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Abstract: Pressure swing adsorption (PSA) is a highly versatile separate technology and represents a 

promising option for carbon capture. A dynamic model for a PSA process comprises partial differential 

equations, which are difficult to use for optimization tasks due to their long computational time and 

numerical instability problems. A surrogate model for PSA processes which captures the essence of the 

dynamics to predict key performance measures can enable process optimization to be carried out without 

the need to evaluate the rigorous model repeatedly. To this end, a surrogate model that predicts energy 

consumption, removal, purity, and CO2 avoidance cost for given operating conditions is developed as a 

system of nonlinear equations. The surrogate model is validated and can be used to find optimal operating 

conditions without having to carry out time-consuming dynamic simulations. It is expected that the ability 

of fast-optimization brings further opportunities such as screening of adsorbent candidates in material 

discovery researches. 
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1. INTRODUCTION 

Pressure swing adsorption (PSA) is a highly versatile and 

energy-efficient separation method that can be used for many 

important industrial separation tasks. For example, it can be 

used to capture CO2 from flue gas streams using CO2-affinitive 

adsorbents. Reversible adsorption-regeneration using pressure 

swing allows effective CO2 removal. On the other hand, as 

PSA works with compressed gases, it consumes much electric 

energy and determination of optimal operating conditions, 

e.g., pressures for the flue gas and adsorbents, are critical for 

assessing the bottom-line economics of PSA for given flue gas 

conditions and separation requirements. 

A PSA process is modeled as a system of nonlinear partial 

differential equations (PDEs). As the operation is inherently 

dynamic and cyclic, it reaches a cyclic steady-state (CSS) 

where same dynamic patterns of variables keep repeating.  The 

complex nature of the model hinders its use in tasks like 

optimizations where the model needs to be evaluated on a 

repetitive basis. There have been attempts to develop simple 

surrogate models such as a reduced order model (Agarwal et 

al, 2009) or artificial neural networks (Sant Anna et al, 2017). 

In addition, the Bayesian optimization approach with kriging 

has been used to optimize the process with just a small number 

of simulations (Hasan et al, 2012). As there is no theoretical 

basis for the used model structures, these approaches may 

require a very large number of simulations of the rigorous 

model to construct reliable surrogates. 

At the adsorbent development stage, a performance indicator 

that can be easily calculated and reflects the performance of 

the PSA can be highly valuable in searching for good 

adsorbent materials. Performance indicates like working 

capacity, selectivity, efficiency, and product purity have been 

proposed and simple formulas for evaluating them have been 

developed by idealizing the adsorption process (Wiersum et al, 

2013; Ga et al, 2017). Those performance indicators can be 

useful but their accuracies in practical environments are 

questionable given the idealizing assumptions made. 

This work proposes a first-principle based surrogate model 

that can predict some of the key performance indicators that 

closely match the rigorous simulation data. In addition, the gas 

uptake profile inside the bed can be predicted by the surrogate 

model. The model equations are proposed as a system of 

nonlinear equations to be solved. The surrogate model is 

validated using the simulation samples from Bayesian 

optimization. 

 

2. PROCESS DESCRIPTION 

 

Figure 1. Operation of vacuum cycle. 



In this work, the vacuum cycle is chosen as it can give higher 

purity products than the conventional Skarstorm cycle in a  

post-combustion CO2 capture process (Hasan et al, 2012). This 

cycle consists of 4 steps: pressurization, adsorption, blowdown, 

and evacuation (Figure 1). In the pressurization step, feed gas 

is blown to the bed until the bed pressure reaches the maximum, 

and in the adsorption step, CO2 in the feed gas is adsorbed until 

the bed is saturated to point (B). In the blowdown step, the bed 

pressure is slightly relieved and undesired N2 in the bed is 

desorbed to point (C) to maximize the purity. Finally, in the 

evacuation step, the vacuum pump regenerates the adsorbed 

CO2 in the bed and sends it back to point (A).  

Compressors and vacuum pumps must be installed for the 

operation of the vacuum cycle. The adsorption pressure (𝑃𝑎𝑑) 

is always higher than the atmospheric pressure (𝑃𝑎𝑡𝑚) and the 

feed gas is compressed. The evacuation pressure ( 𝑃𝑒𝑣 ) is 

always lower than 𝑃𝑎𝑡𝑚 and a vacuum pump extracts the CO2 

in the evacuation step. The blowdown pressure ( 𝑃𝑏𝑙 ) is 

between 𝑃𝑎𝑑 and 𝑃𝑒𝑣  and either above or below 𝑃𝑎𝑡𝑚. If 𝑃𝑏𝑙 <
𝑃𝑎𝑡𝑚  a vacuum pump is needed; otherwise no equipment is 

required. 

Coal-fired power plant off-gas with CO2 dry mole fraction of 

0.15, temperature as 300 ℃, and pressure as 1 bar is selected 

as a feed gas. Zeolite 13X is selected as the adsorbent of which 

the isotherm parameters are found in Table 1. It is assumed 

that the moisture in the flue gas is eliminated beforehand. The 

captured CO2 is compressed to a high pressure (120 bar) for 

transportation. For the purpose of economic evaluation, it is 

assumed that the electricity price is $0.079/kWh and the 

adsorbent price is $10/kg. 

Table 1. Langmuir isotherm parameters for Zeolite 13X 

(Hasan et al, 2012). 

 CO2 N2 

Maximum gas uptake (mol/kg) 9.375 9.375 

Henry constant (bar-1) 1.8834 0.0399 

Heat of adsorption (kJ/mol) 18.9 7.36 

 

3. PROCESS MODELING AND SIMULATION 

In the rigorous modeling of a vacuum cycle, the following 

assumptions are made: 

­ The gas behaves ideally. 

­ The linear driving force (LDF) model for gas adsorption  

kinetics holds. 

­ Adsorbents behave according to the extended Langmuir is

otherm. 

­ The pressure drop is well represented by Ergun’s equation

. 

­ All the variables are distributed only along the axial direct

ion. 

­ Valve equations are used as boundary conditions for the g

as velocity. 

A set of PDEs including the mass and energy balances are 

modeled as Eq (1~7) 

 

Figure 2. CO2 mole fraction profile after the cyclic steady 

state is reached. 𝑃ad = 1.5 bar, 𝑃bl = 1.0 bar, 𝑃ev = 0.05 

bar, pressurization step: 0~9 sec, adsorption step: 9~195 

sec, blowdown step: 195~239 sec, evacuation step: 

239~407 sec. The flue gas is blown at 𝑧 = 0. 
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where 𝑖  is the component index (i=CO2, N2), 𝑦  is the 

component mole fraction, 𝐶 is the gas molar density, 𝑢 is the 

gas velocity,  𝑧  is the dimensionless axial length, 𝑞  is the 

specific gas uptake, 𝑞𝑖
∗ is the equilibrium gas uptake, 𝜖 is the 

void fraction, 𝜌𝑠 is the adsorbent density, 𝜌𝑔 is the gas density, 

𝐷𝑎𝑥  is the axial gas diffusivity, 𝑘𝑖 is the mass transfer 

coefficient, 𝑃 is the pressure, 𝑇 is the temperature, 𝑞𝑚,𝑖 is the 

maximum gas uptake, 𝑏𝑖  is the henry constant, 𝑅  is the gas 

constant, 𝛥𝐻𝑖  is the heat of adsorption, 𝐶𝑝,𝑔  the  gas heat 

capacity, 𝐶𝑝,𝑠 is the adsorbent heat capacity, 𝜆𝑎𝑥  is the axial 

conductivity, ℎ is the wall heat transfer coefficient, 𝑅in is the 

bed inner radius, 𝑇𝑜 is the ambient temperature, and 𝑑𝑝 is the 

particle density. 

The PDEs are modeled and simulated in gPROMS using the 

backward finite difference method. Since all the results should 

be calculated based on a cyclic steady state reached, the 

calculation is performed based on the results after 30 cycles 

are simulated. A test result of the simulation is in Figure 2. It 

is confirmed that each cycle lasts a few hundreds of seconds, 

and there is a CO2-saturated region and an unsaturated region 

during the adsorption step as noted by Ga et al (2017), and a 

high CO2 purity value can be attained by the evacuation step. 

 

4. CONSTRUCTION OF A SURROGATE MODEL 

The surrogate model is composed of nonlinear equations for 

mass balances and profiles for the gas uptake and temperature. 

The decision variables are the operating pressures at each step 

(adsorption, blowdown, evacuation). The flue gas conditions 

(pressure, temperature, and CO2 mole fractions), adsorbent 

parameters (Langmuir isotherm parameters, bed porosity, 

adsorbent density), and cost parameters (electricity price, 

adsorbent price, compressor price) are input parameters to the 

model. The outputs of the surrogate model are CO2 capture 

energy (compression energy per 1 kgCO2), CO2 capture rate 

(captured CO2 / total CO2 in flue gas), CO2 purity of the 

evacuation step outlet, and CO2 avoidance cost (operating cost 

($) per 1 tonCO2). 

To simplify the rigorous model while retaining the key features 

of the process, several assumptions are made. First, it is 

assumed that the amounts of CO2 and N2 in the gas phase are 

negligible compared to those in the solid phase of adsorbents 

(𝐶𝑖 ≪ 𝑞𝑖). Second, gas uptake information is important only at 

those points where step-step transitions occur (1: evac-pres, 2: 

ads-blow, 3: blow-evac, see Figure 1). Third, the mass transfer 

rate is sufficiently fast and the process is operated in 

equilibrium. The gas uptake in the adsorbents (𝑛) is explained 

as Eq (8) 

𝑛𝑐,𝑖 = (1 − 𝜖)𝜌 ∫ 𝑞𝑐,𝑖(𝑧)𝑑𝑧
1

0

  ∀𝑖, 𝑐 (8) 

where 𝑐 index stands for the steps of the vacuum cycle (A, B, 

C). The gas uptake profile in the surrogate model is assumed 

to be linear as Eq (9) 

∫ 𝑞𝑐,𝑖𝑑𝑧
1
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=
1

2
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1

2
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so that the surrogate model only considers the edge uptake 

which can directly be obtained from the edge component 

partial pressure and temperature. The temperature profile is 

also assumed to be linear as in Table 2. The surrogate model 

variable Δ𝑇ad, Δ𝑇bl, Δ𝑇ev  are defined from inter-step energy 

balance considering the adsorption enthalpy (Δ𝐻CO2, Δ𝐻N2) as 

in Eq (10~12). 

𝐶𝑝,𝑠Δ𝑇ev =  Δ𝐻𝐶𝑂2 (𝑞𝐶𝑂2,2(0) − 𝑞𝐶𝑂2,A(0))

+ Δ𝐻N2 (𝑞N2,B(0) − 𝑞N2,A(0)) 
(10) 

𝐶𝑝,𝑠Δ𝑇ad =  Δ𝐻𝐶𝑂2 (𝑞CO2,B(1) − 𝑞CO2,A(1))

+ Δ𝐻𝑁2 (𝑞N2,B(1) − 𝑞N2,A(1)) 
(11) 

 

2𝐶𝑝,𝑠Δ𝑇ev =  Δ𝐻𝐶𝑂2 (𝑞CO2,B(0) − 𝑞CO2,C(0)) 

+Δ𝐻𝑁2 (𝑞N2,B(0) − 𝑞N2,C(0)) 

+Δ𝐻𝐶𝑂2 (𝑞CO2,B(1) − 𝑞CO2,C(1)) 

+Δ𝐻𝑁2 (𝑞N2,B(1) − 𝑞N2,C(1)) 

(12) 

Table 2. Assumed edge temperature in the surrogate model. 

Δ𝑇𝑎𝑑 , Δ𝑇𝑏𝑙 , Δ𝑇𝑒𝑣  are surrogate model variables. 

Step 𝑧 = 0 𝑧 = 1 

1 𝑇Feed − Δ𝑇ev 𝑇Feed 

2 𝑇Feed 𝑇Feed + Δ𝑇ad 

3 𝑇Feed − Δ𝑇bl 𝑇Feed + Δ𝑇ad − Δ𝑇bl 

 

In addition, empirical parameters (𝛼 and 𝛽) are introduced for 

the gas mole fraction calculation as in Eq (13~14), 

𝑦CO2,ad,out = 𝛼
𝑃1

𝑃2

𝑦CO2,A + (1 − 𝛼)𝑦CO2,feed (13) 

𝑦CO2,bl,out = 𝛽𝑦CO2,ad,out + (1 − 𝛽)𝑦CO2,B (14) 

where 𝑦CO2,feed is the feed CO2 mole fraction, 𝑦CO2,ad,out and 

𝑦CO2,bl,out are the average CO2 mole fractions of the outlets in 

the adsorption and blowdown steps, 𝑦CO2,A and 𝑦CO2,B are the 

CO2 mole fractions of the outlets at point A and B, 

respectively. From several tries, 𝛼 = 0.9  and 𝛽 = 0.5  are 

selected. The gas phase mole fraction at point 1 can be 

obtained from Eq 15. 

Δ𝑦A = 𝑦CO2,A −
𝜕𝑛CO2,A

𝜕𝑃ev,CO2

(
𝜕𝑛CO2,A

𝜕𝑃ev,CO2

+
𝜕𝑛N2,A

𝜕𝑃ev,N2

)⁄  (15) 



 

The above equation means that, for the desorption steps, the 

mole fraction is same as the ratio of the component’s mole 

flux. Here Δ𝑦A is the mole fraction error at point A due to the 

mass transfer resistance between the gas phase and the solid 

phase (Eq (4)). Those errors are relaxed in the surrogate model 

to avoid infeasibility problems but they should be kept small 

as for the third assumption. Then the surrogate model is 

determined so as to minimize the mole fraction error with the 

mass balance equations of the surrogate model as constraints 

(𝐹), where 𝑣 are the surrogate model variables and 𝑝 are the 

model parameters. 

min Δ𝑦A
2 

s. t. 𝐹(𝑣; 𝑝) = 0 
(16) 

Outputs of the surrogate model are defined as below. 

𝐸elec = 1.3𝑅𝑇feed(𝐹feed ln(𝑃ad 𝑃feed⁄ )

+ 𝐹bl max{0, − ln 𝑃bl}

+ 𝐹ev ln(𝑃transport 𝑃feed⁄ )) 

(17) 

𝐸CAP = 𝐸cycle 𝐹ev⁄  (18) 

𝑟CAP =
𝐹ev𝑦CO2,ev

𝐹feed𝑦CO2,feed

 (19) 

AVC =
𝑓OPEX𝐸cycle + 𝑓CAPEX(𝐶ads + 𝐶comp)

𝐹ev𝑦CO2,ev

 (20) 

In Eq (17), 𝐸elec is the electricity consumption rate, 𝐹 is the 

gas flowrate, and 𝑃transport is the CO2 transportation pressure. 

In Eq (18~19), 𝐸CAP is the capture energy (kJ/mol CO2) and 

𝑟CAP is the CO2 capture rate, respectively. In Eq (20), AVC is 

the CO2 avoidance cost, 𝑓OPEX and 𝑓CAPEX are the cost factors 

for techno-economic assessment, 𝐶ads is the cost for adsorbent 

purchase, and 𝐶comp  is the equipment purchase cost for the 

compressors. 

Overall, the surrogate model contains 30 variables, 29 equality 

constraints, and four inequality constraints. One degree of 

freedom is lefts due to the relaxation of Δ𝑦A . The surrogate 

model is solved by the nonlinear optimization solver IPOPT 

version 3.11.1. 

 

Figure 3. The surrogate model error of key performance indicators for vacuum cycle. The true optimal point found by 

Bayesian optimization of rigorous model and the expected optimal point by the surrogate model is indicated as black 

marker and white marker, respectively. 

 

Figure 4. The profile of simulation results and the predicted profile by the surrogate model at points 1 and 3 at the optimal 

point. 



5. IMPLEMENTATION OF A SURROGATE MODEL 

The constructed surrogate model is validated with the rigorous 

model. The key performance indicators predicted by the 

surrogate model should be close to the simulated values with 

the rigorous model. As it is preferred to operate the PSA 

process near its optimum, the validation should be performed 

near the optimal point. Operating conditions far from its 

optimum is costly and may be unrealistic for practical use, and 

validation of such operating regions is not necessary. The 

rigorous process model is optimized using a Bayesian 

optimization technique to find the optimal operating pressure 

using expected improvements as an acquisition function as 

Hasan et al. (2012). For all the generated samples, the 

surrogate model is also solved for the evaluation and the 

results are compared with the true values from the rigorous 

model. This procedure allows for more frequent samplings 

near the optimal point. 

The PSA process is first optimized using the rigorous model 

by reducing the CO2 avoidance cost, and then optimized again 

using the surrogate model. Evaluation results by both the 

rigorous model and the surrogate model at the two optimal 

points are summarized in Table 3 and Table 4. The two optimal 

points are very close but the computation times are greatly 

reduced from one minute to less than 0.1 seconds, indicating 

that the surrogate model can be used for the optimization of 

the PSA process. In addition, all the samples generated during 

the Bayesian optimization are used for calculating the 

surrogate model prediction error (Figure 3). The surrogate 

model can predict the key performance indicators very 

accurately near the optimal point with small errors 

(consumption energy: -5~0 %, capture rate: -5~-1 %, purity: 

0~3 %). The surrogate model slightly underestimates the CO2 

capture rate and the capture energy with less than 5% error. It 

tends to overestimate the CO2 purity, but as a very high CO2 

mole fraction value (>95 %) can be attained, this does not 

appear to be a problem for zeolite 13X. 

Table 3. Optimization results of the vacuum process by 

Bayesian optimization and the evaluation results at the 

same operating condition by the surrogate model.  

 Rigorous model Surrogate model 

𝑃ad (bar) 1.26 

𝑃bl (bar) 0.36 

𝑃ev (bar) 0.022 

Capture energy 

(kJ/mol CO2) 
36.7 35.5 

Capture rate 0.809 0.783 

Purity 0.944 0.959 

CO2 avoidance 

cost ($/ton CO2) 
88.6 87.0 

Computation 

time (s) 
74.36 0.061 

 

Table 4. Optimization results of the vacuum process by the 

surrogate model and the evaluation results at the same 

operating condition from the rigorous model. 

 Rigorous model Surrogate model 

𝑃ad (bar) 1.26 

𝑃bl (bar) 0.24 

𝑃ev (bar) 0.026 

Capture energy 

(kJ/mol CO2) 
36.4 34.8 

Capture rate 0.763 0.733 

Purity 0.970 0.978 

CO2 avoidance 

cost ($/ton CO2) 
89.3 86.3 

Computation 

time (s) 
77.58 0.049 

 

The predicted profiles by the surrogate model are compared 

with the rigorous simulation results (Figure 4). The linear 

assumption is valid for the gas uptake profile and the 

temperature profile. The deviation of the profiles at 𝑧 = 1 at 

point C is due to the mass transfer resistance. A notable 

contribution of this work is the ability to predict the 

temperature profile accurately. The isotherm curve is strongly 

temperature dependent as shown in Figure 5. In general, if an 

adsorbent has high CO2 affinity and CO2 selectivity, the heat 

of adsorption is also high and the temperature dependency of 

the cycle operation is significant. A wrong prediction of the 

temperature profile leads to inaccurate evaluations of the 

process. To our best knowledge, known adsorbent 

performance indicators do not consider this temperature 

dependency on criteria such as capture energy. In this context, 

the surrogate model provides useful information that the other 

indicators do not, avoiding time-consuming (few minutes ~ 

hours depending on the computational power) rigorous 

simulations. 

 

Figure 5. Temperature dependency of isotherm curve for 

zeolite 13X. 

 



6.  CONCLUSION AND FUTURE WORK 

Simulation of a PSA process requires solving a system of 

nonlinear partial differential equations and the long 

computational time associated with it hinders its use in 

analyses and optimizations of the process. Motivated by this, 

a surrogate model for a vacuum cycle is developed and 

validated. The surrogate model comprises a system of 

nonlinear equations which can be solved much more quickly 

and easily than the rigorous model. From given adsorbent 

isotherm parameters, flue gas conditions, and operating 

conditions, the surrogate model predicts key performance 

indicators of the process including capture energy, capture 

rate, purity, and CO2 avoidance cost. The predicted optimal 

point by the surrogate model and the true optimal point were 

shown to be very close, indicating that the surrogate model can 

replace the rigorous model in process optimizations and 

analyses, while avoiding long computational times of the latter 

model. 

It is expected that the surrogate model can be used to make 

quick evaluations of potentials of various adsorbent candidates 

for CO2 capture. There are nearly millions of MOFs 

representing different combinations of metals and organic 

compounds but most MOFs remain unexamined and screening 

of them in terms of their potentials as adsorbents is needed. 

Recently proposed MOFs are carefully designed to lower the 

capture energy, changing the isotherm curve to a non-

Langmuir isotherm, such as the S-shaped isotherms (Ga et al, 

2021). It is hoped that the surrogate model can help screen 

through those MOFs quickly to identify promising ones. 

The linear profile assumption is sufficient for a coal-fired 

power plant off-gas and zeolite 13X; however, there would be 

some condition that the linear assumption leads to inaccurate 

predictions. Choices of the empirical parameters in Eq (13~14) 

can be critical in this regard. A more systematic, data-driven 

approach to fit the parameters may improve the surrogate 

model’s accuracy in the future. 
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