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Abstract: This study aims to develop a forward physics-informed neural network (fPINN) suitable for 

multiple operating conditions, representing the plug-flow reactor (PFR) model of catalytic CO2 methanation 

in an isothermal fixed-bed (IFB). The fPINN was constructed by a fully connected feed-forward artificial 

neural network (ANN) and physical constraints including PFR governing equations, nonlinear reaction 

kinetics, and boundary conditions. The fPINN showed outstanding extrapolation performance for the PFR 

model. The speedup factor of fPINN overwhelmed the stiff ODE numerical solver when the number of 

spatial points became large. The fPINN can be used as a surrogate model for process optimization where 

multiple reactors and operating conditions are considered. 
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1. INTRODUCTION 

CO2 methanation (CM) in combination with power-to-gas 

(PtG) technology is an alternative to existing energy systems 

that could be integrated with renewable energies (Ngo and 

Lim, 2021, Ngo et al., 2020). CH4 has advantages over H2 in 

energy storage capacity, discharge time, safety, and transport 

(Schaaf et al., 2014). CM reduces carbon emissions by 

encouraging the synergistic integration of renewable 

electricity with large CO2 footprints in industries such as 

thermal power plants (Kim et al., 2021). 

Among various reactor types, fixed-bed reactors (FBs) are one 

of the most used types for CO2 methanation. Because the CO2 

methanation reaction is thermodynamically favored at low 
temperatures and high pressures (Uebbing et al., 2019), an 

isothermal fixed-bed reactor (IFB) without a hot spot produces 

high methane selectivity, exhibits stable operation, and 

prevents deactivation of catalyst particles through processes 

such as thermal degradation (i.e., nickel sintering (Rönsch et 

al., 2016)). However, the IFB usually requires high recycling 

and dilution ratios, and adiabatic reactors to maintain suitable 

productivity (Davis, 1981, Porubova et al., 2012). Therefore, 

process optimization targeting effective operating conditions 

such as temperature and pressure plays an important role in 

process design.  

To develop advanced CO2 methanation technologies, 

modeling and simulations have been known as effective tools 

for process optimization and reactor designs. The plug-flow 

reactor(PFR) model was widely used for representing the 

fixed-bed reactor (Schlereth and Hinrichsen, 2014). Fluidized-

bed reactors with uniform temperature are analogous to 

isothermal PFR (Ngo et al., 2020, Ngo et al., 2021a, Ngo et al., 

2021b). 

Besides first principles and empirical elucidations, artificial 

neural network (ANN), data-driven models, black-box 

models, or surrogate models (SMs) have become an alternative 

approach for functional mapping between input and output 
data with benefits on (1) prompt predictions, (2) automated 

knowledge extraction, and (3) high inference accuracy 

(Gusmão et al., 2020, Ngo and Lim, 2021). 

Recently, physics-informed neural networks (PINNs) have 
been reported as a suitable solver for ordinary differential 

equations (ODEs) and partial differential equations (PDEs) 

(Raissi et al., 2019). PINNs are structured by ANNs, physical 

laws, and automatic differentiation (AD) technique, which are 

constrained to respect any symmetries, invariances, or first-

principle laws (Raissi et al., 2019) without domain 

discretization techniques and, therefore, the numerical 

diffusion (Warey et al., 2021). In addition, the extrapolation 

performance of PINNS is improved by physical constraints 

(Kim et al., 2020, Ngo and Lim, 2021). Nonetheless, there are 

few applications of PINNs in chemical process modeling, 

design, and optimization, which require the SM suitable for 

multiple operating conditions. 

In this study, a forward physics-informed neural network 

(fPINN) coupled with AD was developed for solving a PFR 

model in an isothermal fixed-bed (IFB) reactor, which is 

suitable for multiple operating conditions and highly nonlinear 

reaction kinetic rates for catalytic CO2 methanation. The 

results obtained from fPINN were compared with those from 

a common numerical solver of ODEs (ode15s in MATLAB). 

The extrapolation performance was analyzed by varying the 
range of input data for training the fPINN. It was demonstrated 

that the fPINN solved PFR model with multiple operating 

conditions and highly nonlinear chemical reaction kinetics. 



2. PROCESS DESCRIPTIONS AND FORWARD 

PHYSICS-INFORMED NEURAL NETWORK 

STRUCTURE 

2.1 Isothermal fixed-bed reactor for CO2 methanation 

The single-tube IFB was assumed to be processed with a 

coolant that was able to remove immediately the heat 

generated in the exothermic reaction as shown in Fig. 1. The 

catalytic CO2 methanation, known as the Sabatier reaction is 

(Ngo and Lim, 2021) 

𝐶𝑂2 + 4𝐻2 ⇄ 𝐶𝐻4 + 2𝐻2𝑂, Δ𝐻𝑟
298𝐾 = −165

𝑘𝐽

𝑚𝑜𝑙
          (1) 

The operating conditions were set as a temperature (T) of 350 

- 450 °C, a pressure (P) of 5 bar, and a volumetric flow rate 
(Q) of 10 Nm3/s. The pure gas reactants were fed to the inlet 

at a CO2/H2 molar ratio of 1/4. 

2.1.1 Governing equations 

The IFB was modeled as a one-dimensional (1D) plug-flow 

reactor at a steady-state (Ngo and Lim, 2021, Ngo et al., 2020). 

The momentum and energy balances were neglected because 

of the low-pressure drop and isothermal conditions, 

respectively. The mass balances for the ith species (i = CO2, H2, 

CH4, and H2O) participating in the CO2 methanation reaction 

in Eq. (1) are formulated as follows: 

 
1

𝐴𝑡

𝑑𝐹𝑖

𝑑𝑧
= 𝜂𝜈𝑖𝑟            (2) 

 

where z (m) is the reactor tube axial position, 𝐹𝑖  (mol/s) is the 

molar flow rate of a species i at position z, 𝐴𝑡 (m2) is the tube 

cross-sectional area, 𝜈𝑖  is the stoichiometric coefficient of 

species i, and r (mol/m3/s) is the volumetric reaction rate. 𝜂 is 

the effectiveness factor of the chemical reaction, which is 

defined as the volume-averaged reaction rate with diffusion 

within catalyst particles divided by the area-averaged reaction 

rate at the catalyst particle surface (Ngo et al., 2020). For the 

sake of simplicity, the value of 𝜂 was assumed as one in this 

study. 

The boundary conditions for the molar flow rate (Fi) of the 

species at the inlet (𝑧 = 0) are as follows: 

 

𝐹𝑖|𝑧=0,∀𝑇∈Ω𝑇
= 𝑥𝑖,0𝐹0         (3) 

 

where 𝑥𝑖,0  and 𝐹0  (mol/s) are the inlet mole fraction of gas 

species i and the total molar flow rate of the inlet gas mixture, 

respectively. Ω𝑇 = [350: 2: 450]  oC is the range  of the 

operating temperature, which was uniformly discretized from 

lower (350 oC) to higher bounds (450 oC) with an interval of 2 
oC. 

 

2.1.2 Chemical reaction kinetics  

The reaction kinetics model proposed by Koschany et al. 

(2016) (Koschany et al., 2016) for catalytic CO2 methanation, 

which was tested within a wide range of Ni contents and 

industrial operating conditions, was adopted in this study. 

𝑟 = 𝜌𝑐𝑎𝑡(1 − 𝜀)
𝑘⋅𝑝𝐻2

0.5𝑝𝐶𝑂2
0.5 (1−
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𝑘 = 6.41 × 10−5 exp (
93.6

𝑅
(

1

555
−

1

𝑇
))         (5) 

𝐾𝑂𝐻 = 0.62 × 10−5 exp (
64.3

𝑅
(

1

555
−

1

𝑇
))         (6) 

𝐾𝑒𝑞 = 137 ∙ 𝑇−3.998 exp (
158.7

𝑅𝑇
)          (7) 

where 𝑅 (=8.314×10-3 kJ/mol/K) is the gas constant, 𝑇 (K) is 

the temperature, 𝑝𝑖 (bar) is the partial pressure of species 𝑖, 𝑘 

(mol/gcat/s) is the reaction rate constant, 𝐾𝑂𝐻 (1/bar0.5) is the 

adsorption constant, and 𝐾𝑒𝑞  is the thermodynamic 

equilibrium constant. The catalyst density (𝜌𝑐𝑎𝑡) was set to 

2300 × 103 gcat/m
3

cat. The reaction rate in Eq. (4) including 

inhibition by adsorbed water (Kad), equilibrium constant (Keq), 

and non-stoichiometric reaction orders is far from the 

elementary reaction rate. 

2.2 Forward physics-informed neural network structure 

The architecture of the fPINN for the PFR model in an IFB is 

presented in Fig. 1. The objective of fPINN is to solve the PFR 

governing equations, boundary conditions, and operating 

pressure (P) at any given operating temperature (T).  

The 50,000 collocation points were used to train the fPINN 

over the reactor length ( 0 < 𝑧 ≤ 3  m) except 𝑧 = 0  and 

operating temperature (350 ≤ 𝑇 ≤ 450 oC). The Dirichlet’s 

boundary conditions were 𝐹𝑖,0 = [97.74  378.9  0  0] mol/s at 

the reactor inlet (𝑧 = 0 m and 350 ≤ 𝑇 ≤ 450 oC).   

Since the same governing equations and training strategy with 

a single input PINN (Ngo and Lim, 2021) was used, the ANN 

structure for two inputs ( 𝑧  and 𝑇 ), four outputs ( 𝐹𝑖 ) was 

assumed to be similar to the optimized network structure of the 

single input PINN composed of five hidden layers, and 256 

neurons for each layer. The activation function of hyperbolic 

tangent (tanh) was applied for each hidden layer. The weights 

(𝑤𝑗,𝑘) and biases (𝑏𝑗,𝑘) for the jth hidden layer and the kth neuron 

are adjusted to minimize the loss function (Loss). The AD for 

spatial derivatives (
𝑑𝐹𝑖

𝑑𝑧
) was calculated via the reverse 

accumulation mode which propagates derivatives backward 

from a given output (Güneş Baydin et al., 2018). The 

optimized weights and biases (𝑤∗ and 𝑏∗) were obtained from 

the following optimization problem: 

{𝑤∗, 𝑏∗} = argmin
𝑤,𝑏

{𝐿𝑜𝑠𝑠 =  𝑀𝑆𝐸𝑔(𝑤, 𝑏) + 𝑀𝑆𝐸𝑏 (𝑤, 𝑏)}  (8) 

𝑀𝑆𝐸𝑔(𝑤, 𝑏) =
1

𝑁𝑡𝑟𝑎𝑖𝑛
∑ ∑ [

1

𝐴𝑡
(

𝑑𝐹𝑖

𝑑𝑧
)

𝑗
− 𝜂𝜈𝑖𝑟𝑗]

2
𝑁𝑐𝑜𝑚𝑝

𝑖=1

𝑁𝑡𝑟𝑎𝑖𝑛
𝑗=1     (9) 

𝑀𝑆𝐸𝑏 (𝑤, 𝑏) =
1

𝑁𝑏𝑛𝑑
∑ ∑ [𝐹𝑖,𝑘|𝑧=0 − 𝑥𝑖,0𝐹0]

2𝑁𝑐𝑜𝑚𝑝

𝑖=1

𝑁𝑏𝑛𝑑
𝑘=1         (10) 

where MSEg and MSEb are the mean squared errors for the 

governing equation and boundary condition, respectively. 

Ntrain, Ncomp, and Nbnd are the number of training data sets, 

species (or components), and boundary condition sampling 



points, respectively. The loss function (Loss) sums MSEg and 

MSEb. 

 

 

An Adam optimizer (Kingma and Lei Ba, 2015) with an initial 

learning rate of 0.001 and decay rate of 0.005 was used to solve 
Eq. (8), which combines a stochastic gradient descent with 

adaptive momentum. A mini-batch size of 128, which had a 

minor effect on the fPINN training results, was used. The 

number of training epochs was set to 5,000. In the ANN, the 

biases (b) were initialized to zeros and the weights (w) was 

initialized by the commonly used heuristic called the Xavier’s 

method (Xavier and Yoshua, 2010): 

𝑤0 = 𝑈 [−√
6

𝑁𝑖𝑛+𝑁𝑜𝑢𝑡
, √

6

𝑁𝑖𝑛+𝑁𝑜𝑢𝑡
]   (11) 

where 𝑈  is the uniform distribution in the interval of 

±√
6

𝑁𝑖𝑛+𝑁𝑜𝑢𝑡
 . 𝑁𝑖𝑛 and 𝑁𝑜𝑢𝑡 are the number of neurons of the 

previous and present layers, respectively. The “phylox” 

pseudo-random generator with 10 rounds and a seed value of 

“1234” was used for reproducibility. The Sobol’s quasi-

random sequence generator was used for filling the collocation 

training points in the 𝑧 space. 

 
 An ODE numerical solver (ode15s, MATLAB, The 

Mathworks Inc., Natick, MA, USA) with a strict relative and 

absolute tolerance of 1×10-8 was used for verifying the fPINN 

prediction accuracy. The accuracy of the PINN model was 

measured using an 𝐿2 relative error norm between the fPINN 

(𝐹𝑖,𝑓𝑃𝐼𝑁𝑁) and numerical ODE solver (𝐹𝑖,𝑂𝐷𝐸 ): 

𝐿2,𝑟𝑒𝑙 = √
∑ ∑ (𝐹

𝑖,𝑓𝑃𝐼𝑁𝑁
𝑗

−𝐹
𝑖,𝑂𝐷𝐸
𝑗

)
2𝑁𝑡𝑒𝑠𝑡

𝑗=1

𝑁𝑐𝑜𝑚𝑝
𝑖=1

∑ ∑ (𝐹
𝑖,𝑂𝐷𝐸
𝑗

)
2𝑁𝑡𝑒𝑠𝑡

𝑗=1

𝑁𝑐𝑜𝑚𝑝
𝑖=1

          (12) 

where 𝑁𝑡𝑒𝑠𝑡  (=1000) is the number of test data generated 

uniformly in the z-direction. 𝑁𝑐𝑜𝑚𝑏  (=4) is the number of 

specific components. 

Negative intermediate outputs (𝐹𝑖) appeared frequently when 

the stochastic gradient optimizer was used in the fPINN. In 

addition, the ODE system of the reactor model with chemical 

reaction rates was stiff. Therefore, it was desirable to avoid 

negative 𝐹𝑖  and improve the convergence of the fPINN. An 
exponential mapping of the output values from each hidden 

layer (Gusmão et al., 2020) was used: 

𝑎𝑗,𝑙 = exp(𝑓𝑎(∑ [𝑤𝑗,𝑘𝑎𝑗−1,𝑘 + 𝑏𝑗,𝑘]𝑚
𝑘=1 )                    (13) 

where 𝑎𝑗,𝑙  is the value exiting the 𝑙𝑡ℎ  neuron of the 𝑗𝑡ℎ  hidden 

layer. 

3. RESULTS AND DISCUSSIONS 

Fig. 2 shows the loss function (𝐿𝑜𝑠𝑠 in Eq. 8) history over 

about 1 million iterations for 50,000 collocation training 

points. The training time was about 41 h using a single 

NVIDIA Quadro RTX 6000 GPU device. After 0.5 million 

iterations, the 𝐿𝑜𝑠𝑠  converged slowly to the final value of 

3×10-5. The number of iterations and training points of the 
present study are significantly higher than the single input 

variable case (Ngo and Lim, 2021). 

 

 

Unlike the conventional ANNs, the PINN has an extrapolation 

capability when applied for the range out of training data, 

which is similar to solving first-principle laws in a 

computational domain. Fig. 3 displays the performance of 

fPINN for interpolation and extrapolation cases. It is noted that 

the dashed lines are PINN predictions while the solid lines are 
numerical results governed by first-principle laws. Since the 

training data range of z and T were 0 ~ 3 m and 350 ~ 450 oC, 

Figure 1. Plug-flow reactor (PFR) model and forward 

physics-informed neural network (fPINN) for CO2 

methanation (CM) in an isothermal fixed-bed (IFB) 

reactor. 

Figure 2. History of the loss function (𝐿𝑜𝑠𝑠). 



respectively, In Fig. 2a and 2d, the extrapolation results on 

both T and z are presented, while the interpolation ranges of z 

are marked by the shaded orange zone in the Fig. 2b and 2c.  

The fPINN predicted well 𝐹𝑖  for most of ranges. However, the 

prediction accuracy dropped at extrapolation range and steep 

curves.  

 

Fig. 4 depicts the error map for a wide range of operating 

temperature (T) and reactor length (𝑧) from 330 oC to 470 oC 

and from 0 to 5 m, respectively. The interpolation range is 

bounded by a red-dashed square. Since the governing 

equations were involved during training the network, there is 

no discontinuity between interpolation and extrapolation 
unlike common ANNs. The maximum error is about 0.3% 

appeared at extrapolation values of operating temperature and 

reactor length about 470 oC and 0.5 m, respectively.  

Even for a wide range of operating temperatures, the 
extrapolation capability of the fPINN is remarkable, unlike 

that of common ANNs (Abiodun et al., 2018). The accuracy 

of fPINN prediction is related to the range and distribution of 

training data to adapt to the complex curve behaviors (Jagtap 

et al., 2020). Once network parameters are optimized, the 

fPINN instantly predicts outputs (Fi) for any inputs (z and T), 

which can be used as an SM of governing equations. 

Differently from the discretization methods, because the 

training data at collocation points (z) are generated 

independently in the specific domain, the fPINN is suitable for 

solving governing equations with complex geometries or 

moving boundary conditions (Sun et al., 2020). Moreover, 

since the gradients are accurately calculated via the AD 

technique instead of using Taylor-series expansions, the 

numerical diffusion and round-off errors are minimized 

(Warey et al., 2021). 

 

Fig. 5 compares the calculation time using ODE15s and the 

SM obtained from the trained fPINN. The number of spatial 

input points was ranged from 1,000 to 50,000 with an interval 

of 1,000. For each number of spatial points, the SM and 

ODE15s were repeated for all operating temperatures from 

330 to 470 oC with an interval of 1 oC. Such a problem is close 

to process optimization problems where the ODEs are solved 

iteratively. When the number of spatial points increased, the 

calculation time of the ODE numerical solver increased almost 

linearly. However, the calculation time of the fPINN SM is 

almost identical to a value lower than 0.4 s for each number of 

spatial points. Therefore, the speedup factor of SM obtained 

from fPINN became larger than the ODE numerical solver, 

when the number of spatial points increased. 

The speedup factor and extrapolation capacity of FPINN over 

conventional ANNs and ODE numerical solvers are valuable 

in the real-time optimization problems (Francois and Bonvin, 
2013, Shokry et al., 2021) and digital-twin concept (Leng et 

al., 2021), in which the predictions are required to be generated 

instantly and extrapolated widely for various operating 

conditions.  

Figure 3. Performance of fPINN for two inputs and 𝑧. 

Figure 4. Error map of fPINN for a wide range of operating 

temperature. 



 

 

4. CONCLUSIONS 

A forward physics-informed neural network (fPINN) was 

developed for an isothermal fixed-bed (IFB) reactor model for 

catalytic CO2 methanation at a wide range of operating 

temperatures. The fPINN was composed of a fully connected 

feed-forward artificial neural network (FF-ANN), automatic 

differentiation (AD) for derivatives, and plug-flow reactor 

governing equations with a stiff reaction kinetic rate. The loss 

function of the fPINN included two mean squared errors 

(MSEs) for the governing equations and boundary conditions. 

The one-dimensional reactor was initialized at a molar flow 

rate that was the same as the boundary condition at the reactor 

inlet. The number of iterations and training points 

requirements increased significantly when the operating 
temperature was considered as an input variable. The fPINN 

model exhibited an excellent extrapolation performance 

because the fPINN provides a solution satisfying physical 

laws. The speedup factor of the fPINN surrogate model over 

the ODE numerical solver increased when the number of 

spatial points increased. The current approach is useful for 

building a surrogate model for CO2 methanation process 

design and optimization. 
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