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Abstract: This paper develops a hybrid approach that utilizes the distributional information of the 
disjunctive uncertainty sets and incorporates them into the model predictive control (MPC). This approach 
aims at the multi-zone building control to the thermal comfort, and it’s robust to the uncertain weather 
forecast errors. The control objective is to maintain each zone’s temperature and relative humidity within 
the specified ranges using the minimum cost of energy of the underlying heating system. The hybrid model 
is constructed using a physics-based and regression method for the temperature and relative humidity of 
each zone in the building. The uncertainty space is based on historical weather forecast error data, which 
are captured by a group of disjunctive uncertainty sets using k-means clustering algorithm. Machine 
learning approaches based on principal component analysis and kernel density estimation are used to 
construct each basic uncertainty set and reduce the conservatism of resulting robust control action under 
disturbances. A robust MPC framework is developed based on the proposed hybrid model and data-driven 
disjunctive uncertainty set. An affine disturbance feedback rule is employed to obtain a tractable 
approximation of the robust MPC problem. A case study of controlling temperature and relative humidity 
of a multi-zone building in Ithaca, New York, USA, is presented. The results demonstrate that the proposed 
hybrid approach can reduce 9.8% to 17.9% of total energy consumption compared to conventional robust 
MPC approaches. Moreover, the proposed hybrid approach can essentially satisfy the thermal constraints 
that certainty equivalent MPC and robust MPC largely violate. 
Keywords: model predictive control, machine learning, multi-zone building control, hybrid model, 
uncertainty

NOMENCLATURE 

A   System matrix of system states in a compact form 
Bu System matrix of control inputs in a compact form 
Bv System matrix of deterministic disturbances in a 

compact form  
Bw System matrix of uncertain disturbances in a 

compact form 
cp Specific heat of air 
Fu Coefficient matrix for control input constraints in a 

compact form 
Fx Coefficient matrix for state variable constraints in a 

compact form 
fu Coefficient vector for control input constraints in a 

compact form 
fx Coefficient vector for state variable constraints in a 

compact form 
mair,t Mass of supply air during the period from time t to 

time t + 1 
mdehum,t Mass of water vapor taken by dehumidifier during 

the period from time t to time t + 1 
mhum,t Mass of water vapor provided by humidifier during 

the period from time t to time t + 1 
mheat,in,t Mass of airflow provided by air circulation during 

the period from time t to time t + 1 
mheat,out,t Mass of airflow taken by air circulation during the 

period from time t to time t + 1 
Q Heat energy 

RHt Relative humidity in the zone at time t 
RHout,t Ambient relative humidity at time t 
Tair,t Ambient temperature at time t 
Tzone,t Zone temperature at time t 
Theat,t Heated air temperature at time t 
Vzone Zone volume 
ΔT Temperature difference between heated supply air 

and ambient 
δT Temperature difference between heated supply air 

and zone 
ρheat,sat,t Saturated water vapor density at ambient 

temperature at time t 
ρabs,t Absolute water vapor density at time t 
ρair  Air density 
ρwater,sat,t Saturated water vapor density at zone temperature at 

time t 
ρsat,t Saturated water vapor density at time t 

1. INTRODUCTION 

The energy demand is ascending along with the growing 
population in recent years (Shi et al., 2016). Especially 40 % 
of the total energy production is used for building (Shaikh et 
al., 2014). According to the EIA report in 2019, heating and 
humidity control contribute to 30 % of total power 
consumption, which dominates the needs of typical 
households. Those data indicate the significant importance of 
the control of both temperature and humidity. 
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Many studies on the control of a building’s temperature 
have already been conducted to efficiently use the energy 
while meeting thermal comfort constraints. In work by 
Marszal et al. (2011), the zero-energy building was proposed 
and performed remarkably in the test; however, such a strategy 
can only be selectively applied to a limited area (D’agostino et 
al., 2017). PID is also used in controlling the building (Johnson 
and Moradi, 2005). In contrast, traditional PID tends to 
demonstrate instabilities and frequent overshoot thermostats in 
the simulation, resulting in excessive power usage (Kiam 
Heong et al., 2005; Yun et al., 2006). Model predictive control 
(MPC), on the other hand, is a powerful approach to 
controlling the building temperature and has been reported to 
save a tremendous amount of energy usage compared to the 
rule-based control strategies (Prívara et al., 2011; Oldewurtel 
et al., 2012; Ma et al., 2012; Široký et al., 2011; Shang and 
You, 2019). Nevertheless, much of the research still focuses 
on single-zone control, which has limited application in real 
life. Therefore, multi-zone thermal building models are needed 
to better capture and represent the thermal dynamics within the 
house and develop effective control methods. Some papers 
proposed control strategies for the multi-zone building model 
(Morosan et al., 2011; Yang and Wang, 2013); however, 
controlling the temperature alone cannot ensure thermal 
comfort, which is not exclusively contributed by temperature; 
Relative humidity values should also be highlighted. In work 
by Zingano  (2001), they have highlighted that relative 
humidity is tightly related to thermal comfort. Humidity is also 
important for some specialized buildings like greenhouses 
(Chen and You, 2021, 2022). Besides, the health condition of 
occupants can no longer be ensured if the improper relative 
humidity is adjusted (Baughman and Arens, 1996).  

In this study, we develop a hybrid approach to multi-zone 
building’s room temperature and relative humidity control 
under realistic conditions, which is k-mean clustered, principal 
component analysis (PCA), and kernel density estimation 
(KDE) based data-driven RMPC (KM-PKDDRMPC). We 
apply this model to the multi-zone building’s hybrid model, 
which is constructed from the physics-based model, which 
includes both room temperature and relative humidity, and 
then is linearly fitted to the data-driven model. Afterward, the 
uncertainty set is constructed based on the historical forecast 
error to the weather information, i.e., the differences between 
forecast and real-measured values. This uncertainty set can be 
further clustered by the k-means algorithm, and PCA 
combined with KDE can return the polyhedral-shaped applied 
to the RMPC. The optimization problem at each control 
horizon is solved with the help of the affine disturbance 
feedback (ADF). The contribution of this paper is summarized 
as follows: 
• A novel hybrid model for the multi-zone building which 

considers both temperature and relative humidity within 
each individual zone; 

• A novel data-driven control approach for the multi-zone 
building’s model. 

2. HYBRID MODEL FORMULATION & CONTROL 

2.1 Physics-based model construction 

The BRCM MATLAB toolbox is used for finding the 
temperature values within the multi-zone building 

(Sturzenegger et al., 2014). BRCM can generate the linear 
resistance-capacitance models from self-designed building 
geometry construction. The following dynamic multi-input 
multi-output system can be returned: 

1t t u t v t w tx Ax B u B v B w+ = + + +             (1) 
where A is the state matrix that correlates state variables xt to 
SSM. The state variables returned from BRCM are room 
temperature, wall temperature, floor temperature, and ceil 
temperature. Bu, Bv, Bw are the control input matrix, 
disturbance matrix, and uncertainty matrix, respectively, 
corresponding to ut, vt, wt, which are control input, 
disturbances, and uncertainty. The control inputs include 
heater, radiator, humidifiers, and dehumidifiers; the 
disturbances are from ambient temperature and ambient 
relative humidity conditions. Uncertainties are the forecasted 
error of temperature and relative humidity. In order to extend 
this SSM with humidity values, relative humidity within each 
room is calculated based on the air dynamic within the 
building (Cengel, 1997). In work by Rentel-Gomez and Velez-
Reyes (2001), several assumptions are made in the derivation 
of the physics-based model: (i) ideal gas behavior, (ii) perfect 
mixing, (iii) constant pressure process, (iv) negligible 
infiltration and exfiltration effects. Based on assumption (iv), 
the water vapor can be assumed to be exclusively adjusted by 
the amount of air supply, humidifiers, and dehumidifiers.  
The mass of airflow is initially found as: 
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∆T is calculated as follows: 

( )( ), ,max ,0room t air tT T T Tδ∆ = + −             (3) 

Unlike in previous research, mair,t-1 is not assumed a constant 
because the simulation process is conducted in the winter 
season. The constant intake airflow rate implies that the room 
is constantly exchanging the air with a colder ambient 
environment. The heater, most of the time, is active to maintain 
the room. In this case, we assume the difference between the 
room temperature and heated air from the air heating unit 
(AHU) is constant. Subsequently, the heating airflow can be 
turned off when heating is unnecessary. When the mass of 
airflow is calculated, the mass of water vapor brought by 
airflow can be found by the following equation: 
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And so can be found the mass of water vapor taken away by 
airflow: 
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where saturated vapor density (SVD) values are found through 
equation f, which is a linear equation of SVD values over 
temperature (T) expressed as follows: 

( ) 1.0272 1.8959water f T Tρ = = −             (6) 
Afterward, the mass of water vapor stored in each room can 

be found as: 
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RH values within each room at t can then be found as the ratio 
of absolute and saturated water vapor density: 

         (8) 

 
Fig. 1. Linearized saturate relative humidity equation with room 

temperature. The blue dots are the non-linear equation retrieved 
from (Nave, 2012). 

At this point, the RH values within each room can be found 
based on the room temperature, control input, and room size.  

2.2 System identification 

The relative humidity is added to SSM through the system 
identification toolbox found in MATLAB. We assume that the 
in-room relative humidity has a negligible impact on the wall, 
floor, and ceil temperature values based on the assumption of 
“negligible wall and thermal storage” (Rentel-Gomez and 
Velez-Reyes, 2001). Following the assumption, we can reduce 
the size of the system identification model, thereby cutting the 
required computational time. With trained and test datasets, 
one room's values have been selected and demonstrated in Fig. 
2. The mean error values of the System Identification result 
have been summarized in Table I and Table II.  

 
Fig. 2. System identification on testing data. 

Table 1. Mean absolute percentage error (MAPE) of system 
identification of training data 

 RH Temperature 
Room 1 6.37 % 1.24 % 
Room 2 4.89 % 1.04 % 
Room 3 6.34 % 1.24 % 
Room 4 6.53 % 1.25 % 
Room 5 6.80 % 1.30 % 

Table 2. Mean absolute percentage error (MAPE) of system 
identification of testing data 

 RH Temperature 
Room 1 7.33 % 2.38 % 
Room 2 3.92 % 2.00 % 
Room 3 7.34 % 2.37 % 
Room 4 7.29 % 2.40 % 
Room 5 7.32 % 2.50 % 

 
As demonstrated in Table I and Table II, the MAPE values for 
temperature testing data are between 2.00% to 2.50%, and for 
relative humidity are between 3.92% to 7.34%. The error 
values are relatively close to those in work by Yang et al. 
(2018), indicating a good agreement between the linearized 
SSM and the non-linear model. Therefore, we can use this 
SSM to formulate the following control problem. 

2.3 Control strategy development 

Disjunctive uncertainty sets are built for learning the trend 
of the uncertainty data (Ning and You, 2017, 2018). To tackle 
forecast uncertainties’ complex disjoint-set data structure (Fay 
and Ringwood, 2010), the k-means clustering method is 
adopted in this work to cluster the uncertainty into multiple 
groups. First, normalization of the uncertainty data is 
recommended, shown in (10), to facilitate the convergence of 
Newton’s algorithm, which will be used in K-means (Bottou 
and Bengio, 1995). 

0 01 Tw w µ= −               (9) 
The groups are identified by minimizing the sum of 

intracluster variances, i.e., squared Euclidean Distance shown 
below:  
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Despite multiple groups of uncertainty data, the traditional 
norm-based uncertainty set cannot be applied directly to deal 
with the uncertainty data due to its varied structure and 
complexity. Therefore, PCA and KDE are used here for 
handling the data with polyhedral shapes. PCA can then 
maximize the variance of the uncertainty under the same scale. 
The covariance matrix can be approximated as 

1
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As the covariance matrix, Si can be further decomposed as Si 
= QiΛiQi

T, where Qi’s column contains all the eigenvectors, 
corresponding to the eigenvalues stored in the diagonal matrix 
Λi. The individual eigenvalue will represent the variance of this 
axis if data is projected on this eigenvector. 

Finally, it can be further studied the distributional 
information of the uncertainty dataset within each component 
j within the cluster k via the KDE approach: 
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With the probability density function, the cumulative density 
function will be written as follows: 

1
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where α is the pre-specified small quantile parameter, ranging 
from 0 to 0.5, and ξ is the inferred latent variable. The 
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uncertainty set Wk within cluster k can be formulated under the 
introduction of forward and backward deviation variables z+ 
and z- (Ning and You, 2018, 2019): 
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3. CONTROL STRATEGY 

After the acquisition of the SSM required for MPC and 
uncertainty sets, the next step is to develop the optimization 
problem to get the control strategy to the multi-zone building. 
To ensure the tractability of the RMPC optimization problem, 
ADF is adopted to get control input ut based on past 
disturbances. The equation is expressed as follows (Goulart et 
al., 2006): 
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where M is regulated as follows: 
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Only the first u0 will be applied for the control to the model, 
and the rest will be discarded (Chen et al., 2021). The 
optimization problem with ADF can be formulated as follows: 
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             (17) 
Where Fx, Fu, fx, fu represent the state variable constraints 
matrix, control input constraints matrix, constraints for state 
variables, and constraints for the input. L is the weighted cost 
matrix that penalizes the violation of the constraints. Λ is the 
slack variable that allows some extent of violation to the hard 
constraints.  

4. CASE STUDY 

4.1 Problem statement 

In this study, the single-floor multi-zone building located in 
Ithaca, New York, USA, is selected for the simulation of close-
loop data-driven RMPC to control the temperature and relative 
humidity in each individual room. The self-constructed floor 
plan can be referred to Fig. 3. The forecasted weather data is 
retrieved from Herzmann et al. (2004); the actual measured 
data is retrieved from Diamond et al. (2013). The constraints 
for the control conditions are: For the room temperature should 
be within 15 ℃ to 25 ℃, and relative humidity should sit 
between 30 % to 60 %, according to ASHRAE Standard 62-
2001. The solver GUROBI in Python is adopted, and all 

computations are performed on XPS 17 9700 equipped with 
Intel Core i7-10875 CPU @ 2.30 GHz and 16 GB of RAM.  

 
Fig. 3. 3-D Modeling of Multi-Zone House in BRCM 

4.2 Results and discussion 

The model was simulated in Ithaca, New York, from 0:00 
AM, November 1st, 2016, to 0:00 AM, on November 8th, 
2016, ranging from precisely one week. The initial conditions 
for temperature values in all rooms are 21 ℃, and RH values 
are 40 %. The simulation result is shown in Fig. 4. Both 
CEMPC and RMPC violate the constraints more severely. 
CEMPC, which only considers the deterministic conditions, 
fails to compose the strategy against the prediction error from 
ambient temperature and relative humidity. Meanwhile, the 
RMPC fails to obey the relative humidity constraints, 
indicating an irregular shape of the uncertainty data of relative 
humidity. The violation of relative humidity mostly occurs 
when heating is opened to maintain the room temperature, and 
air circulation will take away the water vapor within the room 
and bring more dry air from outside. The RMPC does not use 
any power from humidifiers or dehumidifiers to control the 
relative humidity. This explains that this strategy manages to 
achieve the lowest power consumption, suggesting it favors 
more energy-saving options and receives expensive violation 
penalties instead of following the settled constraints. On the 
other hand, the rest three control strategies can be more 
conservative in maintaining both temperature and relative 
humidity within the constraints. KMDDRMPC will be the 
most conservative one since there is nearly no violation, 
whereas it will have the highest power consumption across all 
control methods. Furthermore, though there are slightly more 
violation cases and more computation time, KMPKDDRMPC 
will draw significantly less power in controlling the 
temperature and relative humidity compared to KMDDRMPC 
and PKDDRMPC. Overall, our proposed KMPKDDRMPC 
saves 9.8 % of energy usage compared to PKDDRMPC and 
17.9 % compared to KMDDRMPC.  
Another observation is the control benefits from disjunctive 
uncertainty sets. For temperature control, KM-PKDDRMPC 
manages to lower the violation frequency and reduce the 
energy usage compared to PKDDRMPC. Similarly, for 
relative humidity control, KM-PKDDRMPC uses less energy 
to maintain relative humidity within a comfortable range than 
PKDDRMPC. KM-DDRMPC also shows an advantage in 
controlling relative humidity compared to RMPC by 
significantly lowering the violation frequency. Therefore, it is 
safe to acknowledge that disjunctive uncertainty sets can help 
improve the controller’s ability to hedge against uncertainty 
disturbances.   

  



 
Figure 4. Multi-zone building control profile in Ithaca, New York, in the first week of November 2016 

The major novelty of this paper is that we build data-driven 
disjunctive uncertainty based on the k-mean clustering 
algorithm, and we can observe the control benefits from 
disjunctive uncertainty sets. For temperature control, 
KMPKDDRMPC manages to lower the violation rate by 
reducing the energy usage compared to PKDDRMPC. 
Similarly, for relative humidity control, KMPKDDRMPC uses 
less energy in maintaining relative humidity within a 
comfortable range compared to PKDDRMPC. KMDDRMPC 
also shows an advantage in controlling relative humidity 
compared to RMPC by significantly lowering the violation 
rate. Therefore, it is safe to acknowledge that disjunctive 
uncertainty sets can help improve the control’s ability to hedge 
against noise disturbances while being applied under 
stochastic conditions. 

Compared with other MPC’s, the optimal control problem 
is more sophisticated in our proposed framework because a 
considerable number of Lagrange multipliers have been 
introduced to transform the infinite-dimensional problem into 
its robust counterpart. Despite this, the computation is still 
trivial considering that all constraints can still be reformulated 
in the form of linear inequalities and equalities contributed 
from ADF policy, which can be readily solved by convex 
programming techniques. The average CPU time for our 
proposed framework is only 1.23 s, which is totally acceptable 
in real-life applications because it is sufficient to finish the 
optimization procedure within the sampling interval of 15 
minutes.  

5. CONCLUSION 

In this work, we developed a KM-PKDDRMPC framework 
for the multi-zone building SSM, which includes indoor 
temperature and relative humidity control and is constructed 
from a hybrid approach. In order to maintain temperature and 
relative humidity within the comfortable range, KM-
PKDDRMPC is capable of handling the uncertainty sets from 
temperature and relative humidity forecast. The steady-state 
system with relative humidity is constructed based on the 
physics-based model and linearized with the help of system 
identification. Then the optimization problem can be further 
developed with the SSM and disjunctive uncertainty sets. The 
proposed KM-PKDDRMPC was compared with the CEMPC 
and other MPC strategies, including RMPC, KM-DDRMPC, 
PKDDRMPC. The result demonstrated that the proposed KM-
PKDDRMPC had outperformed the rest from the overall 
perspective, using 17.9 % less power consumption than 
KMDDRMPC and 9.8 % fewer than PKDDRMPC. Though 
CEMPC and RMPC used less power than other RMPCs, the 
high violation rate would exclude them from the final 
consideration for the practical application.  
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