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Abstract: Driven by the flexible manufacturing trend in the process control industry and the
uncertain nature of chemical process models, this article aims to achieve offset-free tracking for a
family of uncertain nonlinear systems (e.g., using process models with parametric uncertainties)
with adaptable performance. The proposed adaptive control approach incorporates into the
control loop an adaptive neural network embedded contraction-based controller (to ensure
convergence to time-varying references) and an online parameter identification module coupled
with reference generation (to ensure modelled parameters converge those of the physical system).
The integrated learning and control approach involves training a state and parameter dependent
neural network to learn a contraction metric parameterized by the uncertain parameter and a
differential feedback gain. This neural network is then embedded in an adaptive contraction-
based control law which is updated by parameter estimates online. As uncertain parameter
estimates converge to the corresponding physical values, offset-free tracking, simultaneously
with improved convergence rates, can be achieved, resulting in a flexible, efficient and less
conservative approach to the reference tracking control of uncertain nonlinear processes. An
illustrative example is included to demonstrate the overall approach.

Keywords: Artificial intelligence and machine learning; Dynamic modelling and simulation for
control and operation; Modeling and identification; Process control

1. INTRODUCTION

Many modern chemical processes are inherently nonlinear
and typically complex – often comprised of a number of
process units, connected through material recycle, heat
integration and mass flows. Chemical processes are tra-
ditionally operated around certain equilibriums, where
linear controllers are designed to control the process at
these setpoints, based on linearised models. Recent years
have seen the challenges for modern chemical process op-
erations, including: the time-varying market demand for
products of different specifications; variation in the cost
and availability of utilities; and significant fluctuations in
the specifications of raw materials. As such, modern chem-
ical processes require flexible operation to permit manufac-
turing end products with different specifications and time-
varying production rates to meet the market demand and
reduce operational costs. To promptly respond to supply
chain fluctuations, operation practices of modern chemical
processes are trending towards the flexible paradigm of
smart plants (see, e.g., Chokshi and McFarlane, 2007).

Moreover, for many physical processes, obtaining pro-
cess models from first principles are often accompanied
by parametric uncertainty or parameter modelling error.
Incorrect parameter modelling can result in significant
performance loss, which from the perspective of manufac-
turing processes, can lead to end products of substandard

1 Corresponding author: Jie Bao. This work was supported by
ARC Discovery Grant DP210101978.

and non-salable grades. Even so, sufficient understanding
of the process (e.g., via guidance from the process unit
manufacturer) can result in physically reasonable bounds
for the system model, inside which the system parameters
can be expected to vary from unit to unit (see, e.g., the
variable nature of heat transfer in heat-exchanger units
in Varga et al., 1995). As a consequence, an adaptive
control strategy to track time-varying target trajectories,
to remain flexible to market demand, is required that is
also capable of providing certificates of stability in the
presence of parameter modelling error, as required for
efficient and safe process control.

One particularly attractive approach for time-varying ref-
erence tracking of nonlinear systems involves the contrac-
tion theory (Lohmiller and Slotine, 1998) framework. Fol-
lowing this formulation, a system’s incremental stability
properties can be assessed (e.g., between the plant state
and target trajectory) through the study of differential dy-
namics. Analysis and controller synthesis simultaneously
involves finding a control contraction metric (CCM) and
controller pair that describe the contraction properties of
the closed-loop system (Manchester and Slotine, 2017).
Relative to popular Lyapunov based approaches, contrac-
tion theory offers the advantage of reference-flexible (i.e.,
reference-independent) analysis and control design (i.e.,
the control structure doesn’t require redesign as the ref-
erence changes). Whilst contraction-based designs do offer
some inherent robustness properties, synthesis can be chal-
lenging for nonlinear systems with parametric uncertainty.



An increasingly popular approach for uncertainty handling
is to exploit the universal approximation characteristics of
neural networks for both system identification and control
(see e.g., Dai et al., 2013). Machine learning techniques can
be additionally utilised to provide learning of unmodelled
or incorrectly modelled parameters (Lee et al., 2018), with
the advantage that any offline trained neural networks
may be used for further online training or tuning, pro-
viding potential for an additional level of flexibility in the
controller. This philosophy is naturally befitting for the
identification and control of uncertain nonlinear processes;
however, it is not feasible to simply operate a chemical
processes using random operating conditions to generate
process data to learn an accurate model and controller
due to stability/safety concerns. One approach is to train
a neural network using the process model and refine it
using real-world online plant data (Shin et al., 2019).

To exploit the uncertainty handling properties of neural
networks and overcome the safe online learning obsta-
cles of neural network embedded control, recent develop-
ments (Wei et al., 2021a,b) have resulted in a discrete-time
contraction control framework which facilitates safe and
robust neural network training. Wei et al. (2021a) use a
model with uncertain parameters (which characterizes the
inherent un- certain nonlinear nature of modern processes)
to generate training data, which can be done safely offline
for an explicit range of uncertainty in the system model.
Contraction-based analysis is then performed for the full
range of system uncertainty to ensure the contraction-
based controller to be robust. In this way, provided the
actual system model behaves inside the family of models
considered, efficient and stabilizing control combined with
online parameter learning can be achieved.

Inspired by the philosophy proposed by Shin et al. (2019),
we propose in this article an efficient and flexible control
approach method to ensure offset-free tracking with tai-
lored rates of convergence of uncertain nonlinear systems,
by leveraging our previous works (Wei et al., 2021a,b).
An adaptive neural network-embedded contraction-based
controller is first developed, with stability certificates (in
terms of boundedness), to ensure bounded tracking of
discrete-time nonlinear systems with parametric uncer-
tainty. Then, an online parameter identification algorithm,
is incorporated to ensure the system model tends towards
the physical system description, leading to correct refer-
ence trajectory generation and hence offset-free tracking
in the presence of system parameter and system target
variation. Due to the adaptive nature of the neural network
embedded contraction-based controller, as the online pa-
rameter estimates converge to the physical system values,
the tracking performance is proportionally improved (in
terms of convergence rate). Moreover, since the proposed
integrated approach permits a parameter-dependent con-
troller and contraction metric pair, conservatism and com-
putational difficulties associated with finding a common
metric and control law, for the full range of parameter
uncertainty, are significantly reduced.

This article is structured as follows. The prerequisite con-
traction theory tools are presented in Section 2, followed
by description of the problem and overall approach in
Section 3. Section 4 presents the development of an adap-
tive neural network embedded contraction controller with
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Fig. 1. Path parameterised by parameter s.

online parameter identification and controller updates.
Section 5 demonstrate the method via a numerical example
and Section 6 concludes this article.

Notation. Denote by fk = f(xk) for any function f .
B(·, ·) represents a ball area centred at the first argument
with second argument as the radius. The leading principle
minor of a matrix MNN is defined as |MNN(1,i)

|.

2. PRELIMINARIES

We first consider a discrete-time nonlinear control affine
system without uncertainty:

xk+1 = f(xk) + g(xk)uk, (1)

where state and control are xk ∈ X ⊆ Rn and uk ∈ U ⊆
Rm. The differential system of (1) is as follows:

δxk+1
= A(xk)δxk

+B(xk)δuk
, (2)

where Jacobian matrices of f and g in (1) are defined as

A := ∂(f(xk)+g(xk)uk)
∂xk

and B := ∂(f(xk)+g(xk)uk)
∂uk

respec-

tively, δuk
:= ∂uk

∂s and δxk
:= ∂xk

∂s are vectors in the tangent
space TxU at uk and tangent space TxX at xk respectively,
where s parameterises a path, c(s) : [0, 1] → X between
two points such that c(0) = x, c(1) = x∗ ∈ X (see Fig.
1). If we consider a state-feedback control law for the
differential dynamics (2), i.e.,

δuk
= K(xk)δxk

, (3)

where function K is a state dependent function. Then,
Theorem 2.1 describes the contraction condition for a
discrete-time nonlinear system in (1) as follows,

Theorem 2.1. (Wei et al., 2021b). For a discrete-time non-
linear system (1), with differential dynamics (2) and differ-
ential state-feedback controller (3), provided a uniformly
bounded DCCM, M(xk), satisfying,

(Ak +BkKk)
⊤Mk+1(Ak +BkKk)− (1− β)Mk < 0, (4)

exists, then the closed-loop system is contracting for some
constant 0 < β ≤ 1. Furthermore, the closed-loop system
is incrementally exponentially stable, i.e.,

|xk − x∗
k| ≤ Re−λk|x0 − x∗

0|, (5)

for some constant R, convergence rate λ and any feasible
reference trajectory (x̂∗, û∗), satisfying (1), where xk is the
state value at time-step k with the initial condition x0.

A region of state space is called a contraction region if
condition (4) holds in that region. In Theorem 2.1, M is
a metric used in describing the geometry of Riemannian
space, which we briefly present here. We define the Rie-
mannian distance, d(x, x∗), as (see, e.g., do Carmo, 1992)



d(x, x∗) = d(c) :=

∫ 1

0

√
δ⊤c(s)M(c(s))δc(s)ds, (6)

where δc(s) := ∂c(s)
∂s . The shortest path in Riemannian

space, or geodesic, between x and x∗ is defined as

γ(s) := argmin
c(s)

d(x, x∗). (7)

Leveraging Riemannian tools, one feedback tracking con-
troller for (1), can be obtained by integrating the differen-
tial feedback law (3) along the geodesic, γ(s) (7), as

uk = u∗
k +

∫ 1

0

K(γ(s))
∂γ(s)

∂s
ds. (8)

3. PROBLEM FORMULATION AND APPROACH

3.1 System Description

Herein, we consider the following discrete-time control
affine nonlinear system with parametric uncertainty

xk+1 = f(r, xk) + g(r, xk)uk, (9)

where functions f and g are smooth along the x direction
and Lipschitz continuous along r and k. The additional ar-
gument vector (cf. (1)), r, denotes the bounded uncertain
system parameters given by,

r ∈ R = {r ∈ Rℓ | rimin ≤ ri ≤ rimax | i = 1, . . . , ℓ}, (10)

where ri is the i-th element of r, rimin and rimax are
the lower and upper bound of the i-th element. The
corresponding differential dynamics at a certain parameter
value r can be determined, i.e.,

δxk+1
= A(r, xk)δxk

+B(r, xk)δuk
, (11)

where A(r, xk) := ∂(f(r,xk)+g(r,xk)uk)
∂xk

and B(r, xk) :=
∂(f(r,xk)+g(r,xk)uk)

∂uk
are Jacobians at xk and uk, given r.

3.2 Objective and Approach

Time-varying state and control targets (x∗
k+1, x

∗
k, û

∗
k) for

(9) are generated using an estimate of the uncertain
parameter r̂k, satisfying

x∗
k+1 = f(r̂k, x

∗
k) + g(r̂k, x

∗
k)û

∗
k. (12)

These solutions, (x∗
k, x

∗
k+1, û

∗
k), are only feasible solutions

for the actual dynamics (9) when the estimated parameter
matches the actual value, i.e., r̂k = r. As a result, generat-
ing control references subject to parameter modelling error
will result in incorrect control targets and hence tracking
offsets (see, e.g., Wei et al., 2021a).

Thus, the control objective is to force online convergence of
the parameter estimate, r̂k → r, whilst ensuring stability
(to state reference targets, i.e., x → x∗) for the full range
of parameter variation and exploiting improved parameter
modelling for improved control performance.

To achieve our offset-free tracking objective, which re-
lies on generating the correct reference and hence correct
model parameters, an adaptive neural network embedded
contraction controller will be trained, as a function of
the system state and current parameter estimates, and
employed in the closed-loop with an optimisation-based
parameter identification module. The contraction-based
controller will provide a stable framework with online

learning, which in turn is self-tuned via updates of new
parameter estimates. As the online parameter identifi-
cation converges to the real system value, the tracking
performance of the overall control scheme is improved,
by: 1) feasible state and control reference pairs can be
generated, resulting in error-free convergence of the state
trajectory, xk to the target trajectory x∗

k; and 2) adapt-
ing the metric and controller gains, resulting in state-to-
reference convergence rates approaching desired values.

4. CONTRACTION-BASED LEARNING CONTROL

The first step in the proposed approach is to provide
guaranteed contraction for uncertain nonlinear systems,
for which the DCCM is permitted to vary with time (as pa-
rameter estimates are updated), by extending the methods
developed by Wei et al. (2021b). The second step is to pro-
vide a generalised approach to identifying the parametric
uncertainty online. Ensuring parameter estimates converge
to the physical values, offset-free tracking simultaneously
with improved convergence rates is achieved.

4.1 Adaptive contraction control for uncertain systems

Firstly, consider the function pair (M(xk, r̂),K(xk, r̂))
which satisfies Theorem 2.1 for a specific value of the
uncertain parameter r̂ ∈ R, i.e., for the system described
by (9)–(11) satisfying

(Ak +BkKk)
⊤Mk+1(Ak +BkKk)− (1− β)Mk < 0, (13)

where Ak := A(xk, r̂), Bk := B(xk, r̂), Mk := M(xk, r̂),
Mk+1 := M(xk+1, r̂) and Kk := K(xk, r̂). We then
consider the following robustness Lemma.

Lemma 4.1. (Wei et al., 2021b). For the controller (8) that
ensures a system without uncertainty (1) (i.e., r̂ = r) is
contracting, when parametric uncertainty is present (9)
(i.e., r̂ ̸= r), the state trajectory, x, is driven by (8) to the
bounding ball on the target reference, x∗, as

d(γk+1) ≤ (1− β)
1
2 d(γk) +

√
α2 max

xk

∥g∥∥u∗
k − û∗

k∥. (14)

with at least rate β, where u∗
k represents the control input

reference generated using the true parameter value r.

Then, extending the state-dependent DCCM and feedback
gains to be additionally dependent on uncertain parameter
estimates (evolving with time as parameter estimates are

updated), denoted by (M̂(xk, r̂k), K̂(xk, r̂k)) (note that,

e.g., M̂(x, r̂1) is not necessarily equal to M̂(x, r̂2), for
r1, r2 ∈ R, irrespective of the time-step k), where the
state and parameter-dependent differential feedback gain
δu = K̂(xk, r̂k) results in the adaptive contraction-based
controller (integrating along the geodesic, γ(s) (7))

uk = û∗
k +

∫ 1

0

K̂k(γ(s))
∂γ(s)

∂s
ds, (15)

where û∗
k is the current control reference satisfying (12)

for the desired state x∗
k and current parameter estimate

r̂k. We then propose the following performance results.

Proposition 4.2. Consider the uncertain system (9)
with differential dynamics (11), and adaptive pair

(M̂(xk, r̂k), K̂(xk, r̂k)), satisfying a contraction condition
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Fig. 2. Neural network represented DCCM and differential
controller.

(13) for each instance of r̂ ∈ R (10) with desired contrac-
tion rate β. Provided this pair additionally satisfies

Â⊤
c (r)M̂k+1(r)Âc(r)− (1−βℓ)M̂k(r) < 0, ∀r ∈ R, (16)

where Âc(r) = Ak(r)+Bk(r)K̂k(r), the adaptive controller
(15) ensures bounded convergence to state references,
with a contraction rate of at least βℓ. Moreover, as the
parameter estimate, r̂ converges to the true system value
r: i) offset-free tracking is achieved, and; ii) the contraction
rate approaches the desired rate β.

Proof. Since each parameter estimate r̂ is coupled with
a metric M̂(xk, r̂) and differential feedback gain K̂(xk, r̂)
satisfying (13) (and hence (4)), under Theorem 2.1 and

Lemma 4.1, the metric M̂(xk, r̂k) is a DCCM for (9), which
achieves bounded tracking when driven by the controller
(15). Hence, as r̂ → r, û∗ → u∗ and dγ → 0, yielding i).

Consider the DCCM and feedback gain for the true param-
eter r as (M,K) and (M̂, K̂) for on particular parameter
estimate r̂. Provided a slower contraction rate 0 < βℓ ≤ β
exists such that (16) holds, where βℓ is a Lipschitz function
of r̂ such that β ≥ βℓ ≥ β−L∥r̂− r∥ > 0, then, as r̂k → r,

(M̂, K̂) → (M,K), we have βℓ → β, and the result in ii).

Remark 4.3. To see that satisfying (16) is reasonable, Let
S(x, β) = {x ∈ X |δ⊤xk+1

Mk+1δxk+1
−(1−β)δ⊤xk

Mkδ
⊤
xk

< 0}
denote a contraction region. Suppose we then have a
desired rate βd and slower rate βs ≤ βd (ensured by
the existence of βd), then, Ss(x, βr) denotes the larger
contraction region where Sd(x, βd) ⊆ Ss(x, βs). As such,
robustness to parametric uncertainty can be achieved
based on the assumption that the contraction rate can
always be reduced to expand the region of contraction and
account for small modelling discrepancies (still resulting
in bounded convergence), provided one instance of the
contraction condition in (13) can be satisfied.

The advantage of Proposition 4.2 lies in the reduction of
conservatism and computational burden of solving (13) for
a common metric, i.e., finding one pair (M,K) satisfying
(4) ∀r ∈ R, permitting improved performance (i.e., faster
/ less conservative convergence rates) and amenability to
practical system models (consider difficulty of finding a
common metric). Moreover, this framework permits the
extension to parameter varying convergence rates, i.e.,
modifying (13) to include β(r).

Neural network-based DCCM Control. To learn each
pair (M̂, K̂) satisfying (13) given each parameter value
r̂ = r ∈ R, a neural network is used. As such, a neural
network, as shown in Fig. 2, is used to represent the
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adaptive function pair, (M̂, K̂), satisfying the contraction
condition (13). The inputs of the neural network are the
system states and uncertain parameter values, and the
outputs of the neural network are entries of matrix func-
tions (MNN ,KNN ), i.e., the neural network represented

(M̂, K̂).

The neural network requires a targeted loss function, L,
for effective training, and is defined as

LMi =

{−(|MNN(1,i)
| − ϵi) if (|MNN(1,i)

| − ϵi) ≤ 0

0 else

LΩj =

{−(|Ω(1,j)| − ϵj) if (|Ω(1,j)| − ϵj) ≤ 0

0 else

L =
∑
i

LMi +
∑
j

LΩj , (17)

where −Ω is the LHS of (16), and ϵi, ϵj are some small
positive values. This loss function represents the contrac-
tion condition (13), ensuring that it holds for all possible
two-step trajectories {xk, xk+1} and uncertain parameter
values r. Since the contraction condition (13) includes
both current and future time-steps, the usage of a Siamese
network structure is well suited, as shown in Fig. 3.

Finally, Algorithm 1 (adapted from Wei et al., 2021b)
is used to generate a data set based on a model of the
system and train the neural network. By computing a
feasible function pair (MNN ,KNN ), we can implement the
following adaptive controller, based on the neural network
learned DCCM and differential feedback gain,

uk = u∗
k +

∫ 1

0

KNN (γNN (s))
∂γNN (s)

∂s
ds, (18)

where γNN is the geodesic, connecting the current state xk

and the reference state x∗
k, with respect to DCCM MNN .

Analysis. Firstly, we will present a result from Wei et al.
(2021b) that describes the existence of a contraction rate
with respect to the learned pair (MNN ,KNN ).

Theorem 4.4. (Wei et al., 2021b). The nonlinear system
(9), with fixed parametric uncertainty, r (10), differential
dynamics (11) and neural network embedded contraction
based controller (18), is locally contracting (for each in-
stance of r ∈ R) to a bound about the reference, x∗,
provided Algorithm 1 finds locally contracting balls, Bx,i,
centered at xk for each i-th data element, forming the
area of interest, Xr ⊆ ⋃

iBx,i, as a contraction region with



Algorithm 1: Data Generation and Training

for uk ∈ U do
for xk ∈ X do

for r ∈ R do
Calculate xk+1 using (9).
Compute Jacobian matrices Ak, Bk.
Store {r, xk, xk+1, Ak, Bk}i in data set D.

end
end

end
All elements, {r, xk, xk+1, Ak, Bk}i ∈ D, form a batch.
for iteration ≤ upper limit do

for each {r, xk, xk+1, Ak, Bk}i ∈ D do
Feed xk and r into the first neural network.
Construct MNNk

and KNNk
.

Feed xk+1,r into the second neural network.
Construct MNNk+1

.
Calculate the loss, Li, for the i-th element .

end
Calculate the total loss Lt =

∑
i Li for a batch.

Proceed with backpropagation.
if Lt < tolerance then

Break.
end

end
Save the neural network represented MNN and KNN .

minimum convergence rate, λSx,min, given by, λSx,min =
mini(λ− Lxur||ξi||), where Lxur is a Lipschitz constant.

Theorem 4.4 presents a way to implement a numerical
DCCM learning algorithm for a large contraction region
(e.g., an area of interest) by studying a relatively smaller
region of balls, under fixed parametric uncertainty. Con-
sequently, this permits the search for a pair (M,K) at
a particular value of r to be transformed into a neural
network training problem using discrete training data.

Hence, from Proposition 4.2 and Theorem 4.4, contraction
of the system state to the reference trajectory within
a bound is guaranteed for nonlinear systems centred at
specific values of parametric uncertainty.

4.2 Online Parameter Identification

As concluded in the previous section, the combination of
Proposition 4.2 and Theorem 4.4 provides a stable (in
terms of boundedness) framework from which to employ
online parameter identification methods (e.g. moving hori-
zon estimation, Kalman filter, neural network estimation)
and hence online adaptive tuning of the neural network
embedded controller. Here we will employ the efficient
and well studied moving horizon estimation approach (see,
e.g., Olivier and Smyth, 2017), which involves recursively
solving the following least-squares optimisation problem.

min
r̂

k∑
i=k−N

∥x̂i − xi∥ (19)

s.t. x̂i = f(r̂i−1, xi−1) + g(r̂i−1, xi−1)ui−1, r̂i ∈ R
where r̂ = (r̂k−N , · · · , r̂k−1) is a sequence of parameter
estimates, x̂i is the estimated state at time step i using r̂
and (9), and N is the estimation horizon.

An updated parameter estimate, r̂k, is provided by solving
(19) for the time interval [k, k + 1), whereby the current
step estimate is assigned the most recent estimate value
(last element in r̂), i.e., r̂k = r̂k−1. This is reasonable under
the initial assumption that the uncertain parameter is a
constant. Moreover, weightings for each step in the hori-
zon, and for each element in r, can be added to emphasise
the relative significance of the parametric identification
error. The length of the estimation horizon,N , is chosen by
considering the identifiability of the uncertain parameter,
r (see Olivier and Smyth, 2017), as determined by the
parameter’s dimensionality and the sufficiency of the data
generated in Algorithm 1. Note that the estimated value,
r̂k, is forced to lie inside the known uncertain bound
(rmin, rmax), satisfying (10), and converges to the physical
value, r, as x̂ converges to x, leading to the following
proposition for the overall closed-loop system.

Proposition 4.5. The discrete-time nonlinear system (9)
with parametric uncertainty, r (10), differential dynamics
(11), adaptive neural network embedded contraction-based
controller (18), and online parameter estimator (via solu-
tion to (19)) achieves offset-free tracking (i.e., the Rieman-
nian distance shrinks to a bound with some contraction
rate and limk→∞ |xk−x∗

k| = 0 as the parameter estimation
converges without error to the physical value) if the pair
(MNN ,KNN ) is found offline satisfying Theorem 4.4 and
Proposition 4.2, and solution to (19) converges online.
Moreover, as the parameter estimate converges, the rate
of convergence approaches the desired rate.

Proof. If the estimation error limk→∞ |r̂ − r| = 0, then
the reference generated by (12) is a feasible trajectory of
(9). Since the adpative controller (18) uses the function
pair (MNN ,KNN ) solved from Algorithm 1, then, from
Theorem 2.1 and Proposition 4.2, the system is contracting
without error at a rate approaching the desired value.

In summary, process history is sent to an online pa-
rameter identification module to estimate the uncertain
parameter, r̂k via solution to an online optimisation prob-
lem (19). The estimated parameter r̂k is sent to the ref-
erence generator, which computes the correct state and
control references when the parameter is correctly identi-
fied, i.e., r̂k = r (See Section 3.2). To compute the control
law, the geodesic (7), connecting the current state, xk,
and target state, x∗

k, is first calculated numerically using
the neural network represented metric, MNN , and current
parameter estimate, r̂k. Then, the control input (18) is
calculated using this geodesic, the current parameter es-
timate and the neural network represented feedback gain,
KNN (obtained via Algorithm 1). Under Proposition 4.5,
the proposed closed-loop scheme ensures offset-free track-
ing with desired convergence rates for nonlinear systems
subject to parametric uncertainty of the form in (9).

5. EXAMPLE

Consider the discretised nonlinear continuously stirred
tank reactor (CSTR) (McCloy et al., 2021),[
x1k+1

x2k+1

]
=

0.9x1k + 0.1ϕ1(x1k)e
αx2k

α+x2k + 0.1(1− ζ)x1k

0.9x2k + 0.1ϕ2(x1k)e
αx2k

α+x2k + uk

 ,

(20)
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where x1k , x2k and uk denote the normalised reactant
concentration, reactor temperature and jacket tempera-
ture respectively, α = 0.8, ζ = 0.1, ϕi(x1k) = Dai(1 −
x1k), where the uncertain parameters are in the range of

D̂a1 = [1.15, 3.125] and D̂a2 = [1.275, 3.438], with “true”
values of Da1 = 1.25 and Da2 = 1.375. The state and
input constraints are x1k ∈ [0.1, 1.1], x2k ∈ [−0.1, 1.1] and
uk ∈ [−1, 1], respectively. Offline neural network training
to obtain the DCCM, MNN , and feedback gain, KNN with
respect to the desired contraction rate β = 0.26, using
the Siamese neural network, was completed via Algorithm
1 with a learning rate of 0.001, 3 hidden layers and 15
nodes per layer, as shown in Fig. 2. A relaxed (slower)
rate, βℓ = 0.21, was also found, satisfying Proposition 4.2.
We note here, that for this CSTR problem, the proposed
control approach offers increased synthesis flexibility (e.g.,
relative to a similar problem and approach in Wei et al.,
2021a), whereby the DCCM and feedback gain are param-
eterised by the uncertainty (as opposed to searching for a
common solution pair across the full range of uncertainty).

The simulation result is presented in Fig. 4. The initial
conditions are x0 = [0.6, 0.01]⊤, the desired references are
x∗ = [0.936, 0.2]⊤ for [0, 0.6)h and x∗ = [0.940, 0.3]⊤ for

[0.6, 1.0]h. Initially, D̂a1 = 2.50 and D̂a2 = 1.522 were
modelled incorrectly. The online identification module was
not active before time 0.2h, and hence incorrect references
for contraction-based control were generated (see Section
3.2). Therefore, the system true states x1 and x2 were
not tracking the reference states x∗

1 and x∗
2 offset-free

(although they did track within a bound, as expected
under Theorem 4.4 and Proposition 4.2). The online iden-
tification module was implemented from 0.2h onwards (to

estimate D̂a1k and D̂a2k via solving (19)). The estimated

values of D̂a1 and D̂a2 converged to their true values. As a
consequence, the system trajectory was tracking the time-
varying reference without errors. The rate of convergence
approached the desired rate (resulting in a 20% rate im-
provement as βℓ → β), as per Proposition 4.5.

6. CONCLUSION

In this article, an integrated identification and control
approach utilising neural networks and contraction the-

ory was proposed. An adaptive neural network-embedded
contraction-based controller was developed for uncertain
nonlinear systems, which guarantees bounded convergence
of the system to time-varying reference targets for the full
range of unknown parameter variation and without the
need for controller structural redesign. The adaptive con-
troller is updated online by new state measurements and
parameter estimates. Parameter estimates are computed
by an optimisation-based online identification module to
facilitate correct reference generation and consequently
improve the controller tracking performance with respect
to tracking-error and convergence rates. The resulting
closed-loop control scheme ensures offset-free tracking
with desired convergence rates (when the identified model
matches the physical system) for discrete-time nonlinear
systems with bounded parametric uncertainty, as demon-
strated by a simulation study.
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