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Abstract: Biohydrogen produced from microorganisms such as cyanobacteria is a promising
low cost, sustainable and environmentally friendly energy source. Recent studies have shown
that high biohydrogen yield can be obtained from Cyanothece sp. ATCC 51142 in a fed-batch
reactor. This system has been accurately described with a modified Droop model that can be
used for optimization studies. Searching for the optimal operating conditions and the switching
time from batch to fed-batch operation, such that the biohydrogen production is maximized,
leads to a challenging singular optimal control problem. In this study, a novel reformulation
based on the theory of switched systems and time-scaling transformation is proposed to address
the switching of the operating modes and the optimal control structure. Solutions are found
by solving an embedded optimal control problem that can be solved efficiently as a nonlinear
programming problem. No mesh refinement is required to capture the switching times. Smooth
optimal control profiles and clear switching structures that maximize the biohydrogen yield were
found for two types of control parametrization.
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1. INTRODUCTION

Hydrogen has been considered a green alternative to re-
place fossil fuels in diverse applications for many years as
it can be used as a clean energy carrier for heat supply and
transportation purposes. Hydrogen holds the potential for
affordable energy supply with reduced green house gas and
air pollutant emissions (Falcone et al., 2021). Recent im-
provements in technology and manufacturing have allowed
hydrogen to play an important role in the transition to-
wards a low-carbon economy (Staffell et al., 2019). Biologi-
cal processes have gained interest for sustainable biohydro-
gen production from renewable energy sources (Akhlaghi
and Najafpour-Darzi, 2020). In particular, biohydrogen
can be obtained efficiently from different microorganisms
such as cyanobacteria in a batch/fed-batch reactor (Zhang
et al., 2015). Since the process performance depends on
many factors such as influent substrate concentration and
dilution rate, it is critical to find the optimal operating
conditions that maximize the biohydrogen yield. Despite
the significance, only a few efforts have been made to
develop offline and online optimization studies for this
specific system (del Rio-Chanona et al., 2015; del Rio-
Chanona et al., 2016).

The problem of maximizing the biohydrogen yield in a
fed-batch system can be cast as an optimal control (OC)
problem. In fed-batch reactors, the control variable (e.g.,
dilution rate, influent concentration) appears linearly in
the dynamic model. As a result, the problem becomes a
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singular optimal control (SOC) problem leading to analyti-
cal and numerical difficulties in finding an optimal solution
(Shukla and Pushpavanam, 1998). Moreover, the kinetic
models (e.g., Droop model) often used in the mathematical
description of these processes include highly nonlinear
terms that introduce additional challenges to the solution
techniques (Banga et al., 2005). Recent computational
strategies have been proposed to solve SOC problems
more efficiently (see Andrés-Mart́ınez et al. (2020) and
the references therein). However, those strategies usually
require expensive computations, mesh refinement, param-
eters tuning or continuation methods, and/or derivation
of an analytical expression for the singular arc. More-
over, those methods have not been tested rigorously on
batch/fed-batch systems.

In this work, the SOC problem is addressed using a
switched system approach. In this type of systems, the
right hand side of the dynamic model consists of different
modes that can be active or inactive according to a fixed
or variable switching structure. In a SOC problem, the
system consists of three different modes defined by each
control arc. A binary function that chooses the type of
arc is introduced and relaxed by applying an embedding
approach. A time scaling transformation is applied to
handle variable switching times. The resulting formulation
is amenable to standard numerical techniques such as
those based on mathematical programming. The proposed
methodology is used to find an optimal control switching
structure and the optimal switching time from batch to
fed-batch operation such that the biohydrogen production
is maximized.



The rest of the study is structured as follows. In Section
2, the maximization of biohydrogen production is stated
as a singular optimal control problem. In Section 3, an
equivalent switched optimal control problem is formulated.
A more tractable formulation is obtained by applying the
embedding approach and time-scaling transformation. In
Section 4, a solution strategy based on a direct method
is explained. In Section 5, the proposed formulation is
applied to maximize the biohydrogen yield. Section 6
presents conclusions and future work.

2. OPTIMAL CONTROL FORMULATION

This section presents the main optimal control problem
addressed in this work. We show that the optimal control
may contain singular arcs.

2.1 Biohydrogen maximization problem

The fixed volume fed-batch reactor dynamic model used
in the present study was taken from del Rio-Chanona
et al. (2015). More details of the process can also be found
in Zhang et al. (2015). A modified Droop model is used
to describe the biohydrogen production from the species
Cyanothece sp. ATCC 51142 at constant temperature.
The maximization of biohydrogen is formulated as the
following OC problem:

min
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where X, C, N , q, O and H are the biomass, glycerol,
nitrate, intracellular nitrogen source, oxygen and hydro-
gen concentrations, respectively; the functions f(N) and
f(O) are used to regulate the start and termination of
hydrogen production; Fin denotes the influent flow rate;
Cfed, Ofed and Nfed are the glycerol, oxygen and nitrate
concentrations in the influent, respectively; T is the time
when the influent starts to be added to the reactor, i.e.,

the system switches from batch to fed-batch operation;
YC/X , YN/X , Yq/X , YO/X are the yields of nutrients and
products; µmax is the maximum biomass specific growth
rate; µd is the biomass specific respiration rate. The nitrate
concentration Nfed of the influent is used as the control
variable subject to the following constraints:

NL
fed ≤ Nfed ≤ NU

fed (12)

where NL
fed and NU

fed are the lower and upper nitrate
concentration limits, respectively. The modified Droop
model used in the OC model is able to describe all the
relevant growth phases of cyanobacteria, i.e., primary and
secondary growth phases, stationary phase, and decay
phase. Hydrogen is generated for the most part during
the decay phase.

Remark The optimization of this process has been
studied in del Rio-Chanona et al. (2015) and Valvassore
et al. (2021) using different approaches. However, in both
studies, the terms µmax and µd are missing in equation
(6). Therefore, those terms were added in the present
study such that the dimensions in the model are consistent
(Zhang et al., 2015; del Rio-Chanona et al., 2016).

2.2 Singular control

The OC problem (1)-(11) can be reformulated in a more
compact form as the following Mayer OC problem, where
the control variable u(t) appears linearly in the formula-
tion:

min
T,u

φ(z(tf ))

s.t ż(t) = f (z(t)) + g (z(t))u(t) (13)

uL ≤ u(t) ≤ uU

z (t0) = z0, t ∈ [t0, tf ]

where z is an n × 1 vector of state variables and u is the
control variable, which is considered piecewise continuous;
φ : Rn → R is a C1 function describing the terminal
(or endpoint) cost; the functions f : Rn → Rn and
g : Rn → Rn are of class C1; uL and uU are the lower
and upper bounds on u(t), respectively. Definitions of each
term in (13) are provided in Appendix A. We define the
Hamiltonian function for problem (13) as follows:

H (t) = λ(t)T [f (z(t)) + g (z(t))u(t)] (14)

where λ(t) ∈ Rn are the adjoint variables. The so-called
switching function can be obtained from the differentiation
of H(t) with respect to u(t), i.e.,

σ(t) = Hu(t) = gT (z(t))λ(t) (15)

A characterization of the solution of problem (13) can be
obtained by applying the Pontryagin’s minimum principle,
which establishes that an optimal control u(t) must mini-
mize the Hamiltonian as follows (Ko and Steve, 1971):

u(t) =


uL σ(t) > 0,

uU σ(t) < 0,

us(t) σ(t) = 0

(16)

which means that u(t) is at its lower (upper) bound when
σ(t) > 0 (σ(t) < 0). These values are known as non-
singular arcs. On the other hand, when σ(t) = 0, the
optimal control is given by a singular arc us(t) ∈

(
uL, uU

)
that minimizes the Hamiltonian, i.e., Hus

(t) = 0. However,



this expression does not contain us(t) because u(t) appears
linearly in the Hamiltonian function (14). As a result, the
principle does not provide enough information to derive
us(t). The points in t where the control switches between
singular and non-singular arcs are called switching times
or switching instants. In some particular cases, a solution
to problem (13) consists only of non-singular arcs, i.e., u(t)
switches between uL and uU leading to a bang-bang struc-
ture. However, in general, the optimal control u(t) usually
consists of a concatenation of non-singular and singular
arcs, e.g., bang-singular, bang-singular-bang. In order to
obtain an expression for us(t), repeated differentiation of
Hu(t) with respect to time must be performed until u(t)
appears explicitly, which is a procedure that can become
quite involved. Also, there may be cases when u(t) never
appears. An additional complication is that the switching
sequence of non-singular and singular arcs is not known a
priori. Thus, solving the problem by applying Pontryagin’s
principle can become quite challenging.

Alternatively, a direct method can be applied by trans-
forming problem (13) into a nonlinear programming prob-
lem (NLP) where z(t) and u(t) become decision variables
at each discrete point in t. This strategy avoids the use of
the switching function σ(t) and is the approach adopted
in the present study. However, the NLP becomes ill con-
ditioned due to the singularity leading to aggressive os-
cillations in the control profile (Kameswaran and Biegler,
2006). Moreover, in order to properly capture the switch-
ing sequence, a fine mesh of variable size is commonly used
in the discretization of t giving rise to a very large and
highly non-convex problem. To circumvent these issues, in
this work we propose a reformulation of (13) such that
optimal and smooth control profiles and a well-defined
switching sequence are obtained at low computational
effort without resorting to mesh refinement.

3. EQUIVALENT FORMULATION

This section presents a reformulation of the OC problem
based on the theory of switched systems and time-scaling
transformation.

3.1 Switched optimal control problem

Let i ∈ I = {1, . . . , 3} indicate the kind of control arc
ui(t). Without loss of generality, we let u1(t), u2(t), u3(t)
represent uL, uU , us(t), respectively. Thus, the dynamic
constraints in problem (13) can be written as a switched
system as follows:

ż(t) =

3∑
i=1

αi(t) [f (z(t)) + g (z(t))ui(t)] , z (t0) = z0

(17)
for ui(t) ∈ Ω where Ω ⊂ R is a compact and convex set;
αi(t) ∈ {0, 1} is a binary function that selects only one
arc ui to become active at time t, i.e.,

3∑
i=1

αi(t) = 1 (18)

Since the functions f(·) and g(·) do not depend on ui, and
constraint (18) must be satisfied, we can rewrite equation
(17) as follows:

ż(t) = f (z(t)) + g (z(t))w(t), z (t0) = z0 (19)

where:

w(t) =

3∑
i=1

αi(t)ui(t) (20)

Therefore, depending on the values of αi(t), w(t) becomes
uL, uU or us(t). The initial and final states are assumed
to satisfy (t0, z(t0)) ∈ T0×B0 and (tf , z(tf )) ∈ Tf ×Bf for
a compact set B = T0 × B0 × Tf × Bf ⊂ R2n+2. Since the
fixed values uL and uU appear explicitly in the switched
formulation, the only continuous control variable is us(t).
Thus, a switched SOC problem is defined as follows:

min
T,αi,us∈Ω,i∈I

φ(z(tf )) (21)

subject to constraints (18), (19) and boundary conditions
(t0, z(t0), tf , z(tf )) ∈ B. Problem (21) can be solved as a
mixed-integer OC problem, which may be computation-
ally expensive and requires special algorithms, e.g., outer
approximations and branch and bound.

3.2 Embedding approach

We embed the system (17) into a larger family by relaxing
the condition αi(t) ∈ {0, 1} to αEi(t) ∈ [0, 1] for i ∈ I
such that binary variables are avoided. Thus, the embed-
ded system takes the following form:

żE(t) = f (zE(t)) + g (zE(t))wE(t), zE (t0) = z0 (22)

where:

wE(t) =

3∑
i=1

αEi(t)uEi(t) (23)

such that
3∑
i=1

αEi(t) = 1 (24)

We can define an embedded SOC as follows:

min
T,αEi,uEs∈Ω,i∈I

φ(zE(tf )) (25)

subject to constraints (22), (24) and boundary conditions
(t0, zE(t0), tf , zE(tf )) ∈ B. We assume that the set of
admissible pairs (zE , uE) is nonempty and that there is
a compact set which includes all the points (t, zE(t)) for
t ∈ [t0, tf ]. An important result from switched systems
theory is that the set of trajectories of the switched system
(17) is dense in the set of trajectories of the embedded
system (22) (Bengea and DeCarlo, 2005). Therefore, a
solution of the embedded OC (25) is either binary (one of
the αi is 1, whereas the others are 0) or a trajectory of the
embedded system can be approximated by trajectories of
the switched system to an arbitrary precision. As a result,
it is possible to generate optimal solutions for the switched
OC (21) by solving the embedded version (25).

Proposition The embedded SOC problem (25) satisfies
sufficient conditions for existence of a solution.

Proof. In addition to the assumptions previously made on
the pairs (zE , uE), (t, zE(t)) and on the sets B and Ω, it is
required that the function f (zE(t)) + g (zE(t)) is affine in
each control uEi (Bengea and DeCarlo, 2005) to guarantee
the existence of a solution to problem (25). This property
is fulfilled given that the singularity comes from the fact
that u(t) occurs linearly in the original formulation.



Note that problem (25) contains only continuous variables;
hence, it can be solved using standard numerical meth-
ods, such as indirect or direct approaches. However, the
presence of singular arcs uEs and the unknown switching
sequence of arcs requires a special treatment. This is dis-
cussed next.

3.3 Time-scaling transformation

We divide the time interval into M subintervals k =
1, . . . ,M , with 0 = τ0 < τ1 < . . . < τM = tf , where
τk for k = 1, . . . ,M − 1 are the switching instants at
which the control switches from one arc to another. These
instants can be treated as decision variables such that
they are optimally located. Thus, we apply a time-scaling
transformation that maps the variable switching instants
to equally spaced points on a new time domain s (Teo
et al., 1999). This new domain is evenly divided into M
subintervals with fixed points 0 = s0 < s1 < . . . < sM =
M , where sj for j = 1, . . . ,M − 1 are now fixed switching
instants. The relation between t and s is given by:

ṫ(s) =

M∑
k=1

vkχk(s), t(s0) = 0, t(sM ) = tf (26)

where vk = τk − τk−1 ≥ 0 is the duration of subinterval
k, and χk(s) is the indicator function. When (26) is
integrated, we obtain:

t(s) =

j−1∑
k=1

vk + vj (s− sj + 1) , s ∈ (sj−1, sj ] (27)

j ∈ J = {1, . . . ,M}
hence, for each k = 1, . . . ,M , we can recover the switching
instant τk as follows:

t(k) =

k∑
j=1

vj =

k∑
j=1

(τj − τj−1) = τk (28)

We denote the value of αEi on (sj−1, sj ] as αEij for j ∈ J .
Thus, the dynamic system can be rewritten in the new
time domain s as follows:

˙̂zE(s) =

M∑
j=1

vj [f (ẑE(s)) + g (ẑE(s)) ŵE(s)]χj(s) (29)

where

ŵE(s) =

3∑
i=1

α̂Eij ûEi(s) (30)

such that
3∑
i=1

α̂Eij = 1, j = 1, . . . ,M (31)

Since the process begins in batch operation and then
switches to fed-batch, the variable T becomes the first
switching instant τ1. Accordingly, an embedded SOC prob-
lem in the new time domain s can be defined as follows:

min
α̂Eij ,vj ,ûEs∈Ω,

i∈I,j∈J

φ(ẑE(sM )) (32)

subject to constraints (26), (29), (31) and boundary con-
ditions (t0, ẑE(t0), tf , ẑE(tf )) ∈ B. Therefore, for a given
number M of subintervals in s, the optimal values of α̂Eij
select the type of arc i for each subinterval j. Furthermore,
the values of vj define the duration of each subinterval and

hence the switching instants in the original time domain
t.

4. SOLUTION STRATEGY

4.1 Direct method

Problem (32) can be solved with a direct method, i.e.,
it is fully discretized and solved as an NLP. For a given
number ofM subintervals, we apply orthogonal collocation
on each subinterval j (Finlayson, 1980). In order to reduce
the ill conditioning of the NLP caused by the singular
arc ûEs(s), we use the values of ûEs(s) at certain discrete
points in each subinterval to parameterize the singular arc.
For fed-batch reactors, the control is usually parameterized
as a piecewise constant function. In the present work,
we also use a cubic spline interpolation as it can adopt
different shapes (e.g., straight lines, monotonic and non-
monotonic curves) and avoid harsh oscillations (Andrés-
Mart́ınez et al., 2020). Thus, within each subinterval,
the control variable is continuous but it is allowed to
jump from one subinterval to another. Therefore, mesh
refinement procedures are not needed to capture the
switching instants as they are fixed a priori in the new
domain s. An educated initial guess can be obtained by
solving problem (13) as an NLP after full discretization.
This coarse solution provides insights into the maximum
number of control arcs.

4.2 Properties of the solution

When solving problem (32), two types of solutions can
be obtained: α̂Eij takes binary values for each subinterval
j, or α̂Eij takes nonbinary values for some subintervals.
The former means that a solution to the switched SOC
problem (21) has been found, whereas a binary solution
can be constructed in the latter case (Bengea and DeCarlo,
2005). However, a nonbinary solution of α̂Eij implies that
the optimal control ŵE(s) given by the expression (30)
consists of a combination of uL, uU and ûEs(s). Thus,
ŵE(s) can take values within the interval (uL, uU ), i.e.,
it is also a singular arc. Consequently, unless the singular
arc is required to be given uniquely by ûEs(s), it is not
necessary to construct binary solutions and we can let the
singular and non-singular arcs be given by ŵE(s).

5. NUMERICAL STUDY

In this section, the proposed formulation (32) is applied
to solve the OC problem (1)-(11). The parameter values
and the operating conditions were taken from del Rio-
Chanona et al. (2015) and are listed in Table 1 and
Table 2, respectively. The value of KC is found in the
same reference as KC = 0. Thus, the term C/(KC +
C) is reduced to 1. Influent nitrate concentration limits
were set to NL

fed = 0.0 mg L-1 and NU
fed = 4000

mg L-1. The total number of subintervals was fixed to
M = 8 based on a coarse solution obtained by direct
transcription of problem (13). Six Radau points were used
for collocation. The following constraints were explicitly
added in the formulation to prevent these variables from
taking negative values: C ≥ 0, N ≥ 0, O ≥ 0, H ≥ 0.
Solutions were obtained in Julia (1.6.2)/JuMP (0.21.9)



(Bezanson et al., 2017; Dunning et al., 2017). The NLP
problems were solved with Ipopt (3.13.4) (Wächter and
Biegler, 2006).

5.1 Results

The optimal influent nitrate concentration profiles are
shown in Figure 1 for piecewise constant (wc(t)) and cubic
spline expressions (wsp(t)) for ûEs(s). At the beginning of
the fed-batch operation, both control profiles take a singu-
lar arc that promotes a rapid increase of biomass (Figure
2), which is slightly greater for wsp(t) as the singular arc
is touching uU almost the entire subinterval. This increase
delays the hydrogen production at the beginning of the
operation (Figure 3) as the nitrogenase activity is inhib-
ited during this phase. At around 100 hours, the biomass
concentration exhibits a short stationary phase followed by
a decay phase. After approximately 155 hours, the nitro-
genase activity is stimulated; hence, there is a substantial
increase in hydrogen. During this subinterval both control
profiles follow a singular arc for a long period such that
the hydrogen production keeps increasing. The difference
in the shape of each singular arc during this phase (Figure
1) leads to evident but small differences in the biomass
concentration and hydrogen production profiles, as shown
in Figures 2 and 3, respectively. After the second singular
arc, wc(t) switches to the lower bound uL and then to
another singular arc very close to uL. This structure is
not observed for wsp(t) which switches from the second
singular arc to another singular arc directly. Then, both
control profiles remain at uL until tf is reached, which
suggests that the influent nitrate is completely suppressed
for the remaining operation time.

The optimal control profile when ûEs(s) is represented by
a constant function in each subinterval is as follows:

wc(t) =



us(t) t ∈ [19.836, 137.745]

us(t) t ∈ [137.745, 429.310]

uL t ∈ [429.310, 468.274]

us(t) t ∈ [468.274, 600.442]

uL t ∈ [600.442, 720]

(33)

The corresponding objective function value is H(tf ) =
537.484 mL/L. The optimal switching time from batch
to fed-batch operation is T = 19.836. The problem was
solved in 0.701 CPU seconds.

The optimal control profile when ûEs(s) is represented by a
cubic spline interpolation in each subinterval is as follows:

wsp(t) =


us(t) t ∈ [20.271, 117.276]

us(t) t ∈ [117.276, 479.450]

us(t) t ∈ [429.310, 603.195]

uL t ∈ [603.195, 720]

(34)

The corresponding objective function value is H(tf ) =
540.964 mL/L. The optimal switching time from batch
to fed-batch operation is T = 20.271. The problem was
solved in 0.587 CPU seconds.

Note that even though the problem was solved with eight
subintervals, the control profiles consist of five and four
arcs for uc(t) and usp(t), respectively. The hydrogen pro-
duction is only 0.65% higher when ûE(s) is represented by

Table 1. Parameter values.

parameter value parameter value

µmax [h-1] 0.04765 YN/X [mg g-1] 244.6
kq 0.6281 Yq/X 1.723
µd [L g-1 h-1] 0.008559 Yd [L g-1] 26.22
KN [mg L-1] 50.0 YC/X [mmol g-1] 20.83
YH/X [mL g-1] 2.34 YO/X [L g-1 h-1] 14.60

Table 2. Operating conditions.

X(t0) 0.2 g L-1 H(t0) 0.0 mL
C(t0) 50 mmol L-1 Ofed 20%
N(t0) 150 mg L-1 Cfed 50 mmol L-1

q(t0) 1.0 tf 720 h
O(t0) 20%
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Fig. 1. Optimal control profiles.
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Fig. 2. Optimal biomass concentration.

a cubic spline interpolation in each subinterval as the con-
trol variable has more degrees of freedom. Moreover, two
different control representations lead to similar biomass
and hydrogen profiles. This is a common feature of SOC
problems as some uniqueness properties are lost.

The results obtained in the present study are significantly
different from those reported in the literature due to
the differences in the model (see Remark in Section 2).
Nevertheless, clear advantages can be identified in terms of
computational complexity. del Rio-Chanona et al. (2015)
report 152 seconds to solve the optimization problem with
an initial guess obtained after 9 hours, whereas Valvassore
et al. (2021) report 30 minutes to obtain their best
solution. Therefore, the present formulation is attractive to
address singular optimal control problems for challenging
batch/fed-batch systems.



6. CONCLUSION

In the current study, the optimal control of a batch/fed-
batch reactor to maximize the hydrogen production from
Cyanothece sp. ATCC 51142 described with a modified
Droop model has been studied. A novel switched system
formulation was developed to capture the singular control
structure and the switching between batch and fed-batch
operation. The resulting optimal control problem was
solved efficiently as a nonlinear programming problem.
Rigorous numerical treatments, such as mesh refinement
and continuation methods, are avoided. Smooth optimal
control profiles and clear switching structures were found
such that the hydrogen production is maximized. Future
work aims at implementing the proposed reformulation to
a broader class of singular control systems.
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Fig. 3. Optimal hydrogen production.
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Appendix A. FUNCTIONS IN PROBLEM (13)

f (z(t)) ≡

µmaxX

(
1−

kq

q

)
C

KC + C
− µdX

2

−YC/XµmaxX

(
1−

kq

q

)
C

KC + C
+ FinCfed

−YN/XµmaxX
N

KN +N

Yq/Xµmax

N

KN +N
− µmax

(
1−

kq

q

)
q

C

KC + C

YO/XµmaxX
N

KN +N
− YdµdX

2f(O) + FinOfed

YH/XX (1− f(O)) f(N)


(A.1)

g (z(t)) ≡
[
0 0 Fin 0 0 0

]T
(A.2)

φ
(
z(tf )

)
≡ −H(tf ) (A.3)

z(t) ≡
[
X C N q O H

]T
(A.4)

u(t) ≡ Nfed (A.5)


