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Abstract: In order to produce methanol using CO2 and H2, several processes about the related
catalytic reaction has been suggested and simulated. There may be systematic uncertainties like
parameters of reaction kinetics, so a modelling method considering the parametric uncertainty
is proposed and can give more informative data compared to the conventional modelling
methods. However, the resulting distributional model requires large computational burdens
due to the iterative calculations for convergence. To solve the problem, generalized extreme
value distribution (GEVD) and neural network (NN) modellings are utilized. The formation
parameters of GEVD are fitted by NN and as a result distributional reactor model in an
explicit formulation is proposed. Compared to the shallow structured neural network for learning
the formulation parameters, the deep neural network shows improved performance especially
adjacent to the boundary layers of process inputs. As its explicit and distributional formulation,
the proposed model is expected to be utilized for real-time stochastic model based approaches
in optimization and control with reduced computational load.
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1. INTRODUCTION

CO2 capture and utilization (CCU) is a technique utilizing
the capture CO2 as a raw material to produce high value
added product and expected to reduce the global warming
problem related to the green house gas emissions Al-
Mamoori et al. (2017); Baena-Moreno et al. (2019). One
of the key technologies in CCU is the synthesis of base
materials like methanol (Van-Dal and Bouallou (2013)),
ethanol (Atsonios et al. (2016)), formic acid (Ahn et al.
(2019)) or dimethyl ether (Michailos et al. (2019)).

Producing methanol technology by CO2 hydrogenation,
which is also known as power-to-fuel concept, is one of the
key CCU technologies (Al Shakhshir et al. (2017); Boretti
(2013)). For now, most methanol is produced by the re-
forming natural gas due to the low economic feasibility
(Ali et al. (2015); Manenti et al. (2011)). However, various
attempts have been made globally to commercialize the
methanol production process by CCU technology (Al-
Kalbani et al. (2016); Pérez-Fortes et al. (2016)). Com-
mercial reactors for producing methanol from CO2 and H2

have been developed and the several issues like the removal
of the reaction heat, pressure drop, cost, and scalability
have been dealt with (Lange (2001); Bozzano and Manenti
(2016)). In addition, simulation based approaches have
been studied in various levels of the modelling such as
one dimensional reactor (Leonzio et al. (2019)), process
(Milani et al. (2015); Asif et al. (2018)) and computational
fluid dynamics modelling (Cui and Kær (2020)).

In the aspect of modelling, the conventional approaches
used only a single set of kinetic parameters in general.
However, not only in the reaction kinetics but also in the

process itself, parametric uncertainties on the methanol
production process model can exist. From the best of the
author’s knowledge, the effect of parametric uncertainty on
the methanol production process using CO2 hydrogenation
have not been studied. So, this study focused on the para-
metric uncertainty in the reaction kinetics and proposed
an explicit and distributional methanol production reactor
model using several machine learning techniques.

2. METHANOL PRODUCTION REACTOR MODEL
UNDER KINETIC PARAMETER UNCERTAINTY

To simulate the methanol production reactor (MPR) and
process, it is assumed that multiple tubular packed bed
reactor with commercial Cu/ZnO/Al2O3 catalyst is used.
The packed bed reactor and related assumptions are de-
picted in Figure 1 (a). Also, a recycle process is added as
described in Figure 1 (b) in order to increase the conver-
sion and selectivity by reusing the not-converted reactants.
Well-known reaction kinetics about the Cu/ZnO/Al2O3

catalyst by Van den Bussche and Froment are used
(Bussche and Froment (1996)). Reaction 1 (r1) is about
methanol production by CO2 hydrogenation:

CO2 + 3H2 → CH3OH +H2O (1)

For r1, the heat of reaction is ∆H0
298,r1 = −49.5

[kJ/CO2mole]. The kinetic equation of r1 is

r1 =

k1pCO2
pH2

(
1− pmepH2O

Keq,1p3
H2

pCO2

)
(

1 + kc
pH2O

pH2
+ kap0.5H2
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)3 (2)

log10Keq,1 =
3066

T
− 10.592 (3)



Fig. 1. (a) Methanol production reactor and assumptions
for simulation, (b) Simplified methanol production
process with separation and recycle

Table 1. Nominal parameters for methanol
producing reactor

Parameter [Unit] Value
Tref [K] 501.75

ρp [kgcat/m3] 1175
dp [m] 0.006
φ [·] 0.04

Dt [m] 0.058
U [J/s/m2/K] 1000

Nt [·] 150
Ftot,0 [mole/s] 100
Fme,0 [mole/s] 0

FH2O,0 [mole/s] 0
FCO,0 [mole/s] 0
Pressure [Pa] 55 × 105

where pi, kj , T and Keq,1 are the partial pressure [bar],
kinetic parameters, temperature [K] and equilibrium con-
stant, respectively.

Reaction 2 (r2) is known as the reverse water gas shift
(rWGS) and its formulation is:

CO2 +H2 → CO +H2O (4)

For r2, the heat of reaction is ∆H0
298,r2 = 41.2 [kJ/CO2mole]

and kinetic equation is

r2 =
k2pCO2

(
1− pCOpH2O

Keq,2pH2
pCO2

)
(

1 + kc
pH2O

pH2
+ kap0.5H2

+ kbpH2O

) (5)

log10Keq,2 = −2073

T
+ 2.029 (6)

Although there exist other kinetic models such as by Graaf
et al. (Graaf et al. (1986)), the simulation result becomes
the same as the equilibrium conversion is approached or
towards the exit of the reaction (Leonzio et al. (2019)).
Other side reactions except for rWGS are negligible due
to the high selectivity of the Cu/ZnO/Al2O3 catalyst, so
these are omitted in this study.

The kinetic parameters in equation (2) and (4) are defined
as:

kj = k∗j exp(−Ej

Rg
(

1

T
− 1

Tref
)), j ∈ (1, 2, a, b, c) (7)

where Ej , Rg and Tref are the activation energy, gas
constant and reference temperature, and their values are
given in Table 1.

For the base simulation, the balance equations by Leonzio
et al. are used in this study (Leonzio et al. (2019)). The
resulting ordinary differential equations (ODEs) are solved
using ode45 function in MATLAB. A portion of the vapor
stream with a specific recycle ratio (R) fuses with the orig-
inal feed stream, then the mixed stream enters the reactor
again. Due to the recycle process, iterative simulation
needs until the simulations are converged. As the recycle
process is progressed, the outlet flow rates increase and
converged to the certain values. After several simulations
by changing the recycle ratio, it is concluded that the
recycling can increase the conversion and methanol pro-
duction. This result shows the similarity with the work by
Leonzio et al. which verified its feasibility using literature
and experimental data (Leonzio et al. (2019)).

The existing kinetic parameters are obtained from the lab-
scale experiments (Bussche and Froment (1996)). These
have the distributional information such as the mean and
standard deviation values and the normal Gaussian distri-
bution is assumed. However, the conventional simulation
studies have used the mean values of the kinetic param-
eters only (Leonzio et al. (2019)). So, the results have a
limitation that only limited information about the process
may be obtained.

In other words, a simulation result considering uncertainty
can be achieved by using the mean and standard deviation
values of the kinetic parameters. Compared to the simula-
tion result using fixed value of kinetic parameters, it can
give information about the probability density functions
(PDFs) of the important process outputs. These PDFs can
be utilized to develop stochastic optimization or control
schemes of MPR processes. In this study, we also assumed
the normal distribution for the kinetic parameters from
the given data by Bussche et al. (Bussche and Froment
(1996)). Furthermore, this study assumes the standard
deviation values which are five times larger than the exist-
ing values to reflect a real process with conservativeness.
Under an uncertainty condition, Monte Carlo simulation
is used to iteratively sample and simulate the cases and
generate a distribution of the process output (Mooney
(1997)).

Four process input variables are considered:

(1) Inlet temperature of mixed stream to reactor (Ti)
(2) Jacket temperature (Tj)
(3) Recycle ratio (R)
(4) H2/CO2 ratio in the inlet stream except recycle

(PH2/CO2)

As a result of changing the process input variables, three
key output variables are reflected:

(1) Selectivity of r1 (S1 = X1

X1+X2
)

(2) Process conversion (Xp = CO2(outlet)−CO2(inlet)
CO2(inlet)

|process)
(3) Reactor conversion (X1 = CO2(consumed in r1)

CO2(inlet)
|reactor)

As results of the Monte Carlo simulation under para-
metric uncertainty, distributional process output data are
obtained. Figure 2 (a) shows a case that median values
of input variables are used, and Figure 2 (b) shows a
case using the process input variables adjacent to the
boundary layers. Although the parametric uncertainty is



Fig. 2. Vanilla distributional MPR simulation result: (a)
At the median process inputs, (b) With the process
inputs adjacent to the boundary layers

assumed to be a normal distribution, the key output’s
probability distribution function is skewed in a certain
range as especially presented in Figures 2 (b). This result
is because the model has a severe nonlinearity in the
mass and energy balance and reaction equations. Thus, the
skewed PDF needs to be fitted by a specific distributional
function such as generalized extreme value distribution
(GEVD) which has additional degree of freedom for the
model parameter, rather than just the normal Gaussian
distribution which only considers the mean or standard de-
viation. Furthermore, the distributional MPR model needs
to have less computational burden for a single execution
because model based optimization or control problem is
time-consuming applications. Thus, a new distributional
MPR model which has an explicit formulation and consid-
ers the skewness is proposed by using sampled data and
machine learning technique.

3. DISTRIBUTIONAL MPR MODEL COMBINED
WITH MACHINE LEARNING TECHNIQUES

In order to find the formation parameters of the skewed
probability density functions of outputs, generalized ex-
treme value distribution (GEVD) modelling is utilized
(Hosking (1985)). GEVD modelling technique is generally
used to model the smallest or largest value among a large
set of measurement data which are randomly sampled in
the independently and identically distributed (i.i.d.) man-
ner. There exist three formation parameters for GEVD:
the location parameter µGEVD, scale parameter σGEDV (>
0) and shape parameter kGEVD. The advantages of GEVD
to fit the skewed PDF of outputs are the small number
of formation parameters and the predicting performance.
Compared to the other methods such as kernel distribu-
tion which needs the whole historical data to predict a
new output distribution, GEVD uses only three formation
parameters (µGEVD, σGEDV and kGEVD). In addition, its
predicting performance outperforms other methods such
as Weibull distribution method especially adjacent to the
boundaries of process inputs.

In order to solve the problem of the heavy computational
loads for a single execution and make the model applicable
for real-time approaches, an explicit formulation of the
distributional MPR model is proposed using sampled

Fig. 3. (a) Vanilla distributional MPR modelling method,
(b) Proposed explicit and distributional MPR model-
ing method

data and machine learning techniques. Neural network
(NN) technique has been generally used for supervised
or unsupervised learning in several applications (Jeong
and Lee (2018)), so is applied in this study. The input
variables for neural network learning are the same as the
process inputs (Ti, Tj , R and PH2/CO2) and the output
variables for neural network learning are the formation
parameters (µGEVD, σGEVD and kGEVD) of each process
outputs (X1,r, X1,p and S1).

Compared to the vanilla distributional MPR modelling
method which is defined to have no machine learning
applications as in Figure 3 (a), the proposed method
has additional steps for learning the relationship between
the process inputs and distributional output. First, 1000
process input data points are selected randomly by Latin
hypercube sampling technique in the given ranges (Stein
(1987)) in order to generate the simulation data for fit-
ting GEVD (Stein (1987)). Second, 1000 iterative Monte
Carlo simulations are executed and distributional results
of process output (S1, Xp and X1) and their PDF are
given for each selected input data point. Third, the GEVD
formulation parameters of each process output are esti-
mated by MLE (Kotz and Nadarajah (2000); Embrechts
et al. (2013)). Fourth, the weights of neural network are
estimated using the data set. Finally, the results of neural
network and GEVD are combined to make an explicit
formation of distributional MPR model. The procedure
for constructing an explicit distributional MPR model is
illustrated in Figure 3 (b).

Sampled data and the distributional MPR model in an
explicit formulation are compared to prove the validity
of the proposed method. First, simulation results which
express the GEVD formulation parameters using shallow
neural network are shown in Figures 4. Under median
process input conditions, both distributions of the process
outputs by sampled data and the predictive model show
less skewness and high similarity. However, the proposed
model cannot predict the distribution of process output
adjacent to the boundary layers of process input. Espe-
cially, predictions of Xp and X1 by the proposed method
with shallow structured neural network show poor perfor-
mances compared to S1. It is becauseXp andX1 have more
narrow distribution than S1 while having the skewness.

Also, simulation results which express the GEVD formu-
lation parameters using deep neural network are shown
in Figures 5. As the shallow structured case, both distri-



Fig. 4. Probability density function of the process output
variables nearby the boundary layer. GEVD formu-
lation parameters are learned using shallow neural
network.

Fig. 5. Probability density function of the process output
variables nearby the boundary layer. GEVD formu-
lation parameters are learned using deep neural net-
work.

butions of the process outputs by sampled data and the
predictive model show less skewness and high similarity
under the median process input conditions. When the deep
structured neural network is used, the proposed model
can predict the distribution of process output well even
adjacent to the boundary layers where the sampled data
show a severe skewness. This result is because the deep
structured neural network can fit the complex correlations
between the process input and output.

4. OPTIMIZATION USING EXPLICIT PDF OF CCU
PROCESS

The distributional result of the MPR model can be more
informative than that of the conventional single parameter
set because it gives a probability density function of each

Fig. 6. Objective function expression in the optimization
problem using explicit PDF

Fig. 7. Probability constraint expression in the optimiza-
tion problem using explicit PDF

process output. The probability density functions of each
process output can be used to solve a stochastic opti-
mization problem or develop a robust control scheme of a
MPR process. Also, the proposed method shows reduced
computational time compared to the vanilla distributional
simulation because of its explicit formulation using GEVD
and neural network. This will make it possible to use the
proposed model for the real-time applications of control
and optimization in faster and easier ways.

Optimization problem using the explicit PFD of key out-
put variables are given in Figures 6-7. In Figure 6, the
objective function containing distributional function of Xp

is changed using the explicit PFD: (1) Using expectation
value, (2) Using the parameter µGEVD of Xp. In Figure
7, the constraints containing probability of S1 and X1

are transformed using the explicit cumulative probability
distribution function. As the case that the probability
of S1 ≥ Threshold has greater than or equal to 90
percent is equivalent to the case that the probability of
S1 < Threshold has less than 10 percent, the constraint
formation is simply changed by using CFD function of
the S1. With the same logic, the probability constraint ex-
pression about X1 can be obtained and the CFD functions
are calculated using the explicit PDFs of each key process
variables.

The optimization result is given in Figure 8. The expecta-
tion value of Xp is used to calculate the objective function
and the threshold values are given in the Figure 8. Genetic
algorithm is used for searching the optimal solution be-
cause it has a severe nonlinearity. Because the probability
distributions are expressed as explicit formulations using
GEVD and DNN, the computational loads are reduced
compared to the vanilla distributional model applications.



Fig. 8. Optimization result having probability objective
and constraints by explicit PDF

5. CONCLUSION

Based on the conventional MPR modelling results, the
parametric uncertainty on the kinetics is studied and sev-
eral machine learning techniques are combined to make the
model applicable for real-time optimization and control.
By iterative Monte Carlo simulation, distributional pro-
cess outputs are obtained and gives more informative data
than the conventional method which uses only a single
fixed parameter set. Furthermore, this study proposes an
explicit formulation of distributional MPR model. First,
the process outputs are fitted using GEVD to reflect
the skewness especially adjacent to the boundary layers
of process inputs. Second, the formation parameters of
GEVD are learned using shallow and deep neural network.
From the simulation results, it is concluded that the pre-
dictive performance of the method using deep structured
neural network outperforms that of shallow one especially
adjacent to the boundary layers of process inputs. Also,
the proposed method has an explicit formulation and less
computational load compared to the conventional method
without post-process of data.

Using the proposed explicit and distributional MPR model
which has a less computational burden and stochastic
information, it is expected that several model based appli-
cations can be done. For example, a Pareto optimum of the
operating condition which minimizes the energy consump-
tion while maximizing the production yield can be found
using the stochastic model. Also, a robust model predictive
controller can be designed and applied in the real time
applications because of its explicit formulation and less
computational loads. Finally, the proposed methodology
can be generally utilized in other reaction models with
kinetic parameter uncertainty. Depending on the degree of
skewness and characteristics the output distribution has,
different machine learning techniques can be used such as
Gaussian, Weibull or kernel distribution.
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