract probability space (Ω, X,P) , where Ω is
referred to as the sample space, X represents the σ-algebra
of events, and P denotes the true but unknown probability
measure. We denote by δξ the Dirac distribution concen-
trating unit mass at ξ and by δk the state difference of
the linearized and nonlinear system at sampling time k.
The N -fold product of a distribution P on the uncertainty
set Ξ is denoted by PN , which represents a distribution
on the Cartesian product space ΞN . M(Ξ) is the space of
all probability distributions supported on Ξ with finite ex-
pected norm. The training data set comprising Ns samples

is denoted by Ξ̂Ns :=
{
ξ̂i

}
i∈Z[1,Ns]

⊆ Ξ.

2. PROBLEM FORMULATION

In this paper we consider the distributionally robust con-
trol problem for a nonlinear system of the form

xk+1 = f(xk, uk) +Dwk
yk = Cxk + Ewk,

(1)

where we denote the state xk ∈ Rnx , input uk ∈ Rnu ,
output yk ∈ Rny and noise wk ∈ Rnw . The system
dynamics f is assumed to be known exactly. Process noise
and measurement noise are modelled via matrices D and
E. For this disturbed nonlinear system, the design target
of this paper is to find a control law that minimizes
our objective function such that the probabilistic linear
constraints involving both states and inputs

sup
Q∈P

EQ[Fxk +Guk] ≤ 1, (2)

hold at each sampling time k, where F ∈ Rnc×nx and
G ∈ Rnc×nu are matrices for mixed state and input
constraints, and P is the ambiguity set containing all
probability distributions consistent with the given partial
distribution information.

The disturbed linearized system at sampling time k is
defined as

xk+1 = Akxk +Bkuk +Dwk + δk
yk = Cxk + Ewk,

(3)

whereAk := ∂f
∂x

∣∣∣
x=xk

u=uk−1

∈ Rnx×nx andBk := ∂f
∂u

∣∣∣
x=xk

u=uk−1

∈

Rnx×nu , and δk is the difference between the nonlinear
system and the linearized system. The initial state of the
system (3) at the sampling time k within the prediction
horizon N is denoted as x0.

The corresponding nominal linear system is defined as

x̂k+1 = Akx̂k +Bkuk + δk
ŷk = Cx̂k,

(4)

with the initial state x̂k = xr for the tracking point xr.

Unlike classical state or output feedback systems, this
work applies purified-output-based (POB) affine control
laws (Ben-Tal et al., 2006) to nonlinear systems. These
control laws map the accumulated discrepancies between
the real output measurements and outputs of the nominal
system to the system inputs.

Definition 1. (POB Affine Control). At sampling time t,
given purified outputs from k to t, we define the POB
affine control laws as

ut = ht +

t∑
τ=k

Ht,τvτ (5)

with t ∈ Z[k,k+N−1] and purified outputs vt = yt −
ŷt =

∑t
τ=k CA

t−τDτ (x0 − xr) + Ewt.

POB control laws are described by the accumulated dis-
crepancies between the disturbed system and the corre-
sponding nominal system with the tracking point as the
initial state (Skaf and Boyd, 2010). POB control laws as
the feedback laws from disturbances to inputs, guarantee
the set of admissible feedback parameters to be convex and
closed (Goulart et al., 2006).

The goal of the controller design in this paper is therefore
to find the proper values of ht and Ht,τ with t ∈ Z[k,k+N−1]

such that the system state can be controlled to the
reference point xr, and the constraints (2) hold with high
probability.

3. REFORMULATION OF PREDICTED
LINEARIZED SYSTEMS

In this section we introduce the formulation of the pre-
dicted state under control laws (5) within the predic-
tion horizon N . In an effort to simplify notation when
constructing the optimization problem to determine the
control law, we derive a compact form of the dynamical
system. The predicted state for N -step prediction is de-
scribed as

x[k:k+N ] = (BxHN (D̃y + Ẽy) + D̃x)w̃[k:k+N−1], (6)



where the measurement of the initial state at k is described
as x0. The reformulation to get to the above expression is
as follows.

To get the stacked state within the prediction horizon N
in terms of disturbances, we firstly write the vector of
purified outputs in terms of x0−xr for any purified output
vt = CAN−1(x0 − xr) + CAN−2Dw0 + · · · + CDwN−2 +
EwN−1 starting from t = k to k +N − 1:

v[k,k+N−1] = y[k,k+N−1] − ŷ[k,k+N−1]

= (Dy + Ey)w[k,k+N−1] + Cy(x0 − xr). (7)

Then, we denote the predicted system states as

x[k,k+N ] = Axx0 +Bxu[k,k+N−1] +Dxw[k,k+N−1] +Aextδk
(8)

and also reformulate the system inputs for N − 1 steps
from (5) and (7) into

u[k:k+N−1] = HN (D̃y + Ẽy)w̃[k:k+N−1] = H̃N w̃[k:k+N−1],
(9)

where w̃[k:k+N−1] =
[
1 w>[k:k+N−1]

]>
is the extended distur-

bance vector, D̃y =

[
0 0

Ay(x0 − xr) Dy

]
and Ẽy =

[
1 0
0 Ey

]
.

HN is the decision matrix which contains all the decision
variables ht and Ht,τ in (5). In the same way, the predicted
state is formulated as

x[k:k+N ] = Bxu[k:k+N−1] + D̃xw̃[k:k+N−1], (10)

where D̃x = [Axx0 +Aextδ Dx].

Lastly, by replacing the vector of inputs in (10) by (9), we
derive the stacked system states in terms of disturbances
in the form of (6).

For the stacked system states, the constraints within the
prediction horizon N are described as

sup
Q∈P

EQ[F̃ x[k:k+N ] + G̃u[k:k+N−1]] ≤ 1̃. (11)

The matrices for the stacked system (10) and the expected
linear constraints (11) can be found in the Appendix B.

4. DISTRIBUTIONALLY ROBUST MPC

4.1 Ambiguity Sets and the Wasserstein metric

Distributionally robust optimization is an optimization
model which utilizes the partial information about the un-
derlying probability distribution of the random variables in
a stochastic model. To characterize the partial information
about the true distribution P, we define an ambiguity set
(Wiesemann et al., 2014) which contains a set of proba-
bility measures on the measurable space (Ω, X). In this
paper, this ambiguity set is modelled as a Wasserstein
ball centered at the discrete empirical distribution. The
Wasserstein ball is a discrepancy model wherein the dis-
tance on the probability distribution space is described by
the Wasserstein metric. The Wasserstein metric defines the
distance between all probability distributions Q supported
on Ξ with finite p-moment

∫
Ξ
‖ξ‖pQ(dξ) <∞.

Definition 2. (Wasserstein Metric (Piccoli and Rossi, 2014)).
The Wasserstein metric of order p ≥ 1 is defined as
dw : M(Ξ)×M(Ξ)→ R for all distribution Q1,Q2 ∈M(Ξ)
and arbitrary norm on Rnξ :

dW (Q1,Q2) := inf
Π

{(∫
Ξ2

‖ξ1 − ξ2‖p Π (dξ1, dξ2)

)1/p

(12)
where Π is a joint distribution of ξ1 and ξ2 with marginals
Q1 and Q2 respectively.

The ambiguity set P can then be formulated in terms of
the Wasserstein metric (12) as

Bε
(
P̂Ns

)
:=
{
Q ∈M(Ξ) : dW

(
P̂Ns ,Q

)
≤ ε
}
, (13)

where P̂Ns is the discrete empirical probability distribution
and ε is the radius of the Wasserstein ball. The empirical

probability distribution P̂Ns := 1
Ns

∑Ns
i=1 δξ̂i

is a uniform

distribution on the training data set Ξ̂Ns :=
{
ξ̂i

}
i≤Ns

⊆
Ξ, and δ

ξ̂i
is the Dirac distribution which concentrates unit

mass at the point ξ̂i ∈ Rnξ .

The radius ε tunes the size of the Wasserstein ball (13),
which should be large enough to contain the true distri-
bution but not unnecessarily large to prevent from in-
cluding irrelevant distributions and making the problem
over-conservative (Zhao and Guan, 2018). This variable is
treated as a hyperparameter for the corresponding DRO.
The solution of this DRO lies between the classical robust
optimization on the support set and stochastic optimiza-
tion, i.e. sample average approximation of the discrete
empirical distribution.

4.2 Data-Based Distributionally Robust MPC

Given the system in (10), we construct a distributionally
robust optimization to find the sequence of inputs in (9)
such that system states can be controlled to the reference
point xr, and the distributionally robust constraints in

(2) are satisfied for the ambiguity set P = Bε
(
P̂Ns

)
.

The ambiguity set is centered at the discrete distribution
of the sample of stacked disturbances for N steps, i.e.
ξ = w[k,k+N−1]. Since we assume the disturbances to be
i.i.d., each sample of ξi takes N − 1 values of disturbance
w from the data set collected either online or offline. We
therefore reformulate (2) into

sup
Q∈Bε

(
P̂Ns
)EQ[`(x0, ξ,HN )] ≤ 1̃, (14)

where `(x0, ξ,HN ) = [(F̃Bx + G̃)HN (D̃y + Ẽy) + F̃ C̃x]ξ̃

with ξ̃ =

[
1
ξ

]
is the function for predicted states within

the prediction horizon N in terms of the initial state at
sampling instant k, disturbances, and decision matrix.

Since the aim of this control problem is to find admissible
control laws with regard to the distributionally robust
constraints such that system states can be steered towards
the reference state xr while complying with the constraints
(14), we characterize the objective function as the dis-
counted sum of quadratic difference costs



JN (x,HN ) := sup

Q∈Bε
(̂
PNs
)EQ

{
k+N−1∑
t=k

βt−k
[
(xt − xr)>Q(xt − xr)

+(ut − ur)>R(ut − ur)
]

+βN (xk+N − xr)>Qf (xk+N − xr)
}
,

(15)

with β as the discount factor. It is further assumed that
Q,Qf ∈ S+and R ∈ S++ so that JN is non-negative
and also convex. The stochastic optimal control problem
to determine affine control laws with N -step prediction
horizon is formulated as

inf
HN

JN (x,HN )

s.t. sup
Q∈Bε

(
P̂Ns
)EQ[`(x0, ξ,HN )] ≤ 1̃. (16)

5. A TRACTABLE CONVEX CONE
REFORMULATION

In this section, we introduce how to reformulate the
stochastic optimal control problem in (16) with type-
1 (p = 1) Wasserstein metric into a finite-dimensional
convex conic program such that affine POB control laws
can be efficiently determined.

Assumption 3. (i.i.d. Disturbance). We assume that in
the discrete-time nonlinear system (1), the disturbance wt
is an i.i.d. random process with covariance matrix Σw and
mean µw for all t ∈ N0.

The i.i.d. random process is a common assumption made
in control literature, e.g. Arcari et al. (2020); Coppens and
Patrinos (2021). It assumes a priori that only the first two
moments of the random process are acquired as partial
distributional information, which can either be estimated
or prescribed a priori (Wan et al., 2014).

Assumption 4. (Moment Assumption ). There exists a pos-
itive α such that

∫
Ξ

exp (‖ξ‖α)Q(dξ) < ∞ (Fournier and
Guillin, 2015).

This assumption trivially holds for a bounded uncertainty
set Ξ and finite measure P.

Assumption 5. (Polytope Uncertainty Set). The space
M(Ξ) of all probability distributions Q is supported on a
polytope Ξ := {ξ ∈ Rnξ : Cξξ ≤ dξ} (Esfahani and Kuhn,
2018).

Theorem 6. (Tractable convex program). The optimal con-
trol problem (16) with discounted quadratic costs, dis-
tributionally robust constraints within a Wasserstein ball

Bε
(
P̂Ns

)
centered at the empirical distribution P̂Ns with

Ns number of samples, and radius ε can be reformulated
as the cone program (17) using the affine control laws (9)
and under Assumptions 3, 4.

inf
H̃N ,λj ,
sij ,γij

Tr
{[

(D̃xobj +BxH̃N )>Jx(D̃xobj +BxH̃N ) + H̃>NJuH̃N
]

Σ̃w
}

+µ̃>w
[
(D̃xobj +BxH̃N )>Jx(D̃xobj +BxHN ) + H̃>NJuH̃N

]
µ̃w

s.t. λjε+
1

N

N∑
i=1

sij ≤ 1

bj +
〈
aj , ξ̂i

〉
+
〈
γij , dξ − Cξ ξ̂i

〉
≤ sij∥∥C>ξ γij − aj∥∥∞ ≤ λj , γij ≥ 0

∀i ∈ Z[1,Ns], ∀j ≤ Z[1,Nc×N+Nct],

(17)

where Jx := diag
(
diag

(
β0, . . . , βN−1

)
⊗Q, βNQf

)
, Ju :=

diag
(
β0, . . . , βN−1

)
⊗R, aj = [(F̃Bx+ G̃)HN (D̃y + Ẽy) +

F̃ C̃x][j,2:] and bj = [(F̃Bx+G̃)HN (D̃y+Ẽy)+F̃ C̃x][j,1].The
integers Ns, Nc and Nct denote the number of samples
and the the row size of the matrix F , and the the row size

of the matrix FT respectively. ξ̂i indicates a data point in
the training data set, comprising the disturbance sequence
consisted of N sampling times. D̃xobj is formulated as

D̃xobj = [Axx0 +Aextδ − x̃r Dx].

Proof. See Appendix A.

Remark 7. For any linear system satisfying Assumption
4 controlled by the control laws derived from (17) with

ambiguity set Bε(Ns,β)

(
P̂Ns

)
, and training data set Ξ̂Ns ,

the finite sample guarantee with confidence level 1− β
PNs

{
EP[`(x0, ξ,HN )] ≤ 1̃

}
≥ 1− β (17)

holds, where β ∈ (0, 1). For more details, please refer to
(Zhong et al., 2021)[Th. 2].

6. RESULTS

6.1 Configuration

In this work two case studies are implemented; the control
of an inverted pendulum and the control of a semi-batch
bioreactor with an irreversible exothermic reaction. Both
case studies discretize continuous time models and have
the prediction horizon N = 5. Each entry of wk complies
with the random process a sin(X), where X ∼ N (0, 1), a
equal to 2 for the inverted pendulum and 1 for the biore-
actor. Therefore, we acquire Cξ = diag(1, . . . ,−1, . . . ) and
dξ = [a, . . . , a] ∈ R2Nnw . Control laws are updated at each
sampling time with one sample for the inverted pendulum
and two samples for the bioreactor.

6.2 Nonlinear inverted pendulum

In this case study, we illustrate how it is possible to
mitigate the constraint violations with by increasing the
number of samples or the Wasserstein ball radius. We con-
sider the nonlinear inverted pendulum system represented
in (Prasad et al., 2014).

For both simulations, the weighting matrices Q and Qf
are selected as diag(1500, 1, 1000, 1), and R is set as
diag(1). Both the angular velocity of the pendulum and
the measurement of the pendulum position are disturbed

by the factor 1e−2, i.e. C = [ 1 0 0 0 ], D> =
[

0 1e-2 0 0
0 0 0 0

]
,

and E = [ 0 1e-2 ]. The angular velocity is required to be
upper bounded by 0.65 1/s.

Case 1: Simulation with increased number of samples: In
the first simulation, we show that the increased number of
samples could reduce the rate of constraint violation. At
each sampling time, we take Ns samples of the disturbance
{ξi}Nsi=1, each of which consists of N samples w from the
set of offline collected samples. Ns ranges from 1 to 8.

Case 2: Simulation with increased radius of the Wasser-
stein ball: As in the first simulation, we use samples
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Fig. 3. Simulation results of (17) averaged from 50 real-
izations with sample number ranging from 1 to 8.

collected prior to the initialization to solve (17) at each
sampling time. Since our interest in this section is to
demonstrate the impact of the ball radius, simulations,
each with 50 realizations, are carried out for various ball
radii, ranging from 0.01 to 100 linearly in the log scale.
The sampling number is fixed to 1 at each sampling time.

Results: For the case 1, as demonstrated in fig 3, the ball
radius is fixed to 1. We simulate the state trajectory with
sample numbers ranging from 1 to 8, each with 50 realiza-
tions. The control laws are determined at each sampling
time with different samples collected prior to initializa-
tion to demonstrate the relation between the number of
samples and constraint satisfaction. We can read from the
figure that the averaged trajectory of 50 realizations with
only 1 sample tends to significantly violate constraints
from the starting point of each simulation. In contrast,
as the number of collected samples increases, constraints
are satisfied more robustly. Furthermore, results from fig 1
illustrate that the constraint violation is monotonically de-
creasing along the sample number. The rate of constraint
violations for the first 0.7 seconds monotonically decreases
from 58% to 44% as the number of samples applied at each
sampling instant increases from 1 to 8.

For the case 2, as displayed in fig 4, the rotational velocity
of the pendulum tends to violate the prescribed upper
bound for the first 0.7 seconds when the radius of the
Wasserstein ball has radius smaller than 1. The state

trajectories violate constraints extensively since the center
of the ball is roughly located only with one sample, and
hence it is very likely that this ball does not contain
the true distribution. As the ball radius increases, less
violation is observed since the chance of containing the
true distribution increases. When the radius increases to
10, constraints are satisfied for 90% of the simulations. We
can also observe from figure 2 that the confidence of proba-
bilistic constraints satisfaction monotonically increases as
the Wasserstein ball expands when the number of sample
is fixed.
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Fig. 4. Simulation results of (17) averaged from 50 realiza-
tions with Wasserstein ball radius ranging from 0.01
to 100 on the inverted pendulum.

6.3 Semi-batch bioreactor model

As the second case study, we consider semi-batch biore-
actor in the paper (Bradford et al., 2020). The balance
equations are described as follow:

dx1

dt
= um ·

I

I + ks + I2

ki

· x1 ·
x2

x2 +KN
− ud · x1,

dx2

dt
= −YN

X
· um ·

I

1 + ks + I2

ki

· x1 ·
x2

CN +KN
+ u1,

dx3

dt
= km ·

I

I + ksq + I2

kiq

· x1 −
kdx3

x2 +KNp
,

(18)

where x1, x2, and x3 are the concentrations of biomass,
nitrate, and phycocyanin, respectively. The input of this
system is the nitrate inflow rate u1. The parameter values
can be found in (Bradford et al., 2020)[Table 1] with the
light intensity fixed to 150µmol ·m−2 · s−1.

The control problem is to have maximal yield of phy-
cocyanin under uncertainties while complying with con-
straints. The prediction horizon is 5h with the sampling
rate 1h up to 150h. For both simulations, the weight-
ing matrices Q and Qf are selected as diag(0, 0, 0) and
diag(0, 0,−100) respectively, and R is set as diag(0). The
concentration of nitrate is disturbed by the factor 1, and
the purified observation is noised by the factor 1e-2, i.e.

C = [ 1 0 0 ], D> =
[

0 1 0
0 0 0

]
, and E = [ 0 1e-2 ]. The

nitrate concentration is required to be upper bounded
by 800 mg/L and the system input is constrained softly
between 0 to 40.
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Fig. 5. Simulation of disturbed semi-batch bioreactor with
nitrate concentration disturbance under difference
MPC controllers.

To illustrate the effectiveness of our algorithm , we com-
pare our result with nominal linearized and nonlinear
MPCs. For our DRMPC controllers, we randomly select
two samples from the data set collected offline and set the
ball radius ranging from 0.1 to 10. With the same con-
straints , objective function and disturbances’ generation,
we run 30 Monte-Carlo simulations for each algorithm.

Algorithm violate rate %

LMPC 16.8

NMPC 22.5

DRMPC ε = 0.1 4.36

DRMPC ε = 1 1.13

DRMPC ε = 10 0.0

Table 1. Violation rate of different MPC algo-
rithms

Results: In the figure 5 illustrates that DRMPC can
control the bioproduct of the disturbed nonlinear system
to above 5 mg/L. However the linearized and nonlinear
MPC violate the constraint more than 10 times than
DRMPC with radius ε = 1. By tuning the Wasserstein ball
radius to 10, constraint violation can be avoided entirely
in this case study.

7. CONCLUSION

In this paper, we propose a novel data-driven distribution-
ally robust MPC method for nonlinear systems using the
Wasserstein ball as the ambiguity set. Our approach relies
on building an ambiguity set defined by the Wasserstein
metric which allows to characterize the uncertainty even
when limited information on the probability distributions
is available. In this approach we reformulate the distribu-
tionally robust optimal control problem into a tractable
convex cone program with finite sample guarantee and
apply POB control laws derived from linearized systems
to the corresponding nonlinear systems. Monte-Carlo sim-
ulations of numerical case studies on two systems are
conducted to illustrate the effectiveness of the algorithm
introduced in the paper.
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Appendix A. PROOF OF THEOREM 6

Proof. We shall now prove the equivalence of the objec-
tive function and constraints in (16) and (17) respectively.
We first show the objective function of both optimization
problems are equivalent. For the convenience of nota-
tion, we reformulate the predicted states in the objective
function (15) dependent on system inputs. (15) is then
equivalent to

inf
HN

sup
P∈Bε

(
P̂Ns
)EP(w̃>[k:k+N−1]Jtotalw̃

>
[k:k+N−1]), (A.1)

where Jtotal = [(D̃xobj + BxH̃N )>Jx(D̃xobj + BxH̃N ) +

H̃>NJuH̃N ], D̃xobj = [Axx0 +Aextδ − x̃r Dx] and H̃N =

HN (D̃y + Ẽy). Then, under Assumption 3 and known or
computed from the data already, the objective is equiv-
alent to infHN (µ̃>wJtotalµ̃w + Tr JtotalΣw) as the the ex-
pectation of the quadratic cost (Seber and Lee, 2012,
THEOREM 1.5). Here µ̃w and Σw denote the expectation
and covariance of w̃[k:k+N−1] respectively.

The next step is to show that constraints in (16) and (17)
are equivalent. Given that constraints in (16) requiring
that the expectation of the linear constraints of states and
inputs to be bounded under the worst-case distribution,
we reformulate the these stochastic linear constraints into
several convex deterministic constraints. Since the satisfac-
tion of the constraints in (14) is equivalent to each entry
of the column vector ` smaller than one, we show that
the inequality constraints (14) can be reformulated into a
convex constraint.

First, each j-th entry in the expected linear constraints
can be described as the j-th constraint of supQ∈Bε

(
P̂Ns
)

EQ[F̃ xk:k+N + G̃u[k:k+N−1]] ≤ 1̃. By reformulating the
stacked state and input vector in terms of the ini-
tial state x0, disturbances ξ, and the decision matrix
HN , `(x0, ξ,HN ), the left-hand side of the expected lin-

ear constraints F̃ xk:k+N + G̃u[k:k+N−1] is equivalent to

`(x0, ξ,HN ) = [(F̃Bx + G̃)HN (D̃y + Ẽy) + F̃ C̃x]ξ̃ with

ξ̃ =

[
1
ξ

]
.

Then, given that the stacked state is represented by the
initial state x0, disturbance sequence and inputs in (8), the
j-th component of the vector ` can be separated into two
terms, one of which contains disturbance sequence and the
another does not. Hence [`(x0, ξ,HN )]j is further described

as bj + a>j ξ, where bj = [(F̃Bx + G̃)HN (D̃y + Ẽy) +

F̃ C̃x][j,1] and aj = [(F̃Bx + G̃)HN (D̃y + Ẽy) + F̃ C̃x][j,2:].
Clearly, the constraints in (14) are equivalent to the
distributionally robust constraints of piecewise maximum
of affine functions bj + a>j ξ,∀j ≤ Z[1,Nc×N+Nct].

Finally, by leveraging the result from (Esfahani and Kuhn,
2018, Corollary 5.1), the distributionally robust con-
straints in (16) are rewritten into ”best-case” constraints

inf λjε+
1

N

N∑
i=1

sij ≤ 1 (A.2)

along with several additional inequalities. Hence, any feasi-
ble solutions of the tractable reformulation (17) guarantee
constraints satisfaction of (2). We thus prove the equiva-
lence of the distributionally robust optimization problem
(16) and cone program in the form of (17).



Appendix B. NOTATIONS

Cy =


0 · · · 0 0
CD 0 · · · 0

...
. . . · · · 0

CAN−2D · · · CD 0

, Ey =

E . . .
E

, Dy =

 DA0

.

..

DAN−1

, Ax =

A0

...

AN

, Bx =


0 · · · 0

A0B
. . .

...
...

. . . 0

AN−1B · · · A0B

,

Dx =


0 · · · 0

A0D
. . .

...
...

. . . 0

AN−1D · · · A0D

, Aext =


0 · · · 0

A0
. . .

...
...

. . . 0

AN−1 · · · A0

. F̃ =


F
F

. . .
FT

, G̃ =


G
G

. . .
G

0 0 . . . 0

, where F and G are

matrices corresponding to the expected linear constraints
within the prediction horizon N , and FT is the matrix for

the terminal state. 1̃ =

1...
1

 is the stacked column vector

on the right hand side of the linear constraints (11).


