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Abstract: In this paper, we present a distributed approach to simultaneously estimate state
and parameter for a class of nonlinear systems, for which the augmented models comprising both
the states and parameters are not fully observable. Specifically, we first discuss how sensitivity
analysis (SA) can be used to select the best subset of states and parameters for estimation.
Then, the entire system is decomposed into several interconnected subsystems as the basis for
distributed estimation. Subsequently, a local moving horizon estimator (MHE) is developed
based on the corresponding subsystem model, and the local estimators communicate with each
other to exchange their estimates. Finally, an SA-based distributed MHE scheme is proposed.
The effectiveness of the proposed approach is illustrated using a chemical process consisting of
four connected reactors.
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1. INTRODUCTION

Large-scale complex chemical processes are becoming the
rule rather than the exception due to their economic
benefits. Therefore, most of the existing state estimation
methods developed under the centralized framework are
not favorable for such processes. Distributed state esti-
mation has been developed as a more flexible and scal-
able framework for complex processes (Yin et al. (2019);
Mahmoud (2016)). Distributed moving horizon estimation
(DMHE) is a popular distributed state estimation scheme
(Zhang and Liu (2013); Battistelli (2019)). For example, a
DMHE was derived for two-time-scale nonlinear systems,
which was decomposed into a fast system and several slow
subsystems (Yin and Liu (2017)). If all the parameters of
a process are known, the state estimation problem can be
solved directly by using the algorithms mentioned above
and other existing distributed state estimation methods.
However, in most applications, there are unknown or un-
certain parameters a priori and the states and parameters
are confounded in the dynamics. The knowledge of the pa-
rameters plays an important role in many process control
related activities. Hence, to simultaneously identify the
unknown parameters and the unknown states is necessary.

There have been many results on simultaneous state and
parameter estimation for both linear systems (Stojanovic
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et al. (2020)) and nonlinear systems (Liu et al. (2020)).
Particularly, simultaneous state-parameter estimation is of
importance for fault diagnosis and control. For example,
the joint robust estimation algorithm was proposed for
the stochastic linear systems with sensor, component and
parameter faults (Stojanovic et al. (2020)). However, most
of the existing results have a prominent feature, that is,
they require the entire system to be observable. In Liu
et al. (2021), Liu and co-authors studied the case where
the entire system is not fully observable, and proposed
to perform simultaneous estimation by selecting the most
appropriate state and parameter variables based on the
sensitivity analysis. In this work, we extend the results
in Liu et al. (2021) to the distributed framework so that
large-scale complex processes can be considered.

For distributed simultaneous state and parameter prob-
lems, the system observability also plays an important role.
However, it is challenging to directly test the observability
of the nonlinear system, which involves the calculation of
higher-order Lie derivative. Thus, some approximations
can be used such as the linearization of the nonlinear
system (Nahar et al. (2019)) and the sensitivity analysis of
the nonlinear system (Fysikopoulos et al. (2019); Grubben
and Keesman (2018)).

Motivated by the above consideration, in this work, we
mainly study distributed simultaneous state and parame-
ter estimation when the entire system is not fully observ-
able based on sensitivity analysis. The sensitivity analysis



is performed to select which states and parameters should
be estimated so that the estimation performance is the
best based on the available measurements. After that,
the subsystem models for distributed state and parameter
estimation is established. Although there are some achieve-
ments in distributed state estimation, to our knowledge,
this paper is the first work that considers the distributed
simultaneous state and parameter estimation. Finally, we
develop a DMHE algorithm to achieve our goal based on
the results of the sensitivity analysis. It is worth noting
that the proposed method is not a trivial extension of
the existing results. The contributions of this paper are
as follows:

• Simultaneous state and parameter estimation is ad-
dressed in a distributed way, when the entire system
is not fully observable.

• The distributed moving horizon estimation algorithm
which takes advantage of the sensitivity analysis re-
sults is presented for distributed simultaneous esti-
mation.

2. PROBLEM STATEMENT AND PRELIMINARIES

In this paper, we consider a class of general nonlinear
systems described by

x(t+ 1) = f(x(t),u(t),θ), (1)

y(t) = h(x(t),θ), (2)

where x(t) ∈ Rnx , u(t) ∈ Rnu and y(t) ∈ Rny denote the
state, input and output vectors of the nonlinear system,
respectively, θ ∈ Rnp is the unknown parameter vector,
and f(·) and h(·) represent the nonlinear state and output
equations, respectively.

The main objective of this work is to estimate the pa-
rameters and states of the system in (1) and (2) in a
distributed way. Compared to centralized estimation, it
can reduce the computational burden, increase the fault
tolerance and improve the maintenance flexibility. This
includes a few subobjectives: 1) to determine the most
estimable state and parameter subset based on the given
measurements when not all the variables can be estimated
simultaneously; and 2) to design the distributed estima-
tion scheme and present the distributed moving horizon
estimation (DMHE).

3. PROPOSED APPROACH

To achieve the objective, the parameters are first appended
to the state vector to construct the augmented system. If
the augmented system is observable, the procedure exe-
cutes the DMHE directly. If not, the sensitivity matrix
is constructed and the identifiable states and parameters
are selected according to the orthogonalization method
based on the sensitivity analysis. After the estimable states
and parameters are determined, the original system is de-
composed into several subsystems. Finally, the distributed
simultaneous estimation of the states and parameters is
achieved based on the distributed moving horizon estima-
tion.

3.1 Augmented system construction

In order to achieve simultaneous parameters and state
estimation, we consider to append the parameters to the

state vector. The following augmented system can be
obtained:

xθ(t+ 1) =

[
f(x(t),u(t),θ(t))

θ(t)

]
:= fθ(xθ(t),u(t)), (3)

yθ(t) = h(x(t),θ(t)) := hθ(xθ(t)), (4)

where xθ(t) := [xT(t),θT(t)]T ∈ Rnx+np is the augmented
state vector, and fθ(·) and hθ(·) denote the augmented
state equation and output equation, respectively.

By estimating the augmented state xθ(t), the simultaneous
estimation of the state and parameter can be achieved.
When xθ(t) is observable, various existing state estimation
methods can be used to obtain the results. However, in
unobservable situations, it will be challenging to obtain
accurate estimation results. Therefore, the first step is to
check whether the entire augmented state vector xθ(t) is
observable based on given output measurements.

3.2 Observability of the augmented system

Consider N sampling points from t − N + 1 to t along a
trajectory of the system in (3) and (4). The linearization of
the system at each sampling point can be described using
the following form with the assumption of zero process and
measurement noise (without the loss of generality):

xθ(t+ 1) = Aθ(t)xθ(t) +Bθ(t)u(t), (5)

yθ(t) = Cθ(t)xθ(t), (6)

where matrices Aθ(t), Bθ(t) and Cθ(t) are time variant.
The observability matrix of Equations (5) and (6) at each
sampling point is as follows:

O(t) =


Cθ(t−N + 1)

Cθ(t−N + 2)Aθ(t−N + 1)
...

Cθ(t)Aθ(t− 1) · · ·Aθ(t−N + 1)

 .

If O(t) is full rank, the nonlinear system is locally observ-
able along the trajectory (Proletarsky et al. (2017)).

3.3 Sensitivity matrix

To quantitatively investigate parameter effects, we will
illustrate how the sensitivity analysis can be performed.
The sensitivity of the output yθ(t) with respect to the

parameter θ is defined as Sy,θ(t) :=
∂yθ(t)
∂θ . Similarly, the

sensitivity of yθ(t) with respect to the initial state xθ(0)

is represented as Sy,x(0)(t) :=
∂yθ(t)
∂xθ(0)

. In order to calculate

the two sensitivities, we first define the sensitivity of the

state to the parameter as Sx,θ(t) := ∂xθ(t)
∂θ . According

to the nonlinear model shown in (3)–(4), Sy,θ(t) can be
computed by solving the following two equations

Sx,θ(t+ 1) =
∂fθ

∂xθ
Sx,θ(t) +

∂fθ

∂θ
, (7)

Sy,θ(t) =
∂hθ

∂xθ
Sx,θ(t) +

∂hθ

∂θ
, (8)

with the initial condition Sx,θ(0) = 0, where

∂fθ

∂xθ
=

[
∂f

∂x

∂f

∂θ
0 Inp×np

]
,

∂hθ

∂xθ
=

[
∂h

∂x

∂h

∂θ

]
.

To obtain another sensitivity Sy,x(0)(t), the initial state
xθ(0) can be considered as a virtual parameter of the



system. Define the sensitivity of the state to the initial

condition as Sx,x(0)(t) :=
∂xθ(t)
∂xθ(0)

. The sensitivity Sy,x(0)(t)

can be calculated by solving the following equations:

Sx,x(0)(t+ 1) =
∂fθ

∂xθ
Sx,x(0)(t), (9)

Sy,x(0)(t) =
∂hθ

∂xθ
Sx,x(0)(t), (10)

with the initial value Sx,x(0)(0) = I.

Based on Equations (9) and (10), the sensitivity Sy,xθ(0)(t)
of the linearized system in (5) and (6) can be rewritten in
the following at the sampling point t:

Sy,xθ(0)(t) = Cθ(t)Aθ(t− 1)Aθ(t− 2) · · ·Aθ(0).

For each sampling time t, we can collect the most recent
N sensitivities Sy,xθ(t−N+1)(i), i = t, t− 1, . . . , t−N + 1,
to form a sensitivity matrix Sθ(t) as follows, and test the
rank of the following sensitivity matrix along a typical
trajectory in a data window of the augmented system:

Sθ(t) =


Sy,xθ(t−N+1)(t−N + 1)
Sy,xθ(t−N+1)(t−N + 2)

...
Sy,xθ(t−N+1)(t)

 , (11)

where N is the data window length.

Remark 1. According to the derivations ofO(t) and Sθ(t),
we can find that O(t) and Sθ(t) include the same informa-
tion from t − N + 1 to t. Therefore, Sθ(t) has been used
as an indication of the observability of nonlinear systems
because it can capture the dynamics of the system. By
checking the rank of the sensitivity matrix Sθ(t) at each
sampling time, we can conclude whether the entire aug-
mented state vector xθ can be estimated locally using the
input and output information. Especially, the sensitivity
matrix has been used in the parameter selection (Stigter
and Molenaar (2015); Kim and Lee (2019)).

3.4 Parameter selection based on the orthogonalization
method

If the sensitivity matrix Sθ(t) is full rank along all of the
sampling points and is well-conditioned, the augmented
state vector xθ(t) can be estimated locally using the input
and output data. However, when Sθ(t) is not full rank
along all of the sampling points, this means that not all of
the variables in the augmented state vector xθ(t) can be
estimated. In view of this situation, we aim to resort to
the information contained in the sensitivity matrix Sθ(t)
to select those variables that are important for the output
prediction to estimate. The larger the sensitivity of one
parameter, the more sensitive the system response with
respect to small perturbations of this parameter.

Here, we apply the orthogonalization method to select
the variables. The procedure for sequentially selecting the
most important parameters for simultaneous state and
parameter estimation using the orthogonalization method
is as follows:

(1) At time t, calculate the norm of each column of the
normalized Sθ(t).

(2) Initialize l = 1, select the parameter whose column
in Sθ(t) has the largest norm, and denote the corre-
sponding column as Xl.

(3) Project the sensitivity vectors of the unselected pa-
rameters onto the space orthogonal to the space
formed by the sensitivity vectors of the previously
selected parameters, and compute the orthogonal
projection matrix that cannot be expressed by Xl:
Pl = I −Xl(X

T
l Xl)

−1XT
l .

(4) Calculate the norm of each column of the residual
matrix: Rl = PlSθ(t), select the column from Sθ(t)
that corresponds to the column with the largest norm
inRl, and add it toXl as a new column to formXl+1.

(5) If the largest norm of the columns of Rl is larger than
a prescribed cutoff value, go to Step 3 with l := l+1;
otherwise, obtain the selected parameters, terminate
this process.

Remark 2. The projection aims to remove the parameter’s
effect on the output covered by the previously selected
parameters. In each step, we select the parameter which
has the largest not yet covered effect.

3.5 DMHE based on the sensitivity analysis

Following the algorithm in the previous subsections, we
know the subset of states and parameters that can be
estimated. Taking that into account, we should proceed
to decompose the entire system into subsystems for dis-
tributed estimation. The decomposition may be performed
based on, for example, Yin and Liu (2019). Due to the page
limit, this is omitted in this paper. It is noted that in the
decomposition, special attention should be given to the
calculation of the adjacent matrix.

When the system is decomposed, the distributed simul-
taneous state and parameter estimation is developed in
the framework of the distributed MHE. Specifically, at
time t, after selecting variables according to the sensitivity
matrix Sθ(t), it determines that the elements of xθ(t) can
be estimated based on the input-output data from t − N
to t. In the proposed MHE design for each subsystem,
the estimation window used in each MHE is considered
to be the same as the data window length N used in
Sθ(t). The design of the proposed distributed MHE for
each subsystem i, i = 1, 2, . . ., at time t based on the
augmented system (3)–(4) is described as follows:

min
x̃i
θ
(t−N),...,x̃i

θ
(t)

{ t−1∑
l=t−N

∥ŵi
θ(l)∥2Q−1

i

+

t∑
j=t−N

∥v̂i(j)∥2
R−1

i

Γi(x̃i
θ(t−N))

}
, (12)

s.t.x̃i
θ(l + 1) = f i

θ(x̃
i
θ(l),u

i(l),wi
θ(l)) + f̃ i(χ̂i

θ(t)), (13)

yi(l) = hi
θ(x̂

i
θ(l)) + vi(l), (14)

x̃i
θ(l) ∈ Xi

θ, vi(l) ∈ Vi, l = t−N, . . . , t, (15)

wi
θ(l) ∈ Wi

θ, l = t−N, . . . , t− 1, (16)

x̃i
θ,u(t−N) = x̃i

θ,u(t−N |t− 1), u ∈ U(t), (17)

wi
θ,u(l) = 0, u ∈ U(t), l = t−N, . . . , t− 1, (18)

where x̃i
θ is the prediction of xi

θ within the optimization
problem, N is the estimation horizon, x̂i

θ, Qi and Ri

denote the covariance matrices of wi and vi, respectively,
χ̂θ represents the estimate obtained by other MHEs.
Note that the subsystems communicate with each other



and the communicated information is used in interactive
compensation.

Once the optimization problem (12)–(18) is solved, a series
of solution is determined as {x̃i∗

θ (t − N), . . . , x̃i∗
θ (t)}, of

which the last element x̃i∗
θ (t) is adopted as the current

optimal estimate and denoted as x̂i
θ(t).

In the optimization problem (12)–(18), Equation (12) is
the cost function for each MHE estimator, and the last
term Γi(x̃i

θ(t − N)), called the arrival cost in the MHE,
summarizes the previous information of the measurements
before the current window. However, an algebraic expres-
sion for the arrival cost only exists sometimes, such as the
linear unconstrained case. Hence, we choose a quadratic
arrival cost with a constant weighting matrix as an ap-
proximated arrival cost:

Γ(x̂i
θ(t−N)) = ∥x̂i

θ(t−N)− x̂i
θ(t−N |t− 1)∥2

p−1
i

,

where P is a constant weighting matrix and x̃i
θ(t−N |t−1)

is the estimate of x̃i
θ(t − N) obtained at the previous

time instant t − 1. It has been shown that, under quite
general assumptions, such a simple arrival cost is sufficient
to ensure the convergence of the algorithm provided that
P is adequately chosen to avoid an overconfidence on the
available estimates (Alessandri et al. (2008)). Equations
(13) and (14) are the subsystem model constraints, while
Equations (15) and (16) consider the constraints on sys-
tem states, measurement noise, and system disturbances.
Compared with other distributed MHE, the difference of
the algorithm proposed in this paper is that Equations
(17) and (18) take into account the constraints of the
variable selection results for each subsystem. Here, let U(t)
denote the set containing the indices of the unselected
elements of xθ(t) based on the variable selection presented
in subsection 3.4. If xθ,3, xθ,7 and xθ,8 are not selected,
then U(t) = {3, 7, 8}. This means that the elements in
subsystem disturbance vector corresponding to the unse-
lected variable are zero, that is, wi

θ,u = 0 (u ∈ U(t)). In

this case, the unselected variables x̃i
θ,u will only evolve in

an open-loop manner according to the subsystem model,
and the initial condition x̃i

θ,u(t −N) is designated as the
value obtained at the previous instant.

For the proposed distributed framework, the each MHE
estimator is required to exchange information with each
other. Therefore, the interaction among the configured
subsystems needs to be considered. At each sampling
time, each local MHE is performed to provide the state
estimates of the subsystem based on the information
gathered from its associated subsystem as well as its
interactive subsystems.

Remark 3. The method proposed in this work does not
require accurate nominal parameters. Rough initial guess
x̂i
θ(0) would suffice for an SA based DMHE algorithm.

The variable selection based on the sensitivity analysis
and distributed state estimation run online simultaneously.
Parameters and states are updated through the distributed
MHE, and they are used for the next sensitivity calcula-
tions.

4. ILLUSTRATIVE EXAMPLE

In this section, we apply the proposed method to a
chemical process consisting of four connected continuous-
stirred tank reactors (CSTRs) with different volumes (Liu
et al. (2022)). Based on mass and energy balances, a model
that comprises eight differential equations describes the
process dynamics:

dCA1

dt
=
F01

V1
(CA01 − CA1) +

Fr1

V1
(CA2 − CA1)

+
Fr2

V1
(CA4 − CA1)−

3∑
i=1

kie
−Ei
RT1 CA1, (19)

dT1

dt
=
F01

V1
(T01 − T1) +

Fr1

V1
(T2 − T1) +

Fr2

V1
(T4 − T1)

−
3∑

i=1

∆Hi

ρcp
kie

−Ei
RT1 CA1 +

Q1

ρcpV1
, (20)

dCA2

dt
=
F1

V2
(CA1 − CA2) +

F02

V2
(CA02 − CA2)

−
3∑

i=1

kie
−Ei
RT2 CA2, (21)

dT2

dt
=
F1

V2
(T1 − T2) +

F02

V2
(T02 − T2)

−
3∑

i=1

∆Hi

ρcp
kie

−Ei
RT2 CA2 +

Q2

ρcpV2
, (22)

dCA3

dt
=
F2 − Fr1

V3
(CA2 − CA3) +

F03

V3
(CA03 − CA3)

−
3∑

i=1

kie
−Ei
RT3 CA3, (23)

dT3

dt
=
F2 − Fr1

V3
(T2 − T3) +

F03

V3
(T03 − T3)

−
3∑

i=1

∆Hi

ρcp
kie

−Ei
RT3 CA3 +

Q3

ρcpV3
, (24)

dCA4

dt
=
F3

V4
(CA3 − CA4) +

F04

V4
(CA04 − CA4)

−
3∑

i=1

kie
−Ei
RT4 CA4, (25)

dT4

dt
=
F3

V4
(T3 − T4) +

F04

V4
(T04 − T4)

−
3∑

i=1

∆Hi

ρcp
kie

−Ei
RT4 CA4 +

Q4

ρcpV4
, (26)

For this process, the heating inputs Qi to the four vessels
are usually chosen to be the input variable, CAi and Ti

are the system states, where Ti is online measured and
is used as the output measurements. Each measurement
is associated with a subsystem and a local estimator is
developed based on the measurement. The values of the
model parameters are shown in Table 1. The continuous
model is discretized using the fourth-order Runge-Kutta
method with a sample time ∆t = 1

120h.

Since the unknown parameters in Table 1 cannot be
known exactly, we need to estimate the state variables



Table 1. Parameter values of the four-CSTR

Known parameters

T01 = 300 K ∆H1 = −5.0× 104 kJ/kmol

T03 = 300 K ∆H2 = −5.2× 104 kJ/kmol

T02 = 300 K ∆H3 = −5.0× 104 kJ/kmol

T04 = 300 K k1 = 3.0× 106 h−1

cp = 0.231 kJ/(kg·K) k2 = 3.0× 105 h−1

ρ = 1000 kg/m3 k3 = 3.0× 105 h−1

Unknown parameters to be estimated

F01 = 5 m3/h C01 = 4.0 kmol/m3

F02 = 10 m3/h C02 = 2.0 kmol/m3

F03 = 8 m3/h C03 = 3.0 kmol/m3

F04 = 12 m3/h C04 = 3.5 kmol/m3

V1 = 1 m3 F1 = 35 m3/h

V2 = 3 m3 F2 = 45 m3/h

V3 = 4 m3 F3 = 33 m3/h

V4 = 6 m3 Fr1 = 20 m3/h

E1 = 5.0× 104 kJ/kmol Fr2 = 10 m3/h

E2 = 7.5× 104 kJ/kmol R = 8.314 kJ/(kmol·K)

E3 = 7.53× 104 kJ/kmol

and parameter variables of the four-CSTR process by
extracting as much information as possible from the four
output measurements. The first step is to construct the
augmented system, and 21 unknown parameters are con-
sidered in the augmented system. The state vector x =
[CA1, T1, CA2, T2, CA3, T3, CA4, T4]

T and parameter vector
θ = [F0i, Vi, C0i, E1, E2, E3, F1, F2, F3, Fr1, Fr2, R]T (i =
1, 2, 3, 4) constructs the augmented state as follows:

xθ := [xT,θT]T.

The four-CSTR process has a steady state

xs =[2.78kmol/m3, 363K, 2.58kmol/m3, 356K,

2.6kmol/m3, 355K, 2.6kmol/m3, 392K]T.

Next, we normalize the augmented model around the
augmented steady state xθ,s formed by the above steady
state xs and the nominal parameter values in Table 1 to
avoid the potential impact of the parameter value in rank
calculation.

In the simulations, the constant heat inputs to the four
vessels are selected as: Q1 = 1.0 × 104kJ/h, Q2 = 2.0 ×
104kJ/h, Q3 = 2.5 × 104kJ/h, and Q4 = 1.0 × 104kJ/h.
In the variable selection, a predetermined cut-off value is
required to terminate the variable selection process. Here,
we propose to use the cut-off value α = 3

√
ω̄2 + v̄2 (Liu

et al. (2021)), where ω̄ = 10−3 and v̄ = 10−3 denote the
standard deviation of the normalized process noise and
measurement noise, respectively. In this way, the influence
of noises on different elements in the normalized model is
basically at the same level.

In the variable selection, the eight original states are
considered important and must be estimated at each
sampling time. In this case, the variable selection is only
performed among the parameters. At each sampling time,
the information represented by the eight original states
needs to be removed from the obtained sensitivity matrix
Sθ(k), and then some additional estimable parameters are
selected in turn using the residual matrix. Table 2 shows
the number of sampling times of each state and parameter
when the total sampling times are 500. It can be seen

that nine parameters are selected based on the sensitivity
information and will be estimated together with the states.

The following is to estimate the system states and param-
eters based on the four outputs using the DMHE based on
four subsystems. The covariance parameters of each MHE
are tuned as Qi = diag{0.052, 0.052}, i = 1, 2, 3, 4, and
Ri = 0.052, and the matrix P1 = diag{0.12I2, 0.072I3},
P2 = P3 = P4 = diag{0.12I2, 0.072I2}.

Fig. 1. Trajectories of the actual states C1, T1, and state
estimates in cases 1 and 2

Fig. 2. Trajectories of the actual states C4, T4, and state
estimates in cases 1 and 2

To verify the effectiveness of the proposed method, we
conduct the two different cases. In case 1, the distributed
MHE is considered to estimate the most appropriate 17
variables in Table 3 selected by the variable selection
algorithm based on the sensitivity analysis. In case 2, all
of the 29 variables in augmented state are estimated si-
multaneously without the sensitivity analysis. That means
the insensitive variables are randomly assigned to the four
subsystems in case 2.

In both cases, a 5% mismatch in the initial state of each
of the eight original states is considered. It is also assumed
that the parameters are not known exactly and there
is a 5% mismatch in each of the parameters. The two
cases use the same input and output data. The simulation
results of two cases are shown in Figures 1-3 (Due to too
many system variables, we show the estimation results of
4 states and 4 parameters). From Figures 1-3, it can be



Table 2. Number of sampling times for each variable

CA1 T1 CA2 T2 CA3 T3 CA4 T4 F1 F2 F3 V1 V2 V3 V4

Count 499 500 499 500 499 500 499 500 0 0 0 498 498 498 498

Fr1 Fr2 E1 E2 E3 R F01 F02 F03 F04 C01 C02 C03 C04

Count 0 497 0 0 0 0 497 497 497 496 0 0 0 0

Table 3. Subsystem description for cases 1, 2

Case 1 States Inputs

sub 1 C1, T1, F01, V1, Fr2 Q1

sub 2 C2, T2, F02, V2 Q2

sub 3 C3, T3, F03, V3 Q3

sub 4 C4, T4, F04, V4 Q4

Case 2 States Inputs

sub 1 C1, T1, F01, V1, C01, Fr1, Fr2, R Q1

sub 2 C2, T2, F02, V2, C02, F1, E1 Q2

sub 3 C3, T3, F03, V3, C03, F2, E2 Q3

sub 4 C4, T4, F04, V4, C04, F3, E3 Q4

seen that the state estimation performance of case 2 is
much poorer compared with case 1. The main reason is
that the rank of the sensitivity matrix of the augmented
system is 17, which is smaller than 29. This means that
ignoring the observability when estimating the augmented
state vector xθ will result in bad estimation results. In case
1, the observability is considered, and a subset of variables
selected based on the sensitivity matrix are estimated.

Fig. 3. Trajectories of the actual parameters V1, V2, V3,
V4, and parameter estimates in cases 1 and 2

REFERENCES

Alessandri, A., Baglietto, M., & Battistelli, G. (2008).
Moving-horizon state estimation for nonlinear discrete-
time systems: New stability results and approximation
schemes. Automatica, 44, 1753-1765.

Battistelli, G. (2019). Distributed moving-horizon estima-
tion with arrival-cost consensus. IEEE Transactions on
Automatic Control, 64(8), 3316-3323.

Fysikopoulos, D., Benyahia, B., Borsos, A., Nagy, Z.K.,
& Rielly, C.D. (2019). A framework for model reliabil-
ity and estimability analysis of crystallization processes
with multi-impurity multi-dimensional population bal-
ance models. Computers & Chemical Engineering, 122,
275-292.

Grubben, N.L.M., & Keesman, K.J. (2018). Controllability
and observability of 2D thermal flow in bulk storage
facilities using sensitivity fields. International Journal
of Control, 97(7), 1554-1566.

Kim, B., & Lee, J.H. (2019). Parameter subset selection
and biased estimation for a class of ill-conditioned
estimation problems. Journal of Process Control, 81, 65-
75.

Liu, J.B., Gnanasekar, A., Zhang, Y., et al. (2021). Si-
multaneous state and parameter estimation: the role of
sensitivity analysis. Industrial & Engineering Chemistry
Research, 60(7), 2971-2982.

Liu, S.Y., Ding, F., & Hayat, T. (2020). Moving data
window gradient-based iterative algorithm of combined
parameter and state estimation for bilinear systems.
International Journal of Robust and Nonlinear Control,
30(6), 2413-2429.

Liu, S.Y., Yin, X., Liu, J.B., Liu, J., & Ding, F. (2022).
Distributed simultaneous state and parameter estima-
tion of nonlinear systems. Chemical Engineering Re-
search and Design, 118, 74-86.

Mahmoud, M.S. (2016). Distributed estimation based on
information-based covariance intersection algorithms.
International Journal of Adaptive Control and Signal
Processing, 30(5), 750-778.

Nahar, J., Liu, J., & Shah, S.L. (2019). Parameter and
state estimation of an agro-hydrological system based
on system observability analysis. Computers & Chemical
Engineering, 121, 450-464.

Proletarsky, A.V., Neusypin, K.A., Shen, K., Selezneva,
M.S., & Grout, V. (2017). Development and analysis of
the numerical criterion for the degree of observability
of state variables in nonlinear systems. 2017 Internet
Technologies and Applications, 150-154.

Stigter, J.D., & Molenaar, J. (2015). A fast algorithm
to assess local structural identifiability. Automatica, 58,
118-124.

Stojanovic, V., He, S.P., & Zhang, B.Y. (2020). State and
parameter joint estimation of linear stochastic systems
in presence of faults and non-Gaussian noises. Interna-
tional Journal of Robust and Nonlinear Control, 30(16),
6683-6700.

Yin, X., & Liu, J. (2017). Distributed moving horizon
state estimation of two-time-scale nonlinear systems.
Automatica, 79, 152-161.

Yin, X., & Liu, J. (2019). Subsystem decomposition of
process networks for simultaneous distributed state es-
timation and control. AIChE Journal, 65, 904-914.

Yin, X., Zeng, J., & Liu, J. (2019). Forming distributed
state estimation network from decentralized estima-
tors. IEEE Transactions on Control Systems Technol-
ogy, 27(6), 2430-2443.

Zhang, J., & Liu, J. (2013). Distributed moving horizon
state estimation for nonlinear systems with bounded
uncertainties. Journal of Process Control, 23(9), 1281-
1295.


