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Abstract: Combinations of real-time optimization (RTO) and model predictive control (MPC)
have been widely employed in the process industry for tracking the economic optimum in the face
of drifting disturbances and parameters. Online update of model parameters is a critical step in
the implementation of RTO. In this work, an intelligent state and parameter estimation approach
is developed by combining a fault diagnosis approach with a moving window-based online state
and parameter estimator. The estimation of unmeasured disturbance(s)/ parameter(s)/ sensor
bias(es) is carried out only when required and triggered by the fault identi�cation scheme.
Thus, the subset of parameters/faults that are being estimated online can change with time.
This can avoid di¢ culties that arise due to the observability condition. The intelligent state and
parameter estimator is further combined with an online optimizing control scheme consisting of
integrated frequent RTO and adaptive MPC. The integrated scheme has embedded intelligence
to auto-correct models used for estimation, control, and optimization and to decide whether
the detected changes require the invocation of RTO. The e¢ cacy of the proposed scheme is
investigated using a benchmark CSTR system that exhibits input multiplicity behavior. The
optimum operating point of this system is sensitive to mean shifts in unmeasured disturbances
or system parameters. The proposed approach successfully isolates the parameter/ unmeasured
disturbance/ sensor bias that has undergone abrupt change and tracks the shifting economic
optimum without signi�cant delays. Thus, the proposed integrated approach has the ability to
handle normal, o¤-normal, and abnormal operating envelopes of the system.
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1. INTRODUCTION

Combinations of real time optimization (RTO) and model
predictive control (MPC) have been widely employed in
the process industry for tracking economic optimum of
key processing units in the face of drifting disturbances
and parameters (Engell (2007); Darby et al. (2011)).
The conventional approach is to employ a steady state
mechanistic model for carrying out RTO. The model
parameters are updated once every few hours and the
model is then used to locate the economic optimum. The
MPC layer is entrusted with the task of moving the system
to the new optimum. This conventional approach results
in long wait time before the new economic optimum can
be reached. Thus, many frequent RTO schemes have been
proposed in the literature with the aim of reducing the wait
time (Engell (2007); Darby et al. (2011)). Maintenance of
the model used for RTO using transient data is the key step
in the frequent RTO schemes. Updating parameters of a
dynamic model online using transient data and using the
steady state version of this model for carrying out frequent

RTO has been proposed recently. Krishnamoorthy et al.
(2018) and Valluru and Patwardhan (2019) propose to
carry out simultaneous state and parameter estimation
using extended Kalman �lter (EKF) for updating the
model used in the RTO layer. Thus, the model update
is carried out on-line as and when the parameters or
disturbances change. This approach eliminates the need to
wait for system to reach a steady state before the model
update step is carried out.

Update of the steady state mechanistic model using recent
operating data is a critical step in implementation of any
RTO scheme. Darby et al. (2011) observe that "the model
accuracy requirements are higher for RTO than MPC"
since the model is used for locating the economic optimum.
They proceed to state that "the model update step is
non-trivial and requires process experience and engineering
judgement. The starting point is to consider which parame-
ters/adjustments are a¤ected by unmeasured disturbances
and which subset of parameters/adjustments ensure a con-
sistent model. Parameters that change on a slower time
scale may not be appropriate to update every execution



in order to minimize the in�uence of measurement noise
and unmeasured disturbances." Systematic errors in the
measurements (or sensor biases) is another issue that needs
to be dealt while carrying out the model update step
(Engell (2007)). Thus, the model used for RTO layer is
relatively harder to maintain and requires a higher level of
expertise (Darby et al. (2011)).

Mismatch between the models used for RTO and MPC
layers is another major issue that needs to be addressed
in a conventional RTO scheme. Typically a linear black
box model is used to formulate the MPC scheme. Thus,
the models used for RTO and MPC are signi�cantly
di¤erent and this can result in di¢ culties in realizing
RTO recommendations (Engell (2007)). Recently, Val-
luru and Patwardhan (2019) have developed a novel on-
line optimizing control scheme which employs a single
dynamic mechanistic model for implementing RTO and
adaptive NMPC. Estimates of the drifting unmeasured dis-
turbances/parameters generated using simultaneous state
and parameter estimation schemes are used to update
the steady state model used for frequent RTO as well
as the dynamic model used for predictions in the NMPC
scheme. This approach eliminates di¢ culties that arise
due to model mismatch between RTO and MPC layer.
However, they proposes to update only a �xed subset
of parameters/ unmeasured disturbances simultaneously
with the states. In practice, some parameters, unmeasured
disturbances or soft faults (such as sensor or actuator
biases) that lie outside this chosen �xed subset can also
change. Since a �xed subset of parameters is updated all
the time, such a scenario leads to a model plant mismatch
that can deteriorate the performance of the integrated on-
line optimizing control scheme.

The conventional approach to simultaneous estimation
of states and parameter/ unmeasured disturbances/ soft
faults is to assume the random walk model for represent-
ing parameter/ disturbance/ fault dynamics. The para-
meter/ disturbance/ fault variations are treated as addi-
tional states and estimated simultaneously with the system
states (Venkatasubramanian et al. (2003) ; Patwardhan
et al. (2012)). When the system dynamics are augmented
with the random walk model, observability or estimability
of these additional states needs to be considered. For linear
systems, the application of Hautus lemma reveals that the
number of parameters that can be estimated simultane-
ously with the states cannot exceed the number of mea-
surements (Muske and Badgwell (2002)). This restriction
may not strictly hold for a nonlinear system. However,
all parameters that are susceptible to change cannot be
estimated as additional states with a reasonable accuracy
Liu et al. (2021).

Automating the task of �nding the "active subset of pa-
rameters/ disturbances" that need to be adjusted and
isolating or accommodating biased sensors while carrying
out the model update can alleviate di¢ culties associated
with the model maintenance, and, in turn, maintenance
of the integrated RTO and adaptive NMPC scheme. The
problem of isolating root causes of an abnormal behavior
from the transient data using a dynamic model has been
well investigated in the fault diagnosis literature (Venkata-
subramanian et al. (2003)). Thus, a possible approach to
achieve automated selection of active set of parameters

is to employ an observer based fault diagnosis approach
to dynamically identify the subset of actively changing
parameters/ disturbances/ biases in a moving time win-
dow and update parameters/disturbances only from this
subset. Deshpande et al. (2009) have developed a nonlinear
state estimation strategy with embedded intelligence to
diagnose the root causes of the plant model mismatch
by analyzing the innovation sequence generated by EKF.
The subset of active faults is isolated the model is auto-
corrected on-line so as to accommodate the isolated faults.
To carry out the task of fault diagnosis, a nonlinear ver-
sion of the generalized likelihood ratio (GLR) based fault
diagnosis and identi�cation (FDI) scheme (NLGLR) has
been developed. Their approach can deal with sequential
as well as simultaneous occurrences of multiple parameter
changes, soft faults and sensor/ actuator failures. Thus,
the subset of parameters that are being estimated online
is changed with time and this can avoid di¢ culties that
can arise due to the observability condition.

In this work, we propose to combine the fault diagno-
sis based state estimation approach developed by Desh-
pande et al. (2009) with the integrated RTO and adaptive
NMPC scheme developed Valluru et al. (2017) with the
aim embedding intelligence to �nd the active subset of
changing parameters. It is assumed that the parameters/
disturbances/ faults change infrequently and at a signif-
icantly slower rate than the system dynamics. The NL-
GLR approach is used to isolate a changing parameter/
disturbance and subsequently its magnitude is estimated
using the moving window estimator developed by Valluru
et al. (2017). If the estimates saturate, then the parameter
estimation is stopped and the saturated estimate is used
for state estimation subsequently. Thus, estimation of pa-
rameter(s) is carried out only when required and triggered
by the fault identi�cation scheme. The resulting intelligent
state estimator is then combined with integrated frequent
RTO and NMPC scheme proposed by Valluru and Pat-
wardhan (2019). Thus, the proposed integrated scheme
has embedded intelligence (i) to correct the state estima-
tor, the prediction model used in NMPC and the steady
state model used in frequent RTO using the fault location
and magnitude estimates and (ii) to decide whether the
isolated changes require invocation of RTO. The e¢ cacy
of the proposed integrated frequent RTO and adaptive
NMPC scheme with intelligent moving window estimator
is demonstrated by conducting simulation studies on a
benchmark CSTR system, which exhibits input multiplic-
ity and change in the sign of steady state.

This paper is organized in four sections. Details of the
proposed Integrated scheme are presented in the Section
2. The third section presents the results of the simulation
case study. The conclusions reached through analysis of
the simulation results are discussed in the last section.

2. ONLINE OPTIMIZING CONTROL INTEGRATED
WITH FDI

The proposed scheme has four components: (i) Fault di-
agnosis using NLGLR, (ii) state and parameter estima-
tor, (iii) real time optimization, and (iv) nonlinear model
predictive control. A schematic diagram of the proposed
online optimizing control scheme integrated with fault



Fig. 1. Schematic diagram of proposed integrated approach

diagnosis and identi�cation scheme is shown in Figure (1).
These components and their interactions are discussed in
this section.

2.1 Dynamic Process Model

Dynamics of the system under consideration is represented
by a set of nonlinear ODEs as follows

dx

dt
= f(x(t);u(t);�) (1)

yT (t) = g(x(t))

where, x 2 Rn represents state variables, u 2 Rm rep-
resents manipulated inputs, � 2 Rp represents the set of
model parameters/ unmeasured disturbances, and yT 2
Rr represents the true values of the measured outputs.
The operators f(:) and g(:) have dimension of (n� 1) and
(r � 1) ; respectively, and are assumed to be known. It is
assumed that the variation of parameters (�) occur at a
signi�cantly slower rate or at a lower frequency than the
rates at which states and manipulated inputs change. It is
further assumed that these variations occur as infrequent
abrupt jumps from their nominal values. For the purpose of
carrying out state estimation and NMPC, the set of ODEs
represented by eq. (1) are discretized under the assumption
that the manipulated inputs are piecewise constant, i.e.
u(t) = uk for kTs � t < (k + 1)Ts where Ts represents
the sampling interval. The discrete form of the model is
represented as follows

xk+1 = F(xk;uk;�) (2)

F(xk;uk;�) � xk +
Z (k+1)Ts

kTs

f(x(�);uk;�)d�

The unknown inputs in�uencing the state dynamics are of-
ten modelled as additive white noise in the state dynamics
Valluru et al. (2017). Thus, (2) is further modi�ed as

xk+1 = F(xk;uk;�) +wk (3)

where wk 2 Rn and wk �N (0n�1;Q). Also, the measure-
ments are assumed to be corrupted with zero mean white
noise

yk = g(xk) + vk (4)

where vk 2 Rr and vk �N (0r�1;R): This model is used
for developing state estimation, fault diagnosis, NMPC
and RTO components.

2.2 State Estimation under Fault Free Conditions

Under the fault free conditions, � is assumed to be at
some nominal value, say ��. Under this assumption, states
estimation is carried out using EKF

� Prediction step:bxkjk�1 = F[bxk�1jk�1;uk�1; ��] (5)

Pkjk�1 = �kPk�1jk�1�
T
k +Q (6)

�k = exp [AkTs] ; Ak =

�
@f

@x

�
(:)

(7)

where (:) � (bxk�1jk�1;uk�1;�).
� Kalman Update Step:bxkjk = bxkjk�1 + Lkek (8)

Ck =

�
@g

@x

�
(bxkjk�1) (9)

Lk = Pkjk�1C
T
k [Vk]

�1 (10)

ek = yk � g(bxkjk�1) (11)

Vk = CkPkjk�1C
T
k +R (12)

Pkjk = [I� LkCk]Pkjk�1 (13)
Under the normal operating conditions, it is assumed that
the innovation sequence has Gaussian distribution with
zero mean and covariance Vk, i.e. ek �N

�
0;Vk

�
.

2.3 Fault Detection

It is assumed that only one fault occurs at a time instant
and there is a su¢ cient time gap between the occurrence of
two faults. In this work, two faults can occur sequentially
in time with a su¢ cient time gap between them. Thus, an
abrupt change in ith parameter occurring at instant k0i is
represented as follows

�k = �� +��i�
(i)�(k � k0i) (14)

where, �� represents nominal value of the parameter, ��i
represents value of step change in ith parameter, �(i) is
fault location vector with ith element equal to one and all
other elements are zero and �(k�k0i) is unit step function
de�ned as follows:

�(k � k0i) =
�
0 if k < k0i
1 if k � k0i

�
(15)

where i can take a value from set f1; 2; ::; pg. A mea-
surement fault in jth sensor occurring at instant k0j is
represented as follows:

yk = g(xk) + vk +�bj�
(j)�(k � k0j) (16)

where, �bj is the fault magnitude in jth sensor where j
can take a value from set f1; 2; ::; rg.
When an abrupt change occurs in a parameter or a fault
occurs in measurement, the innovation sequence does not
remain zero mean. A fault detection test (FDT) is applied
at every sampling instant to detect the occurrence of a



fault. The test statistic for FDT is chosen as (Deshpande
et al. (2009))

�k = e
T
k [Vk]

�1
ek (17)

�k follows a chi-square distribution with r degrees of
freedom, which is used to determine the threshold, 
d; for
fault detection by choosing a suitable level of signi�cance,
say �d. Once the null hypothesis (i.e., there is no change) is
rejected at instant k � k0i, we set the detection time, td; as
td = k. This indicates a possibility of occurrence of a fault.
The fault is further con�rmed using a set of innovations
over window k 2 [td; td + Ng � 1] , where, Ng is NLGLR
window length. Test statistic for fault con�rmation is as
follows:

�k(td;Ng) =

td+Ng�1X
k=td

eTk [Vk]
�1
ek (18)

Test statistic given by eq. (18) also follows chi-square
distribution with r�Ng degrees of freedom. If the value of
�k(td;Nd) crosses the threshold value for the chosen level
of signi�cance, �c; then occurrence of a fault is con�rmed.
Here, we select �c smaller than �d to reduce the risk of
false alarms. The NLGLR window length Ng is treated
as a tuning parameter. If we choose smaller Ng then the
risk of detecting false alarms increases. However, choosing
large Ng will give delay in estimation and system will be
running in degraded mode. Once the occurrence of a fault
is con�rmed, then the nonlinear GLR scheme is used to
isolate the fault.

2.4 Fault Identi�cation using Nonlinear GLR

A version of NLGLR method for nonlinear system de-
veloped by Deshpande et al. (2009) is summarized here.
In this scheme, a separate model of the form eq. (14,
16) is developed for every hypothesized fault and EKF
is applied on each model in the time interval [td; td+Ng�
1] assuming fault has occurred at time td. Optimization
problem is posted to �nd out the best fault model, which
gives the minimum value of negative of the log-likelihood
function. A sample formulation under the assumption that
an abrupt change has occurred in ith parameter is given
as:

�b�i;0 = arg min��i J (��i) (19)

J (��i) =

24td+Ng�1X
j=td

�
eTj V

�1
j ej + log jVj j

�35
subject to:exjjj�1 = F[exj�1jj�1;uj�1; ��+��i�(i)] (20)ePjjj�1 = �j ePj�1jj�1�Tj +Q (21)

ej = yj�g(exjjj�1) (22)

Vj = Cj ePjjj�1CTj +R (23)

Lj = ePjjj�1CTj [Vj ]
�1 (24)exjjj = exjjj�1+Ljej (25)ePjjj = [I� LjCj ] ePjjj�1 (26)

��i 2 [��i;min;��i;max] (27)
j = td; td + 1; ::::; td +Ng � 1

The optimization problem is initialized withextd�1jtd�1 = bxtd�1jtd�1 and ePtd�1jtd�1 = Ptd�1jtd�1

A similar optimization problem is formulated for a bias in
jth sensor. Let F �ffl : l = 1; 2; ::; p+ rg denote a set of
all hypothesized faults where

F = ff��i : i = 1; 2; :::; pg ; f�bj : j = 1; 2; :::; rgg
An optimization problem is solved for each hypothesized
fault, i.e., for i = 1; 2; :::p + r. The fault is isolated by
�nding the minimum value of J (fi) over i = 1; 2; :::p+ r,
i.e.

f = arg
min
fi 2 F J (fi)

and the corresponding optimum �b�f;i or �bbf;j is treated
as the initial estimate of fault that has occurred at time
instant td:
Remark 1. In this work, it is assumed that only a single
fault occurs at a time instant. In practice, however, mul-
tiple faults can occur simultaneously at the same instant.
Deshpande et al. (2009) have shown that of Akaike In-
formation Criterion (AIC) can be used for fault isolation
when occurrence of multiple simultaneous faults are hy-
pothesized together with single faults. Thus, the proposed
scheme can be modi�ed to accommodate occurrences of
simultaneous faults using AIC.

2.5 Fault Magnitude Re�nement using Moving Window
EKF

NLGLR method gives an initial estimate of the fault. Fur-
ther, to improve that estimate a window based maximum
likelihood parameter estimation sachem developed by Val-
luru et al. (2017) is applied. This scheme simultaneously
gives estimates of states also. After fault identi�cation,
at current time instant k, we consider recent past input-
output data in time interval �k � [k�Nml; k] where, Nml
is length of estimation window. Assuming a parameter
fault has occurred, a sample formulation of the moving
window state and parameter estimation problem is as
follows (Valluru et al. (2017)):

�b�f;k = arg min��f

24 kX
j=k�Nml+1

�
eTj V

�1
j ej + log jVj j

�35
(28)

subject tobxjjj�1 = F[bxj�1jj�1;uj�1; ��+��f�(f)] (29)

Pjjj�1 = �jPj�1jj�1�
T
j +Q (30)

ej = yj�g(bxjjj�1) (31)

Vj = CjPjjj�1C
T
j +R (32)

Lj = Pjjj�1C
T
j [Vj ]

�1 (33)bxjjj = bxjjj�1+Ljej (34)
Pjjj = [I� LjCj ]Pjjj�1 (35)
��f 2 [��f;min;��f;max] (36)

j = k �Nml + 1; k �Nml + 2; ::::; k

When a bias in sensor is detected, the re�nement problem
is formulated w.r.t. �bf with the measurement model in
the optimization problem expressed as follows

ej = yj�
�
g(bxjjj�1)+�bf	 (37)

while the state predictions are carried out asbxjjj�1 = F[bxj�1jj�1;uj�1; ��] (38)



Once we observe that estimates of ��f (or �bf ) obtained
from the moving window scheme are not changing signi�-
cantly, we stop estimating the fault magnitude and revert
back to the normal EKF given by eq. (5-13). A hypothesis
test is carried out to decide when to stop the estimation
of the fault magnitude. To check whether the estimate has
saturated, we consider two sets of recent data of estimated
parameter fault in the time window [k � 2q + 1; k] i.e.,

�1 = f�b�f;k�2q+1:::::�b�f;k�qg
and

�2 = f�b�f;k�q+1:::::�b�f;kg
and we construct a hypothesis test as follows:

H0 : �1 = �2 or H1 : �1 6= �2 (39)
where �1 and �2 are expected values of data sets �1 and
�2; respectively. A t-test is statistics with 2q � 2 degrees
of freedom is given as

T = (��p � ��q)=(
p
(s2 � (2=q))) (40)

where s2 = (s21 + s
2
2)=2; s

2
1 and s

2
2 are sample variance

of �1 and �2 respectively. Given a signi�cance level �t.
The null hypothesis is accepted if jT j < t�t=2;2q�2. If
H0 is accepted at instant, say k = tf , then we stop
estimation of ��f and change �� appearing in eq. (5) under
the normal conditions to ��+��f;tf �

(f) while carrying out
state estimation under the new �fault free�condition. If it is
a fault in say f th sensor, then "corrected measurements",
i.e. yk�bf;tf �(f); are sent to the state estimator subsequent
to stopping the magnitude re�nement. This allows us to
detect and identify a fault that may occur in another
parameter/sensor subsequently.

2.6 Real Time Optimization

Once NLGLR identi�es change in a parameter, there is
a need to �nd out new optimum set-points. Thus, during
time interval k 2 [td; +Ng; tf ], RTO block is invoked; it
is invoked over a shifting window of Nrto samples. Let
�b�f;k for k = kRTO represent the parameter estimate
at the instant when RTO is invoked. Then, the following
optimization problem is formulated at RTO layer as:

min
us

JE(yc;us) (41)

subject to

f(xs;us; ��+�b�f;kRTO�(f)) = 0n�1 (42)
yc = gc(xs)

usmin � us� usmax (43)
ycmin � yc� ycmax (44)

where JE represents a suitable economic objective function
for the process, yc represents the controlled outputs.
Solution of the above optimization problem yields the
optimal setpoints rk = yc, which is given to the NMPC
component. If a sensor fault is identi�ed by NLGLR,
optimum set-points of the system do not change and
invocation of RTO is not needed. Thus, RTO is invoked
only when NLGLR identi�es a fault in parameter.

2.7 Adaptive NMPC Formulation

At current kth time instant, the following optimization
problem is solved over a prediction horizon [k; k +Np]

min
fukjk; ::;uk+Np�1jkg

Np�1X
j=0

n
ETk+j+1jkWEEk+j+1jk + J�u

o
(45)

J�u = �u
T
k+jjkW�u�uk+jjk

subject to,
zk+j+1jk = F[zk+jjk;uk+jjk;�] + Lkek;f (46)byc;k+j+1jk = gc(zk+j+1jk) + "k;f (47)

umin � uk+jjk � umax (48)
for j = 0; 1; ::::; Np � 1

Ek+jjk = ŷc;k+jjk � rk for j = 1; ::::; Np (49)

�uk+jjk = uk+jjk � uk+j�1jk (50)
for j = 1; 2; :::Np � 1
�ukjk = ukjk � uk�1 (51)

zkjk = bxkjk
where, Np is the prediction horizon. WE and W�u are
weighting matrices. Here, ek;f and "k;f represent �ltered
innovation signal and �ltered estimation error sequence
which are computed as follows:

ek;f = �ek�1;f + (1� �)ek (52)

"k;f = �"k�1;f + (1� �)"c;k (53)
where ek = yk � g(bxkjk�1) and "c;k = yc;k � gc(bxkjk):
Here, � 2 (0; 1) is a tuning parameter. These signals are
used to compensate the model predictions for the model
plant mismatch. The parameter vector � in the prediction
equation (46) is adapted on-line as follows:

� =

8<:
�� for k < td +Ng

��+��f;k�
(f) for k 2 [td; +Ng; tf ]

��+��f;tf �
(f) for k � tf

9=; (54)

This makes the NMPC formulation adaptive and sensitive
to the parameter variations. Also, note that if a sensor bas
is isolated, the "corrected measurements" and "corrected
controlled outputs" are used for computing signals ek and
"c;k.

3. SIMULATION STUDIES

A CSTR system exhibiting input multiplicity is chosen to
demonstrate the e¢ cacy of the proposed approach. The
system dynamics is represented by the following set of
nonlinear ODE�s (Deshpande et al. (2009)):

dCA
dt

=
Fi
hAc

(CAi � CA)�K1CA +K2CB (55)

dCB
dt

= � Fi
hAc

CB +K1CA �K2CB (56)

dT

dt
=

1

hAc
Fi(Ti � T ) +

�Hr
�Cp

(K1CA �K2CB) (57)

dh

dt
=

1

Ac
(Fi � k

p
h) (58)

K1 = kf exp(
�Ef
T
); K2 = kb exp(

�Eb
T
)

A reversible �rst order reaction takes place in the CSTR
system where A is converting to product B (A 
 B).
Concentration of B (CB), level (h) and Temperature (T )
are assumed to be measured states. Concentration of A
(CA) is an unmeasured state. CB , and h are controlled
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Fig. 2. CSTR system: steady state operating points (CAi;
kf )

outputs. Inlet �ow rate (Fi) and inlet Temperature (Ti) are
treated as the manipulated inputs. Forward reaction rate
constant (kf ) and inlet concentration (CAi) are considered
as time varying set of parameters. Nominal parameters
and initial optimal steady state conditions can be found
in Li and Biegler (1988). The steady state characteristic
of this system is shown in Figure (2). This �gure shows
steady state optimal pro�le of CB w.r.t. change in inlet
Temperature for di¤erent set of parameters values of CAi
and kf . We can see the peak point shifts when parameter
set (CAi; kf ) changes. The objective of controller is to
maintain the system at the shifting peak point. It is
di¢ cult to control at the peak because steady state gain
changes its sign across the peak. The Sampling time
interval (Ts) is taken 0:1 min.

In this case study, we have hypothesized �ve di¤erent
faults as: (i) fault in unmeasured disturbance (CAi), (ii)
fault in parameter (kf ), (iii) biases in all three sensors, i.e.

F = f�CAi;�kf ; f�bj : j = 1; 2; 3gg
NLGLR and estimation window length are Ng = 40 and
Nml = 20; respectively. Levels of signi�cance for fault
detection and con�rmation are taken 0:0005 and 0:0001;
respectively. Step changes of �16:66% and +16:66% are in-
troduced in kf at 100th and 800th time instant respectively.
Similarly, step changes of +20% and �20% are introduced
in CAi at 400th and 1200th time instant respectively. The
nominal steady state condition for plant and estimator are

xs = [ 0:4912 0:5088 438:4889 0:1600 ]
T

and us = [ 1 435:945 ]
T . State noise and measurement

noise covariances are chosen as:
Q = diag

�
0:00252 0:00252 0:07502 0:00102

�
R = diag

�
0:00252 0:12 0:0012

�
Estimator is initialized with bx0j0 = xs and P0j0 = 5 �
Q. MPC controller tuning parameters, Error weighting
matrix (WE) and Input change weighting matrix (W�u)
are as follow:

WE = 10
2 � I2�2 andW�u = diag [ 1 0:1 ]

Prediction horizon (Np) and control horizon (Nc) are
selected 25 and 4; respectively. RTO is invoked at every
10 sampling instant after fault con�rmation (Nrto = 10).
The objective function at RTO layer is chosen as JE =
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Fig. 3. CSTR System: Inlet concentration(CAi) fault and
kinetic rate constant (kf ) fault estimation
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Fig. 4. CSTR System: Ideal and estimated setpoint (CB )
comparison
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Fig. 5. CSTR System: Comparison of setpoint (CB) track-
ing with and without RTO

�CB ; which is minimized w.r.t decision variable Ti. For
estimation stopping criterion, to compare the mean of 2
data sets from recent past 80 data points with each set
of q = 40 are used to apply the hypothesis test with
signi�cance level �t = 0:03.

Figure (3) shows estimation of unmeasured disturbance
(CAi) and parameter (kf ), respectively. It is evident from
these �gures that proposed approach is able to isolate
the correct fault and moving window estimation scheme is
able to improve the fault magnitude estimates. However,
the �nal value of the estimated parameter depends on
stopping criterion; as a consequence, a small bias appears
between the estimate and the true value. Comparison of
ideal and estimated setpoint is shown in Figure (4). The
ideal setpoints are calculated assuming that the parameter
variation is perfectly known to RTO and RTO is invoked
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Fig. 6. CSTR System: Comparison of setpoint (h) tracking
with and without RTO
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Fig. 7. CSTR System: Input Inlet Temperature pro�le
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Fig. 8. CSTR System: Comparison of true and estimated
state CA

only once when parameter changes. It can be observed that
estimated setpoint pro�le is able to closely track the ideal
optimum setpoint. Figure (5) presents setpoint tracking
pro�le of CB . This �gure also compares the tracking of
CB when setpoint is kept at nominal value (i.e., RTO is
not invoked) throughout the simulation. In this case, when
setpoint shifts above the nominal setpoint, we can see that
the CSTR is operated under suboptimal conditions and as
it tracks the nominal setpoint. On the other hand, when
the nominal setpoint become infeasible, the NMPC results
in an o¤set and also results in a sub-optimal operation.
The tracking of level setpoint is shown in Figure (6). An
o¤set is observed in the case when RTO is not invoked.
Input pro�les of inlet temperature obtained from the two
NMPC schemes are shown in Figure (7). Comparison
of true and estimated unmeasured state, CA; obtained
using the proposed intelligent state estimation scheme is
presented in Figure (8). It is observed that estimated states
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Fig. 9. CSTR system: sensor bias estimation
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Fig. 10. CSTR system: setpoint tracking of CB with sensor
bias
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Fig. 11. CSTR system: setpoint tracking of level (h) with
sensor bias

are able to track true states with a delay. NLGLR uses
data over a window results in the delay in the parameter
estimation, which causes a mismatch between the true and
estimated states during application of NLGLR.

Another simulation is run to show the e¢ cacy of the
proposed scheme in the presence of sensor biases. Simu-
lation is carried out for 1200 samples. Biases in sensors
are introduced sequentially as follows: a bias of magnitude
�0:050 is introduced in the measurement (CB) at 100th
time instant, followed by biases of magnitude �2 and 0:020
are introduced in the measurements (T and h) at 800th

and 400th time instants, respectively. From the Figure (9),
it can be observed that the proposed scheme is capable
to identify and track the correct fault. When a sensor
bias is isolated, there is no need to invoke RTO and the
setpoints remain at their nominal values. Figures (10)
and (11) show that the tracking of setpoint for CB and
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Fig. 12. CSTR System: Comparison of true and estimated
state (CA and T ) with sensor bias

h, respectively. As can be seen from these �gures, the
proposed fault compensation scheme is able to move and
maintain the true states close to their respective setpoints
while an o¤set develops between the measured outputs and
setpoints. Figure (12) presents comparison of estimated
and true states for CA and T . As can be seen from this
�gure, the estimated states tracks the true states except
for time intervals when data is collected for application of
NLGLR. A small sustained bias is observed in estimates
of CA, which can be attributed to inaccuracies in the fault
magnitude estimates.

The average computation time required for implementing
the integrated FDI, RTO and NMPC scheme (using a PC
with 8GB RAM, Intel(R) Xeon(R) CPU E3-1226 v3 @
3.30Ghz processor and �fmincon� function) was 4.13 sec.
When the system operated under NMPC alone between
two instances of occurrence of parameter change/ sensor
bias, then the average computation time is 0.46 sec.

4. CONCLUSION

This work attempts to enlarge the scope of the integrated
RTO-MPC scheme developed by Valluru and Patwardhan
(2019) to include a wider operating envelope of the process
covering both normal and o¤-normal and abnormal operat-
ing scenarios. This is achieved by combining fault diagnosis
(nonlinear GLR approach (Deshpande et al. (2009))) with
simultaneous state and parameter estimation (moving win-
dow state and parameter estimator (Valluru et al. (2017)))
with embedded intelligence to discern the impending sit-
uation and con�gure the state and parameter estimator
to work in an e¢ cient and parsimonious manner. The
estimation of parameter(s)/bias is carried out only when
required and triggered by the fault identi�cation scheme.
Thus, the subset of parameters that are being estimated
online can change with time. The proposed approach em-
ploys a single model to carry out four di¤erent tasks:
process monitoring, state and parameter estimation, non-
linear control, and real-time optimization. The proposed
intelligent optimizing control scheme is implemented on
a benchmark CSTR system exhibiting input multiplicity
behavior. The set of hypothesized faults consists of abrupt
changes in an unmeasured disturbance, a reaction kinetics
parameter, and biases in three sensors. The optimum op-
erating point of this system is sensitive to the mean shift
in the unmeasured disturbance or the system parameter.
The proposed approach successfully isolates the parame-

ter/ unmeasured disturbance that has undergone abrupt
change and uses the estimated values of the parameter
to update models used in the RTO and NMPC. Thus,
the shifting economic optimum is tracked without signi�-
cant delays. When a sensor measurement becomes biased,
the proposed scheme can correctly isolate the bias sensor
and make appropriate modi�cations to the measurement
model. Also, the proposed fault-tolerant control scheme
maintains the true values of the states at the speci�ed
setpoint in the presence of sustained bias. Moreover, the
proposed approach can isolate multiple changes in para-
meters or sensor biases that occur sequentially in time.
Thus, the proposed integrated approach can be viewed
as a step toward developing an autonomous, �exible, and
resilient closed-loop system. This work was focused only
on abrupt changes in parameters and soft faults. The work
is further being extended to accommodate slowly drifting
parameters and sensor/actuator failures.
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