
     

 Improved spectral model building for using ATR-FTIR spectroscopy to measure 
solution concentration during cooling crystallization  

 
Jingxiang Liua,b, Tao Liu b,c,*, Yan Cui b,c, Xiaojing Pei b,c 

 

a School of Marine Electrical Engineering, Dalian Maritime University, Dalian, 
 116026, P. R. China  

b Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian 
University of Technology, Dalian 116024, P. R. China 

c Institute of Advanced Control Technology, Dalian University of Technology, Dalian 116024, P. R. China  
* Corresponding author, e-mail: tliu@dlut.edu.cn 

Abstract: To ensure in-situ measurement accuracy on the solution concentration during cooling 
crystallization process, an improved spectral model building method is proposed in this paper for 
application of the attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The 
traditional partial least-squares (PLS) model is modified into a functional regression form for expressing 
the relationship between the input variables of in-situ measured spectra and the output of solution 
concentration, so as to address the issue of insufficient samples for model calibration with respect to the 
high-dimension of spectral variables for measurement. The widely used DB4 wavelet functions are taken 
as basis functions to approximate the smooth functions in the proposed functional regression model, by 
virtue of their multi-scale and orthogonal properties to procure good accuracy. Accordingly, a parameter 
estimation algorithm named wavelet partial-least-squares is proposed for the spectral model calibration. 
The application to measure the solution concentration of L-glutamic acid (LGA) cooling crystallization 
process well demonstrates the effectiveness and merit of the proposed method.  

Keywords: wavelet functional partial least-squares, in-situ measurement by ATR-FTIR spectroscopy, 
cooling crystallization process, spectral calibration model. 

 

1. INTRODUCTION 

Cooling crystallization has been widely used in modern 
industries for product separation and purification, such as 
fine-chemicals, pharmaceuticals, sugars and salts. To procure 
good crystal products with desired size, shape, and purity, it 
is key important to regulate the solution concentration (SC) 
during a cooling crystallization process. It is therefore 
required to measure SC in real time with good accuracy, to 
facilitate the process control and monitoring. Since a 
densitometer was proposed to measure SC in real time 
(Garside and Mullin, 1996), a few techniques based on the 
refractive index, densitometry, conductometry, or calorimetry 
were explored for measuring SC (Helt and Larson, 1977; 
Monnier, Fevotte, Hoff, 1997; Hermanto, Phua, Chow, and 
Tan, 2013). With the rapid development of spectroscopy 
technology in the past two decades, the corresponding 
instruments for in-situ measurement have been developed for 
crystallization process monitoring, including the attenuated 
total reflectance Fourier transform infrared (ATR-FTIR) 
spectroscopy, near infrared (NIR) spectroscopy, and ATR-
UV/vis. Owing to the sensitivity to the main components and 
their contents in crystal solution, the ATR-FTIR has been 
increasingly applied for in-situ measurement of various 
cooling crystallization processes (Kadam, Mesbah,  Windt 
and Kramer,  2011; Nagy and Braatz, 2012; Zhang, Liu, 
Wang, Liu and Jiang, 2017).  

However, it was pointed out that there could exist notable 
prediction error on SC in using the ATR-FTIR spectroscopy 
for in-situ measurement of crystallization process (Gherras 
and Fevotte, 2012; Zhang, Liu, Wang, Liu and Jiang, 2017). 
The main reason lies with inaccurate spectral calibration 
model building.  Due to the fact that the spectral absorbance 
exhibits certain nonlinearity under different SC levels, the 
classical linear regression modeling methods, e.g., principal 
component regression (PCR), partial least-squares (PLS), 
could not guarantee prediction accuracy in the undersatuated 
zone (USZ) or metastable zone (MSZ) during crystallization 
(Borissova, Khan, Mahmud, Roberts, Andrews, Dallin, Chen, 
and Morris, 2009). Besides, the dimension of spectral 
variables is typically high in a specified wavelength range to 
reflect the sensitivity of main components in the crystal 
solution, e.g., there are almost 1000 wavenumbers that cover 
the range of main absorption peaks of L-glutamic acid (LGA) 
solution. In contrast, only a small number of different SC 
levels could be prepared in engineering practice for spectral 
calibration model building. In other words, only a small 
number of samples could be collected for such model 
building in the presence of high- dimensional inputs variables 
of spectral wavenumbers. Multivariate statistical methods 
were explored to deal with very limited data for process 
modeling problem in the recent years (Camacho, Picó, and 
Ferrer, 2009; Liu, Liu, Chen, and Qin, 2018; Tulsyana, 
Garvinb and Undey, 2019). Principal component regression, 



 
 

     

partial least-squares (PLS), multiple linear regression, and 
support vector machine methods were developed for spectral 
calibration (Barla, Kumar, Nalluri, Gandhi and Venkatesh, 
2014; Zhang, Liu, Wang, Liu and Jiang, 2017; Brestrich, 
Rüdt, Büchler and Hubbuch, 2018; Mu, Liu, Liu, Xia and Yu, 
2019). It was found that PLS is superior to the other methods 
in terms of the commonly used index of minimum prediction 
error, based on a limited number of samples for model 
building (Brestrich, Rüdt, Büchler and Hubbuch, 2018). 
However, the nonlinear modeling problem remains open as 
yet. 
Note that the measured spectra were usually regarded as 
discrete data for analysis when applying the classical 
multivariate statistical methods, whereas the continuous 
characteristics of these spectral variables were neglected. In 
contrast to multivariate statistical methods based on finite 
dimensional vectors of discrete samples, functional data 
analysis (FDA) emphasizes the smoothness of a fitting curve, 
and therefore is more suitable for analyzing non-stationary 
time series with unequally spaced observations (Ferraty and 
Vieu, 2006; Mears, Nørregard, Sin, Krist, Stocks and Albaek, 
2016). Good applications of FDA for modeling continuous-
time process dynamics can be found in the literature (Ramsay 
and Silverman, 2005; Cuevas, 2014; He and Zhu, 2016; Qin 
and Chiang, 2019). Among the developed functional analysis 
methods, the classical spline functions were early studied in 
the references (Frank, 1990; Wold, 1992). Artificial neural 
network (ANN) was adopted in combination with the partial 
least squares (PLS) to handle the nonlinear issue (Zhu, Chen, 
He and Yu, 2017). A comparative study on multiple linear 
regression, principal component regression, PLS, polynomial 
PLS regression, spline PLS regression and ANN, was 
conducted in the reference (Roman, Ravilya and Ekaterina, 
2007). Recently, wavelet analysis has received increasing 
attentions owing to the excellent properties of orthogonality, 
compact support and multi-resolution (Chen, Yang and Wei, 
2012; Chen, Li and Racic, 2018). It was recognized that 
wavelet functions could be well used to conduct feature 
extraction and tackle nonlinear fitting problem (Tsakiroglou, 
Sygouni and Aggelopoulos, 2010; Cuevas, 2014). However, 
wavelet functions were not explored for building spectral 
calibration model to predict SC, which motivates this study.  
In this paper, a novel functional based calibration model 
building method for engineering application of ATR-FTIR 
spectroscopy is proposed to improve the measurement 
accuracy on SC during cooling crystallization process, based 
on using wavelet functions in combination with PLS 
(abbreviated by WFPLS). The in-situ measured spectral 
curves are closely approximated by continuous functions 
based on constructing wavelet basis functions. Then the 
proposed WFPLS algorithm is presented to estimate the 
model parameters for spectral calibration with desirable 
accuracy. For clarity, the paper is organized as follows:  The 
proposed functional modeling method is detailed in Section 2, 
including problem description, and the proposed WFPLS 
algorithm. In Section 3, experimental verification on 
measuring the solution concentration of LGA cooling 
crystallization process is shown to demonstrate the 
effectiveness and merit of the proposed method. Finally, 
some conclusions were drawn in Section 4. 

2. PROPOSED FUNCTIONAL CALIBRATION MODEL 
BUILDING  

2.1 Problem description 
To clearly explain the salient problems involved with spectral 
calibration for in-situ measurement of SC, Figure 1 shows the 
measured spectra for 6 different SC levels of LGA solution at 
the same temperature of 46 °C before crystallization for 
illustration.  
 

 
Figure 1. Illustration of measured spectra for different SC 
levels of LGA solution at the same temperature for 
crystallization 
 
It is seen that the measured spectra cover a wavenumber 
range of 1100-1500 cm-1, which reflects the main absorption 
peaks of LGA functional groups, i.e., there are at least 400 
wavenumbers that should be taken as the input variables for 
spectral calibration model building. In contrast, no more than 
40 different SC levels could be prepared for spectral 
calibration experiments in practice, due to the fact that the 
highest SC of LGA is below 40 g/L and the lowest SC is 
above 1 g/L that could be precisely measured by ATR-FTIR 
spectroscopy. Hence, it is challengeable to establish an 
accurate spectral calibration model with such high-dimension 
spectral variables in terms of very limited SC samples. 
Moreover, there exist obvious nonlinear correlations between 
spectral absorption peaks. For example, the lowest SC of 9 
g/L corresponding to the blue line in Figure 1 shows the 
lowest absorption peak around the wavenumber of 1400 cm-1, 
but the highest peak around the wavenumber of 1150 cm-1. In 
contrast, the highest SC of 39 g/L corresponding to the cyan 
line in Figure 1 shows the adverse effect at the referred 
wavenumbers. This phenomenon indicates that the spectral 
absorbance has notable nonlinearity with respect to different 
SC levels. Most of the existing spectral calibration models as 
aforementioned, however, belong to linear modeling methods, 
such that the prediction accuracy could not be guaranteed 
under the above nonlinearity.  
The main task of this work is therefore aimed at establishing 
a functional calibration model to overcome the above 
problems, such that the in-situ measurement accuracy could 
be guaranteed for application to cooling crystallization 
process. To this end, a novel functional WFPLS model is 
detailed in the following section.  
 



 
 

     

2.2 Proposed WFPLS  
Suppose that the measured spectra (input data) are denoted by 

T
1[ , , ] M

N
N×∈ℜx xX =  , where M

i ∈ℜx  is the i-th 
spectrum, N  the number of spectra, and M  the number of 
wavelengths in each spectrum. The output data of SC are 
denoted as N∈ℜy .  
Generally, the traditional PLS modeling method could be 
expressed by 

 T T
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where w  and v  are the loading vectors with respect to X  
and Y , respectively.  
Considering that each of the measured NIR spectra is a 
functional curve, it is therefore expressed by a function 
denoted by ( )ns t , where t is the functional argument. 
Correspondingly, the prediction of the scalar variable ny  is 
predicted by the function ( )ns t  instead of the raw high-
dimensional wavenumber variables, such that the referred 
high-dimensional problem and spectral nonlinearity 
associated with model building can be subtly circumvented. 
Accordingly, a functional extension of PLS prediction on iy  
is based on constructed functions ( )is t  where t  denotes the 
function argument. The loading vector w  is therefore 
replaced by a loading function ( )w t . Since ( )is t  and ( )w t  
are continuous, the sum of the inner product becomes integral. 
In this way, each spectrum can be approximated by a 
continuous function, and the matrix X  becomes a function 
vector 1( ),( ) [ ], ( )Nst t s t=s  . Thus Eq.(1) can be expressed 
as follows. 
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For implementation, the spectral function ( )is t  is constructed 
as a linear combination of basis functions, i.e., 

 T
1

( ) ( ) ( )K
i ik k ik

s t c t tϕ
=

= = c φ   (3) 

where T
1( ) [ ( ), , ( )]Kt t tφ φ=φ   is the basis function vector, 
T

1[ , , ]i i iKc c=c   the corresponding coefficient vector, K  the 
number of basis function, 1, ,i N=  .  
Hence, the function vector ( )ts  can be expressed by 

 ( )= ( )t ts φC   (4) 
where 1

T[ ], , K
N

N×∈ℜc cC =   is the coefficient matrix.  

Similarly, the loading function ( )w t  can also be described as 
a linear combination of basis functions, 

 T
1

( ) ( ) ( )K
k kk

w t b t tϕ
=

= = b φ   (5) 

where T
1[ , , ]Kb b=b   is the coefficient vector.  

With the functional expressions of Eq.(4) and Eq.(5), the 
following equation is easily obtained, 
 T( ), ( ( ) )( ) ( )t t t dttw w

Ω
< >= s sv vY Y   (6) 

owing to 
 T( )( ) ) ( ) (w t dt t dt t t

Ω Ω
= =  φ φ bs bC CJ   (7) 

where T( ) ( )t t dt
Ω

=  φ φJ .  

When orthogonal basis functions are adopted, J  becomes an 
identity matrix. The object in Eq.(6) becomes T Tb vC Y . 
Similarly, the constraint ( ) ( ) 1w t w t dt

Ω
=  becomes 

 T T T( ) ( ) 1t t dt
Ω

= = b φ φ b b b   (8) 

Correspondingly, the proposed WFPLS model becomes 
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Note that the proposed model in Eq.(9) is an extension of the 
traditional PLS model, so the classical NIPALS algorithm 
can be used to estimate the model parameters. Accordingly, 
the output prediction could be obtained by 
 Ŷ = CΘ   (10) 
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where Ŷ  is the predicted output matrix, jp  the jth loading 

vector, ir  the ith regression vector, I  the identity matrix 
with proper dimension, A  the number of retained latent 
factors. 
For the convenience of implementation, the orthogonal 
wavelet functions are taken as basis functions in the proposed 
WFPLS model, such as DB4 wavelet. To perform spectral 
calibration, the first step is to determine the approximation 
functions for the raw spectral curves. The multiscale active 
approximation algorithm recently developed (Liu, Chen and 
Wang, 2020) is used herein for simplicity, where the multi-
scale and orthogonal DB4 wavelet is adopted. The wavelet 
basis functions are determined in terms of the approximation 
error as user specified in practice. Typically, a predefined 
threshold of fitting error is used for this purpose.    
For real application, when a new spectral measurement 
denoted by newx  comes, the corresponding function new ( )s t  
is determined by 
 T

new new( ) ( )s t t= c φ   (13) 

 T 1
new new( )−=c xΦΦ Φ   (14) 

where newc  is the approximation vector. Then the prediction 
of SC is obtained by 
 T

newˆ =y c Θ   (15) 

where ŷ  is the predicted SC, Θ  is defined in Eqs. (11) and 
(12).  
Therefore, SC can be predicted in real time based on the 
measured spectra data. 
 



 
 

     

3. CASE STUDY ON MEASURING COOLING 
CRYSTALLIZATION PROCESS 

The experimental set-up and its schematic of cooling 
crystallization is shown in Figure 2 (a) and (b).  
 
(a) 

 
(b) 

Temperature 
Controller

ATR-FTIR

PT 100 Agitator

Monitoring PC  
Figure 2. Experimental set-up for LGA cooling 
crystallization: (a) external view; (b) schematic diagram. 
 
The crystallizer consists of a 1-liter (L) glass jacketed reactor, 
a thermostatic circulator (product no. Julabo-CF41), a PT100 
thermometer, and a PTFE four-paddle agitator. A diamond 
ATR immersion probe connected via AgX Fiber as the 
internal reflectance element attached to the FTIR 
spectroscopy was used to collect the absorbance spectra of 
LGA solution. The ATR-FTIR spectra were monitored by a 
software named ReactIR15 made by Mettler-Toledo 
Company. The probe was set in the fine mode with the laser 
focused at 0 μm before experiments and set at a scanning 
speed of 2 m/s during experiments. All data collected by 

ATR-FTIR were displayed in the ReactIR 15 software 
packages. The raw materials for cooling crystallization are β-
LGA (C5H9NO4, purity: 99%, produced by Sigma) along 
with distilled water as the solvent. A high-resolution 
analytical balance (Mettler-Toledo) with a precision of one 
ten thousandth was used to weigh the β-LGA samples for 
experiments. The stirring speed was maintained at 150 r/min 
for all experiments. 
In the study, the experiments corresponding to six different 
SC levels, i.e., 9, 15, 21, 27, 33, and 39 g/L, are conducted. 
All spectra were measured after the LGA solute dissolved 
completely in each experiment. A total of 628 spectra were 
measured, consisting 208, 134, 114, 76, 64, and 52 spectra 
for each corresponding SC levels. In this study, a half of the 
measured data is used for training and the other half for test.   
To assess the performance of constructed models, the root 
mean square error (RMSEP) and R2 defined below are used, 
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where ŷ  is the predicted values of SC in each experiment, 
and y  is the mean vector. 
The proposed WFPLS model and the classical PLS model are 
applied for comparison. For application of the proposed 
method, the raw measured spectra should be converted into 
functions in the first place. Here, the DB4 wavelet is used 
and the approximation results for one representative spectrum 
collected from LGA solution is shown in Figure 3.  
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Figure 3. Approximation result for one representative 
spectrum collected from LGA solution by the proposed 
functional method. 
 
It is seen that the high-dimension spectrum is well 
approximated by using 64 wavelet basis functions, especially 
for the front 300 points, where the measurement noise is 
effectively filtered out. Accordingly, the dimension of 
modeling data is significantly reduced. The prediction results 
for all the test data by the WFPLS and PLS models are shown 
in Figure 4 (a), where the blue line with circles denotes the 
measured data, black line with black crosses denotes the 
predicted values by PLS, and the line with red stars denotes 
the predicted values by WFPLS. Figure 4 (b) and (c) shows 
the enlarged plots corresponding to SC of 9 g/L and 33 g/L, 
respectively.  
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Figure 4. Prediction results for cooling crystallization process 
corresponding to: (a) all different SCs; (b) the enlarged view 
for SC=9 g/L; (c) the enlarged view for SC=33 g/L 
 
It is seen that the prediction results obtained by the proposed 
WFPLS are obviously closer to the true values. The 
corresponding RMSE and R2 values for these two methods 
are shown in Table 1. It can be seen that the R2 values of the 
two proposed functional methods are over 0.999, showing 
obvious advantages over the traditional PLS method. 

Table 1 Comparison of two methods for testing data 

Methods RMSE R2 
MPLS 0.5142 0.9973 
WFPLS 0.2651 0.9993 

 
It can be seen that the R2 values of the proposed functional 
method is over 0.999 and the prediction error is obviously 
smaller than that of PLS, demonstrating that significantly 
improved prediction accuracy is obtained in comparison with 
the traditional PLS method. 
 

4. CONCLUSIONS 

In this paper, a novel functional calibration method named 
WFPLS has been proposed for applying ATR-FTIR 
spectroscopy to in-situ measure SC during cooling 
crystallization process. By modifying the traditional PLS 
model into a functional regression form, the spectra data are 
easily transformed into smooth functions, such that only a 
small number of concentration samples is needed for model 
calibration with respect to the high-dimension of spectral 
variables for measurement. The widely used DB4 wavelet 
functions are adopted as basis functions to approximate the 
smooth functions in the proposed functional regression model, 
which could procure good accuracy for model fitting and 
prediction against nonlinear spectral properties. The 
experimental measurement results on LGA cooling 
crystallization process well demonstrates the advantage of  
the proposed spectral calibration method.   
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