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Abstract: Fault diagnosis is a key task for developing safer control systems, especially
in chemical plants. Nonetheless, acquiring good labeled fault data involves sampling from
dangerous system conditions. A possible workaround to this limitation is to use simulation
data for training data-driven fault diagnosis systems. However, due to modelling errors or
unknown factors, simulation data may differ in distribution from real-world data. This setting
is known as cross-domain fault diagnosis (CDFD). We use optimal transport for: (i) exploring
how modelling errors relate to the distance between simulation (source) and real-world (target)
data distributions, and (ii) matching source and target distributions through the framework of
optimal transport for domain adaptation (OTDA), resulting in new training data that follows
the target distribution. Comparisons show that OTDA outperforms other CDFD methods.
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1. INTRODUCTION

Faults are unpermitted deviation or anomalies of char-
acteristic properties or variables in a system (Isermann,
2006). If not timely corrected, they might evolve into se-
rious accidents and cause significant safety, environmental
and economic impacts (Chiang et al., 2000). Fault detec-
tion and diagnosis techniques provide the framework to
identify such anomalies and assure safe processes. Detec-
tion aims at assessing the occurrence of a fault; diagnosis
evaluates the type of fault for allowing intervention (Iser-
mann and Balle, 1997).

This work focuses on the diagnosis task, assuming that the
faults have already been detected and identified. The diag-
nosis is regarded as a supervised classification problem: We
learn features from faulty data, thus constructing a feature
space where concerned fault types can be satisfactorily
classified. Examples of this approach are given by, inter
alia, Su et al. (2014), Zhang et al. (2015) and Wang et al.
(2017).

Lately, deep learning and convolutional neural networks
(CNN) have been used for extracting meaningful represen-
tations from signals (He and He, 2017; Jiang et al., 2017;
Hoang and Kang, 2019) showing that good classification
accuracy can be achieved. Nevertheless, deep learning is
known to be data-intensive, thus a large amount of labelled
faulty data is needed for training. This requirement is not
always met in the diagnosis tasks since acquiring faulty
data can yield economic and security hazards. Instead,
simulation data can be used for the design of diagnosis

models which might then be deployed on real-world sit-
uations. However, even with reliable simulation models,
the train and test data used for diagnosis should follow an
identical probability distribution. Unknown process con-
ditions may not satisfy this requisite. Domain adaptation
(Pan and Yang, 2009) tackle the problem by transferring
knowledge from a source domain with the labelled training
data to a target domain. Zheng et al. (2019) intersect fault
diagnosis and domain adaptation in the so-called cross-
domain fault diagnosis (CDFD).

There are various methods for reducing the gap between
train and test distributions (Pan et al., 2010; Ganin et al.,
2016). For instance, optimal transport theory is applied for
performing CDFD by Cheng et al. (2019) and minimising
the gap between distributions. However, this strategy
requires models to be trained from scratch, which is not
always feasible due to data availability. The framework
of Courty et al. (2017), however, only requires solving
an optimal transport problem in the feature space, thus
leveraging the existence of pre-trained models. In this
work, we investigate the framework of optimal transport
for domain adaptation (OTDA) (Courty et al., 2017),
which has already proven itself to yield state-of-the-art
performance in image and natural language processing
tasks and we apply it to a benchmark continuous stirred
tank reactor (CSTR). To the best of our knowledge this
work is the first to apply OTDA for performing CDFD.

The paper is organised as follows: Section 2 provides the
background on CDFD and optimal transport. Section 3
discusses the application on the CSTR, presenting the



system details and a comparative study of transfer learning
algorithms. Section 4 draws our conclusions.

2. DESIGN OF THE FAULT DIAGNOSIS MODEL

Assuming that a mathematical model for the processes
is available, simulated data are acquired and features are
extracted from them. These features serve as input to a
fault classifier, that uses the classification results for fault
diagnosis. We discuss the steps for feature extraction and
classification in section 2.1. The link between CDFD and
domain adaptation is presented in section 2.2. Optimal
transport for domain adaptation is defined in section 2.3.

2.1 Fault Classification

We consider the problem of fault diagnosis through a clas-
sification perspective. We use a raw signal-based support
vector machine (SVM) and CNN as classifiers that serve
as baseline for comparing the proposed CDFD strategies.

Consider an arbitrary process with m variables of which
we assume to have available a simulation model. We create
a dataset D = {x;,y;}i, of n simulations where x; €
RI=Txm is the concatenation of the m variables sampled
through T time steps, and y; is the label assigned to each
ke{l,---,K} class.

SVM tries to find the parameters w € R? and b € R
such that the separation between classes is maximal. This
corresponds to solving the optimisation problem:

1 n
argmax §HW||2 + Cz &
w,b i=1
subject toy; (W' x; +b) > 1—¢;

where C' > 0 is a penalty term and &; is the proportion
of prediction on the wrong side of the hyperplane. When
dealing with multiple faults, a possible strategy is using the
one-versus-rest approach. This consists of fitting different
classifiers for distinguishing between class k, and all other
classes j # k. Each classifier has parameters wy, by. Thus,
one has instead a set of K functions. The prediction can
be retrieved with § = h(x) = argmax h(x).
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CNNs rely on the convolution operation defined as

/
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where x € R? is the vector containing the process vari-
ables, g € R™ is a filter of dimension m’ , and ¢ =
1,...,d—m’ is an index. By stacking various convolutional
layers sequentially, we extract an abstract representation
vector r € R?. This approach is known as represen-
tation learning (Bengio et al., 2013). On top of these
convolutional layers, the standard approach is to stack
fully connected layers, which are based on matrix-vector
multiplications, that is y = ¢(Ar+b) for A € RE*4" and
b € RE.

The function ¢ is the activation function, commonly a
rectified linear unit (ReLU, Glorot et al. (2011)) or a

softmax. While the ReLU activation is typically used in
the intermediate layers, the softmax is used at the output
layer as its result corresponds to a probability distribution
over possible classes. In this case, a common choice of loss
function for minimisation is the cross-entropy:

K
(y,9) == vilog i
i=1

It is important to mention that both of these algorithms
assume that training and test samples are independent and
identically distributed.

2.2 Cross-Domain Fault Diagnosis as Domain Adaptation

CDFD can be used when training and test faulty data fol-
low different probability distributions. A key assumption is
that, even though different, these two domains are related
or similar (e.g., they refer to the same process but from
new conditions). As discussed by Zheng et al. (2019), the
main consequence of data following different probability
distributions is a misalignment between classes in the
feature space. We illustrate this idea in Figure 1. In red are
shown the source domain samples and in blue the target
domain samples. For simplicity, the distributional shift is
illustrated as a rotation. As consequence of distributional
shift, classifiers trained with source domain data may not
classify target domain samples correctly.
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Fig. 1. Illustration example of feature misalignment.

This scenario in which feature are distributed according
to different probability distributions is known as domain
adaptation. We follow Pan and Yang (2009) and consider
a domain to be a pair D = (X, P(X)), where X is a feature
space and P(X) its marginal distribution. Moreover, a
task is a pair T = (Y, f) where ) is a label space, and
f(z) = P(Y|X = z) is the ground-truth labelling function.

We further identify domain adaptation as the case where
one has different, but related domains. Furthermore, these
domains differ with respect to their probability distribu-
tions. We denote by Ds = {x&,ys};%; to the source
domain data, and Dy = {x7.}Z; to the target data, where
ns and nr represent the number of source and target
samples, respectively. Note that target labels yJ. are not
available at training time.

According to Pan and Yang (2009), the goal of domain
adaptation is to help learning a predictive function on the
target domain, by using knowledge of the source domain.



This can be done in different ways. For instance, Gong
et al. (2012) proposed principal component analysis (PCA)
as a naive technique for reducing the divergence between
domains. The idea consists simply on projecting the data
on a sub-space through a linear function ¢(x) = Wx, such
that source and target domain share common characteris-
tics on this sub-space.

In addition, robust techniques take a notion of divergence
explicitly into account. For instance, Ganin et al. (2016)
propose using the so-called H—divergence of Ben-David
et al. (2007) for guiding the representation learning of
CNNs. The recent interest in optimal transport and the
Wasserstein distance has inspired many advances in ma-
chine learning. We may also minimize the Wasserstein
distance between source and target distributions, which
corresponds to the OTDA approach (Courty et al., 2017).

2.8 Optimal Transport for Domain Adaptation

Optimal transport (OT) is a theory describing how mass
can be transported between a source and a target under
least effort. Note that, as there is a natural analogy
between mass and probability, this theory can be used
for transporting probability distributions into one another.
In this section we focus on the discrete Kantorovich
formulation of OT, as presented by Peyré and Cuturi
(2019).

For establishing the probabilistic modeling, let Ps and Pr
be the underlying probability distribution of features, from
which source and target data are sampled from, that is

xg ~ Pg and ij ~ Pp. These distributions are unknown.
However, given that there are enough samples, they may
be approximated empirically:

Zéx—xs Pr(x Zéx—xT

where § is the Dlrac delta function. Furthermore we
denote the support of Ps as Xg = [x4]75, € R™$*P and
the support of Pr as Xp = [XT] Usmg this notation,
the samples xS have uniform mass nsl.

The Kantorovich formulation focus on finding a trans-
portation plan v € R"S*™7 Intuitively, v;; represents the
amount of mass or probability transported between source
sample x5 to target sample x%.. This formulation further
assumes that v preserves mass. Thus, the set of all mass-
preserving plans is denoted as:

H(P57 pT) = {7|’YT17LS = n%llnvaylnT = ngllns}

= [1,---,1] € R"™ II is the set of doubly
stochastic matrices. Thus, let C;; = c(x%,x7.) be the cost

where 1,

of transporting x% to xJ., the optimal transport plan can
be found by

ns nrt

v* = argmin ZZ%J - (1)

YEM(Ps,Pr) j=1 j—1

Note that this is a linear program with variables v;;, thus,
there are known algorithms for finding ~*, such as the
simplex algorithm developed by Dantzig et al. (1955). In
this formulation, v* is the least effort plan for transporting

]55 to Pr. When the ground-cost ¢ is a distance, the
innermost term in 1 is proportional to the work of moving
7v;; units of mass from x% to x%. This allows for the
Wasserstein distance between probability distributions:
ns nr

DO vlixs — x5l

i=1 j=1

WQ(PSaFA)T)2 =

min
~€ll(Ps,Pr)

Intuitively, two probability distributions are far apart
under the Wasserstein distance if the work needed for
transporting one into another is high.

The intersection between OT theory and CDFD comes
when using the Wasserstein distance as the choice of
divergence for matching source and target distributions.
This can be represented as an optimization problem:

P% = argmin W, (P, Pp).
P

Assuming that 13§ is supported on the same number of
points as Pg, with constant sample weights ngl, this
minimisation is equivalent to transforming the source data
points with the barycentric mapping (Courty et al., 2017),
defined as:

rgmlng %J X, XT)
x€Rd J=1

T (xy) = %5

where 7* is the optimal transport plan between Pg and

Pr. When the ground-cost is the Euclidean distance, T«
has a closed-form expression, given by,

T, (Xs) = Xg = diag(y*1,,) "' X

Once ~* has been estimated, the support Xg may be
transported to Xg. This allows fitting a classifier on
Dg = {x%,y% 115, which hopefully leads to a performance
improvement on the target domain.

Finally, when more than one target domain is available,
we use a score consisting of the average accuracy on
each domain for establishing an overall comparison across
all target domains. Let S and T,, refer to the source
and m—th target domain respectively. Let hs 7, be the
classifier fit on the source domain with the m—th target
domain data used for adaptation. The score can be defined

as
NT,,

Z Z [hs.1, (x5) = fr,, (x5)], (2)

where ng is the number of domains, nz,, and fr,, are the
number of samples and ground-truth labeling function on
the m—th target domain respectively. Finally, I[-] is the
indicator function.

score =

3. CONTINUOUS STIRRED TANK REACTOR

We consider the constant holdup jacketed CSTR in Figure
2. The reactor, that carries an exothermic reaction A — B,
is employed by Pilario and Cao (2018) for fault detection
and further studied in the context of domain adaptation
by Li et al. (2020) for fault diagnosis.

The reagent A in the influent has concentration Cy and
temperature T;. The product B in the effluent has con-
centration C'g and temperature T. The coolant enters the
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Fig. 2. Closed-loop CSTR (Li et al., 2020).

reactor jacket with flow-rate Q. and temperature T,;, T,
is its outlet temperature. The dynamics of the reactor are
represented by the state variables [Cp,T,T,.], the inputs
[Ca,T;.Te;] and the outputs [Cp,T,T.,Q.]. The state-
space model is given by equations (3) where v123 ~
N(0,1072) are process noise and k = ko exp(—E/RT) is
the rate constant. The process variables and parameters
are listed in Table 1. Figure 2 presents the measurements
and the controller of the CSTR, where the coolant flow-
rate Q. is used for controlling the temperature T of the
effluent as in Pilario and Cao (2018).

Cp = %(cm —Cp) —akCy + 1
. Q AHECY  UA
T=2T-T)-a —b T-T,)+v
V ( g ) pCp pch ( C) 2
. Q. UA
To= J(Ta = To) + b o (T —T,) + vs (3)
Table 1. Process variables and parameters.

Symbol  Description Units Value
Process variables
Ca Reagent A concentration mol/L
Cp Product B concentration mol/L
T Reactor temperature K
T Jacket temperature K

Qc Coolant flow-rate L/min
Process inputs

Ca; Influent concentration of A mol/L
T; Influent temperature K
Teq Influent coolant temperature K

Process parameters

Q Influent flow-rate L/min 100

14 Reactor volume L 150

Ve Jacket volume L 10
AH, Heat of reaction cal/mol -2.107°
UA Heat transfer coefficient K-cal/min 7-10%
ko Pre-exponential factor of k 1/min 7.2-1010
E/R Activation energy K 104
p Fluid density g/L 1000
Pe Coolant density g/L 1000
Cp Fluid heat capacity K-cal/g 1

Chpe Coolant heat capacity K-cal/g 1

N Reaction order - 1

3.1 Process faults

Table 2 lists the 3 scenarios and 12 faults (Li et al., 2020)
considered for performing fault diagnosis on the CSTR.

The first scenario is related to process faults, such as
catalyst decay that represents a shortage in the reaction

Table 2. Scenarios considered for the CSTR.

Fault Class  Description §

Scenario I: Process Faults

1 Catalyst decay a = apexp(—4dt)  0.004

2 Heat transfer fouling b = boexp(—dt)  0.005
Scenario II: Sensor Faults

3 Sensor bias C; =C; 45t 0.005

4 Sensor bias T, =T, + 6t 0.1

5 Sensor bias To; = Tei + 6t 0.1

6 Sensor bias C=C+ét 0.005

7 Sensor bias T=T+68t 0.1

8 Sensor bias TC =T, + 6t 0.1

9 Sensor bias Qc = Q.+t -0.2
Scenario III: Process Disturbance

10 Reactant concentration ~ AC; ~ N (0, ) 0.005

11 Reactant temperature AT; ~ N(0,0) 5

12 Coolant temperature AT, ~N(0,6) 5

catalyst, leading to a decay in the transformation of A into
B and heat fouling that represents a decay on the amount
of heat exchanged between the tank and the jacket, thus
leading to an increase in the tank’s outlet temperature T,
and a decrease on the jacket outlet temperature T.

The second scenario represents malfunctions on the sensors
measuring the process variables. A linear trend is added
to the sensor’s readings up to a saturation point, which
drastically changes the statistical properties of the signal.

The third scenario considers input disturbances: A ran-
dom perturbation is added every 60 minutes to C'4; and
temperatures T; and T,; (Pilario and Cao, 2018).

3.2 Data preparation

For CDFD, the sampling procedure of Li et al. (2020)
is applied. A key assumption is to use the parameter
errors to emulate model-process mismatch. This allows, to
some extent, to test domain adaptation algorithms when
real-world data is not available. We further assess the
validity of this assumption by exploring how parameter
errors influence the distributional shift phenomenon. The
sampling procedure consists of the two steps described
below: (i) simulation (source) domain and (ii) physical
(target) domain. The CDFD is simulated by adapting the
Matlab/Simulink model in Pilario and Cao (2018).

Simulation domain sampling:  For each fault in Table 2,
the system is simulated 100 times, resulting in a dataset
with 13 x 100 = 1300 samples. During the simulation,
the process variables are tracked through 200 minutes
with time-step At = 1 min. Their measurements are
assumed to be corrupted with noise n ~ N(0,1072). This
generates a balanced dataset for classification, with 13
classes (12 faults + normal operation). As raw signals, the
concatenation of the process variables is considered, hence
each sample consists on a vector x € R200%7,

Physical domain sampling:  Following the procedure of Li
et al. (2020), the model-process mismatch is emulated
through parameter errors. Let ©® = [0, ---,60,] € RP
be the vector of the p = 20 process parameters in
Table 1. The first type of parametric error is introduced
in 6 parameters, namely: V,V.,AH,, UA,ky and E/R,
through a degree of parameter mismatch ¢ > 0. The



Target Domain 1 2 3 4 5 6

Reaction Order 1.0 1.0 1.0 0.5 1.5 2.0 Score
Degree of Mismatch 10% 15% 20% 15% 15% 15%

Raw Signals-based SVM

Baseline 68.654 + 0.769 64.519 + 1.231 62.404 + 1.154 56.923 + 0.892 46.346 £+ 1.709 32.981 + 0.942 55.304
PCA 69.423 + 0.490 64.519 + 1.027 64.615 + 0.577 57.212 + 1.290 46.635 £+ 0.804 36.058 + 0.608 56.410
OTDA 89.423 + 0.680 87.596 + 0.769 80.673 + 1.532 72.404 £+ 1.380 85.769 + 1.201 77.308 + 1.113 82.196
Target-Only 77.788 + 3.209 75.673 + 1.036 70.096 + 2.891 73.942 4+ 2.875 53.365 + 2.668 50.769 + 1.626 66.939
Convolutional Features

Baseline 80.192 + 3.001 75.288 4+ 2.031 74.135 + 3.815 62.500 + 2.544 69.808 + 5.400 60.288 + 5.830 70.000
DANN 86.219 + 2.745 76.594 + 3.284 75.219 + 2.331 71.875 £+ 3.168 79.969 + 1.457 69.844 + 3.205 77.000
OTDA 89.327 + 0.360 84.519 + 3.803 77.981 + 2.810 77.212 + 2.288 84.135 £ 2.995 83.269 + 1.113 82.740
Target-Only 95.385 + 4.485 91.538 + 3.125 85.385 + 7.750 86.538 + 4.213 89.615 + 3.768 84.615 + 1.720 89.000

Table 3. Average classification accuracy with confidence intervals over a 5-fold cross-validation.

perturbed parameters are given by 6; = 6, + Af; where
Af; ~ U(—e¢,¢€) is uniformly distributed over the interval
[—€,€]. Af; is sampled independently at each simulation.
The second kind of mismatch deals with the reaction
order N, which is considered over the set {0.5,1.5,2.0}.
This yields 6 different target domains, corresponding to
€ = 0.1,0.15,0.2 with N = 1.0 fixed, and € = 0.15 fixed,
with N = 0.5,1.5,2.0. The system is simulated 20 times
for each fault, yielding 13 x 20 = 260 samples for each
target domain.

To validate the hypothesis that modelling errors induces
distributional shift, we measure the Wasserstein distance
between PS and PT for each target domain. We use the
Fuclidean distance as the ground-cost. Figure 3 shows
the Wasserstein distance Ws as a function of € and N.
Source and target domains follow different distributions
(Wy(Ps, Pr) # 0). Furthermore, Wy increases with an
increasing degree of parameter mismatch e. This indicates
that the adaptation problem becomes harder. In addition,
the Wasserstein distance is more sensitive to changes in
the reaction order. This indicates that this parameter has
a deeper impact on the system dynamics and consequently
on the signals statistical properties as well.
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Fig. 3. Wasserstein distance between source and target
domain for increasing degrees of parameter mismatch,
and different values for the reaction order.

3.8 Comparative Study of Domain Adaptation Algorithms

We explore different methods of domain adaptation
for performing CDFD. For this task, we compare how

raw signals-based SVM performs in comparison with
CNNs when the following adaptation algorithms are used:
PCA (Gong et al., 2012), domain adversarial neural net-
works (DANN) (Ganin et al., 2016) and OTDA (Courty
et al., 2017). Note that since DANN was designed for
neural networks, it is not applied for the SVM classifier.
We compare these algorithms with two standard training
situations: The baseline and target-only cases. The base-
line corresponds to applying an ill-fitted classifier on new
domains. The target-only scenario is an optimistic scenario
as it disregards distributional shift. Finally, the score in
equation (2) gives an overall comparison across all target
domains.

For the OTDA we use the network simplex solver in
the optimal transport toolbox in Python (Flamary et al.,
2021). As ground-cost, the Euclidean distance is used. Our
evaluation is based on a 5-fold cross validation strategy
that leaves a partition of the training and test dataset
at each iteration. Table 3 shows the results for the mean
accuracy with confidence intervals for each target domain.

First, with respect to Table 3 and Figure 3, the Wasser-
stein distance is negatively correlated with the baseline
accuracy. This confirms that the adaptation problems have
increasing difficulty. Nonetheless, this is not the only factor
determining the algorithms performance, as in the target-
only case, target domain 4 (N = 0.5,¢ = 0.15) poses a
classification problem that is more difficult than target
domain 5 (N = 1.5,e¢ = 0.15). Thus domain adaptation
algorithms tend to perform better in the latter domain
than in the former, despite distributional shift.

Second, in overall CNNs have better performance than
raw signals. This was expected, since by design this model
better captures the data temporal structure. Comparing
PCA with DANN, two algorithms that try to build a
latent space where features share common characteris-
tics, we note that DANN yields a better performance
improvement. This indicates that, even though there is
no linear sub-space where features are similar statistically,
one can still build a non-linear latent space where domains
coincide.

Third, OTDA has the best performance, being slightly
superior with CNN features by a tight margin. This
highlights the usefulness of the Wasserstein distance for
defining a mapping for matching train and test probability
distributions. Finally, note that OTDA outperforms other
methods when the domain shift is severe (target domains
4 and 6).



4. CONCLUSION

We explored the problem of CDFD characterised by a
change in distribution between training and testing data.
Our concern is the application of CDFD for adapting
fault diagnosis models learned on simulation data to data
acquired in real-world conditions (e.g., from sensors).
We follow Li et al. (2020) conducting two experiments
using a CSTR benchmark process by: (i) verifying that
modelling errors induce different data distributions, and
(ii) comparing domain adaptation algorithms for CDFD.

The first experiment shows that an increasing level of
parameter mismatch yields data following distributions
farther away with respect to the Wasserstein distance.
Likewise, for reaction order values different than the de-
fault (IV = 1), the same phenomenon happens. This indeed
confirms that modeling errors induce distributional shift.

The second experiment shows that the Wasserstein dis-
tance is negatively correlated with domain adaptation
difficulty. Moreover, OTDA outperforms when compared
with feature-based and deep learning-based techniques.

Our work further supports the power of this framework,
as previously verified by Courty et al. (2017) in image
processing related applications. Furthermore, it shows that
OTDA can be successfully applied to CDFD problems.
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