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Abstract: Microbial fermentation processes are most often described by nonlinear time-varying
dynamics, which require the implementation of nonlinear state estimators to infer unmeasured
metabolites in the cultivation broth. Among the various nonlinear available estimator strategies,
the Moving Horizon Estimator (MHE) is an on-line optimization approach that easily allows
to enforce hard constraints, an important feature that helps to avoid unfeasible concentrations.
In this work we implemented an MHE by using experimental data from a fed-batch cultivation
process of Corynebacterium glutamicum. Available real-time measurements of biomass and CO2

formation were used to infer sugar concentrations by combining the available measurements with
a simple Monod model. We found that the MHE was able to estimate all the three variables of
interest, including the unmeasured sugar concentrations, during the entire fed-batch cultivation
process. Moreover, we show that the estimates are accurate in comparison to the reference off-
line samples. This work demonstrates the benefits of MHE as a soft sensor that can monitor
bioprocesses in real-time.

Keywords: Estimation and control in biological systems, Parameter and state estimation,
Monitoring, Optimization

1. INTRODUCTION

Automation of biological processes is limited due to the
unavailability of on-line measurement devices that can
quantify variables of interest. The lack of sensors can
be circumvented by implementing state estimators that
enable to monitor the process in real-time. These state
estimators are dependent on mathematical models (Rao,
2000) that represent the system in a simplified manner (i.e.
Monod growth model). Different applications of nonlinear
estimation techniques, including Extended Kalman Filters
(EKFs), Particle Filters (PFs) and Unscented Kalman
Filters (UKFs), are available, as reported in Tuveri et al.
(2021). However, those applications are all based on recur-
sive Bayesian estimators, which approximate the posterior
conditional probability density function (pdf ) using mea-
surements available at the current sampling instant.

Differently from them, optimization-based methods such
as the Moving Horizon Estimator (MHE) use a moving
window of past data (Robertson et al., 1996; Rawlings and
Bakshi, 2006; Bavdekar et al., 2013; Ali et al., 2015). Most
importantly, from a practical point of view and in contrast
to the recursive Bayesian estimators, the MHE has:
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• the ability to explicitly incorporate bound constraints
in states and parameters;

• the possibility to easily handle multi-rate measure-
ments;

• higher computational times (CPU times).

Indeed, MHE has the ability to explicitly incorporate
physical constraints on states and parameters, and dis-
turbances in the form of time-varying parameters can be
added as extra degrees of freedom in the optimization
(Robertson et al., 1996; Rao et al., 2003; Kühl et al.,
2011). On the other hand, the EKFs or UKFs methods
require strategies like clipping (Haseltine and Rawlings,
2005) or other optimization-based methods (Kol̊as et al.,
2009; Tuveri et al., 2021) to avoid the estimation of neg-
ative concentrations. Additionally, time-varying parame-
ters and disturbances have to be included as additional
states, without the possibility to constrain them within
predefined boundaries. Moreover, many real-time systems
incorporate measurement devices with various sampling
rates and times. For instance, whereas some absorbance
probes sample every 10 seconds, sugar measurements by
high performance liquid chromatography (HPLC) can be
acquired every 30-60 minutes. The MHE, by considering
a window of past measurements, is of interest in the case
of such multi-rate measurements (Elsheikh et al., 2021),
since it easily allows to place them in an adequate position
within the time horizon. For those reasons, the MHE is a
promising approach within bioprocesses.



The continuously increasing interest in real-time opti-
mal control has brought advances in nonlinear Model
Predictive Control (NMPC) algorithms and consequently
in MHE methods (Findeisen et al., 2007). Indeed, even
though fewer results are available in the literature about
MHE, it can be seen as the dual of Model Predictive
Control (MPC), since they both share moving horizon
approach and dynamic optimization. The pioneering work
of Kühl et al. (2011) in fact, transferred a fast real-
time iteration approach developed for NMPC to MHE,
contributing to its feasibility in real-time.

Although some in-silico applications within bioprocess
monitoring are available (Räıssi et al., 2005; Valipour and
Ricardez-Sandoval, 2021; Bae et al., 2021; Elsheikh et al.,
2021), the implementation of MHE combined with experi-
mental data is almost non-existent and, to the best of our
knowledge, it was only presented by Goffaux and Wouwer
(2008). In Goffaux and Wouwer (2008) the authors present
a robust receding horizon approach in the case of uncer-
tain parameters, by selecting the worst parameter real-
ization in a min-max optimization approach. To reduce
the high computational demand, model linearization and
monotonicity assumptions are required. Differently from
the implementation in Goffaux and Wouwer (2008), our
approach does not require linearisation or monotonicity
of the model, parameter realisation is considered nominal
and model uncertainty is a free variable minimized in the
cost function. In order to demonstrate the benefits of MHE
in bioprocess monitoring, we present an implementation
of MHE using real experimental data of a fed-batch bac-
terial cultivation of Corynebacterium glutamicum, previ-
ously presented in Tuveri et al. (2021). The estimation
performance obtained here by the MHE is accurate with
respect to the off-line samples. Moreover, we demonstrate
the incorporation of hard state constraints directly in the
optimization formulation. This is an important advantage
when the practitioner needs to avoid nonphysical estimates
(i.e. negative concentrations).

2. INPUT AND OUTPUTS

The on-line output measurements were collected every 60
seconds and used by the estimator to measure biomass,
volume and CO2 respectively and to infer the unmeasured
glucose composition. Signals from the absorbance probe
were obtained in concentration units (0.05 - 4 CU) and
than converted to g/L (cell dry weight, CDW) using a
calibration curve as follows.
CU ≥ 0.9:

CDWCU = 22.187 · CU − 5.0991

CU < 0.9:

CDWCU = 11.124 · CU + 0.66116

On-line CO2 signals were obtained as measure of the
composition in the outflow (0%–25%). The volume was
calculated by integrating on-line the signals from the
pumps, taking into account also the amount of volume
taken for the off-line samples (8 mL/sample). The feeding
profile is reported in Fig. 1. From here on we will define
the two different phases as batch (from zero to the start
of the feeding) and fed-batch or second batch (from the
feeding on). More information about measurements and
experimental setup are reported in Tuveri et al. (2021).
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Fig. 1. Feeding profile.

3. SYSTEM MODEL

The dynamics are modelled by using simple Monod ki-
netics for growth on glucose as fed-batch process (Eq.
1), with the addition of linear cell death (Tuveri et al.,
2021), where the state vector is defined by x(t) =
[V (t), X(t), S(t), CO2(t)]T and the input vector by
u = [Fin(t)]. From here on we will drop the time-dependent
notation for simplicity. The states V , X, S and CO2

are respectively volume, biomass, substrate and carbon
dioxide. Fin is the inflow of glucose with concentration
Sin (100g/L), while qair is the inflow of air (2 NL/min).

dV
dt = Fin

dX
dt = −FinV X + µmax

S
Ks+S

X − kdX
dS
dt = Fin

V (Sin − S)− µmax S
Ks+S

X
YXS

dCO2

dt = µmax
S

Ks+S
X

YXCO2
− qairCO2

(1)

The parameters are µmax, KS , kd, YXS and YXCO2
(Table

1). Those parameters were obtained using a nonlinear
least-squares data fitting algorithm (lsqnonlin, Matlab) by
a dedicated experiment (Tuveri et al., 2021).

Table 1. Values of model parameters (Eq. 1)
with unit and standard deviations.

Parameter Description Value Unit Std. Dev.

µmax Maximum growth rate 0.19445 [h−1] 3.25 ·10−6

KS Monod growth constant 0.007 [g · L−1] 3.92 ·10−6

kd Death rate constant 0.006 [h−1] 4.49 ·10−6

YXS S from X yield 0.42042 [g · g−1] 3.58 ·10−6

YXCO2 CO2 from X yield 0.54308 [g · g−1] 2.22 ·10−6

The covariance matrix for the parameters is calculated
through the Fisher Information Matrix (FIM) as in Tuveri
et al. (2021), where also structural identifiability and local
observability for the system were positively assessed.

4. MOVING HORIZON ESTIMATION

The MHE estimates the states using past measurements
at specific time points in the horizon T = tN − tL, where
tN represents the current time and tL the starting point of
the horizon. The time horizon is then discretized according
to the sampling rate.

The dynamics of the process (Eq. 1) are described by a set
of ordinary differential equations (ODEs):

ẋ = f(x, u, w) (2)

y = h(x) (3)



Fig. 2. The figure reports the MHE implementation, where
the red dashed line represents the cost function (Eq.
6) and the blue dashed-dotted line its constraints.
Measurements are given to both arrival and measure-
ment error cost, while the measurement error covari-
ance matrix is calculated at every iteration to weight
for the model noise.

By discretizing it, we obtain:

xk+1 = F (xk, uk, wk) (4)

yk = h(xk) (5)

where k denotes the sampling time tk and wk is a random
variable.

The MHE problem (Kühl et al., 2011; Andersson et al.,
2016) consists in finding the states and their noise ob-
tained by solving the following constrained least-squares
optimization problem:

min
xi,wi

(
‖x̂L − xL‖2PL +

N∑
i=L

‖yi − h(xi)‖2V +
N−1∑
i=L

‖wi‖2Wk

)
s.t. xi+1 = F (xi, ui, wi) i = L, · · ·, N − 1

xi ≥ xmin i = L, · · ·, N
(6)

The states xi are constrained with xmin = [0, 0, 0, 0] as a
lower bound, to avoid negative (unfeasible) concentrations.
Following the work of Kühl et al. (2011), we define:

PL = P−1/2, V = R−1/2, Wk = Qk
−1/2 (7)

and consider ‖b‖2B = bTBTBb. The first term of the opti-
mization (Eq. 6) is the arrival cost (Γ), which summarises
the effect of measurements previous to the estimation hori-
zon (up to tL) and it is updated by single QR-factorization
as in Kühl et al. (2011). The term x̂L (Eq. 6) represents
the optimal estimate of xL.

The matrices P , R and Qk (Eq. 7) are defined respectively
as error, measurement noise and process noise covariances
(Tuveri et al., 2021). Moreover, to take into account
different process dynamics (Elsheikh et al., 2021), the

process noise covariance Qk is updated as in Tuveri et al.
(2021). However since MHE, differently from EKF and
UKF, takes into account several past measurements within
the horizon T , the corresponding process noise covariance
matrix Qk is used for each sampling time (k) within
the horizon. Along the optimization horizon (30 min),
states (xi) and process noise (wi) are optimized using the
information from the mechanistic model and the outputs
(1 min sampling rate). The implementation of the MHE
is illustrated in Fig. 2. To transform the continuous time
model, we apply three point Legendre collocation on finite
elements. The Nonlinear Programming (NLP) problem
was solved using IPOPT (Wächter and Biegler, 2006)
embedded in CasADi (Andersson et al., 2019).

4.1 Arrival Cost Update

Several approaches can be used to calculate the arrival
cost. An interesting review on different arrival cost schemes
and how they can effect the stability of the MHE is
presented in Elsheikh et al. (2021). Here we describe the
QR-factorization approach employed in this work, which
approximates the arrival cost to a quadratic term that
is updated before each new horizon (Kühl et al., 2011).
Altough the QR-factorisation is a linearised technique as
the EKF, it also holds all the numerical properties of
the square-root Kalman Filter and the influence of past
information can only grow within the limits of the process
noise covariance Qk (Kühl et al., 2011).

When we shift the horizon to a new start point at tL+1,
the arrival cost would ideally be defined as:

Γ(xL+1) = min
xL

(
‖x̂L − xL‖2PL + ‖yL − h(xL)‖2V + ‖wL‖2WL

)
s.t. xL+1 = F (xL, uL, wL)

(8)

However, since xL+1 is described by a nonlinear function,
we do not have an analytical expression for the ideal arrival
cost Γ. For obtaining an explicit solution of Eq. 8, some
approximations are carried out. First, we define the term
x(tL+1|xL) as the solution of the ODEs (Eq. 4) in the
interval from t ∈ [tL, tL+1] with xL as initial value. By
linearizing x(tL+1|xL) around the best available estimate
x∗, we obtain:

x(tL+1|xL) ≈ x(tL+1|x∗) +A · (xL − x∗)

≈ x̃+AxL
(9)

where x̃ := x(tL+1|x∗)−Ax∗ and matrix A is the derivative
of x(tL+1|xL) with respect to xL:

A =
∂F (xL, uL)

∂xL

∣∣∣∣
x∗

Since in this case h(xL) is linear, we can represent it as
h(xL) = HxL, where H is a selector matrix. This way it
becomes possible to solve, analytically, Eq. 8 by rewriting
it as:

min
xL

∥∥∥∥∥ PL(x̂L − xL)
V (yL −HxL)

WL(xL+1 − x̃−AxL)

∥∥∥∥∥
2

2

(10)

and transforming it using QR-factorization:



(
PL 0
−V H 0
−WLA WL

)
= Q

(R1 R12

0 R2

0 0

)
(11)

The QR-factorization decomposes the matrix in the objec-
tive function (Eq. 10) into the product of an orthogonal
matrix Q and an upper triangular matrix R (Elsheikh
et al., 2021). From Eq. 11, we then obtain an equivalent
problem of the form:

min
xL

∥∥∥∥∥
(
γ1
γ2
γ3

)
+

(R1 R12

0 R2

0 0

)(
xL
xL+1

)∥∥∥∥∥
2

2

(12)

The analytical solution of this problem (Eq. 12) results
in the approximated quadratic expression for the arrival
cost:

Γ
′
(xL+1) = ‖γ3‖22 + ‖γ2 +R2xL+1‖22 (13)

Since the first term of Eq. 13 is given, the arrival cost
updates are given by:

x̂L+1 = −R−1
2 γ2, PL+1 = R2 (14)

4.2 Moving Horizon Estimation Setup

The filter receives the signals from the sensors every 60
seconds. The states and the input of the system are defined
in Section 3, while the measured outputs are:

y = [V CDW CO2]
T

(15)

The initial states are given by:

x0 = [1.5 1.2 20 0]
T

with initial covariance matrix:

P0
+ =

[
2.09·10−8 0 0 0

0 1.10·10−5 0 0
0 0 1.09·10−4 0
0 0 0 2.17·10−5

]
and measurement noise covariance matrix R:

R =

[
10−2 0 0
0 10−1 0
0 0 10−3

]
The process noise covariance matrix Qk was tuned as in
Tuveri et al. (2021), where Gk is the Jacobian with respect
to the model noise vector w:

Gk =
∂f(x, u, w)

∂w

and Qk is obtained as:

Qk = Gk ·Qw ·GkT (16)

With Qw defined as the covariance matrix of the noise w:

Qw = diag
[
σ2
µmax

σ2
ks

σ2
kd

σ2
YXS

σ2
YXCO2

σ2
V σ2

X σ2
S σ2

CO2

]
The values of Qw are reported in Table 2. The values are
kept equal to those reported in Tuveri et al. (2021), except
the values for σ2

V and σ2
CO2

, which have been modified
as they are considered tuning parameters. The additive
noise terms on the states are added to prevent the process
noise covariance Qk from being zero or indefinite whenever
the substrate is depleted. To compensate for unmodelled
dynamics, the values of σ2

KS
and σ2

YXCO2
(Table 2) are

increased, once the feeding phase is started and then kept
constant thereafter.

Table 2. Variances (σ2
i ) of additive noise (wi)

in parameters and states. The parameters vari-
ance is obtained from Table 1. These values
are kept constant until the second batch phase
(Fed-batch values), when the values of σ2

KS
and

σ2
YXCO2

are increased to compensate for the

unmodelled dynamics.

Variance Additive noise Batch Fed-batch

σ2
µmax

in µmax 1.05 ·10−11 -

σ2
KS

in KS 1.54 ·10−11 3.38 ·10−2

σ2
kd

in kd 2.02 ·10−11 -

σ2
YXS

in YXS 1.28 ·10−11 -

σ2
YXCO2

in YXCO2 4.91 ·10−12 4.91 ·10−2

σ2
V in V 1 ·10−1 -
σ2
X in X 1 ·10−2 -
σ2
S in S 1 ·10−2 -

σ2
CO2

in CO2 1 ·10−1 -

5. RESULTS

In this section, the estimation results (Fig. 3) for the
system presented in Sec. 3 obtained by the application
of the MHE with incorporation of state constraints (Sec.
4) are presented. The parameters were tuned as was pre-
sented in Sec. 4.2, while the time horizon was 30 min-
utes. As was reported in Tuveri et al. (2021), intracellular
metabolic changes (e.g byproduct formation) during the
batch and the feeding phases was not accounted for by
the simple Monod model (because these changes are not
entirely mapped), resulting in discrepancy between the
model and the real dynamics. The results we obtained
here (Fig. 3) are accurate with respect to the off-line
measurements. The state estimator accurately follows the
sugar consumption after adaptation of the tuning to the
changes in metabolism due to high glucose feeding.

5.1 State Estimates
Using the MHE described in Sec. 4, we estimated with
good accuracy the unmeasured glucose, following the
changes in its concentrations also under high model mis-
match (Fig. 3). It can be seen that the model predictions
present a discrepancy compared to the off-line values. This
is visible in both the first and the second (after feeding)
batch. Despite these poor model predictions, the MHE
improves the estimates by using the available information
on the measurements.

Firstly, the off-line measurements of biomass are based
on cell dry-weight, and are usually inaccurate due to
manual sampling that exhibit high variance, e.g. at time
t = 8 (Fig. 3a). The MHE, relying on the on-line OD
high frequency measurements, estimated the biomass ac-
curately compared to these off-line measurements, and
at the same time corrected the biased biomass model
prediction. Secondly, the consumption of the unmeasured
sugars was well captured by the estimator, compared to
the highly accurate sugar measurements (HPLC), even
under high model-mismatch. Notably, the estimator could
capture the change of sugar consumption rate after the
feeding phase when we increased the parameters variance
in the process noise covariance matrix Qk. Thirdly, the
model predictions for the CO2 present the largest error.
The CO2 model predictions present a delay in the first
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Fig. 3. Estimation results with 1 minute sampling in-
terval. The blue circles (off-line measurements) and
the dashed-dotted grey lines (sensor measurements)
correspond to the experimental results. The solid grey
is the open-loop model prediction and the solid black
is the estimated value. The figures present the results
for biomass (a), glucose concentrations (b) and CO2

output (c). The MHE accurately estimated the states,
and improved the estimate of the glucose compared to
the model prediction.

batch and a high model mismatch in the second batch
(feeding phase). However, this discrepancy is compensated
by the MHE with the information on the measurements.
Fourthly, it remains worth mentioning that similar results
can be achieved by the application of recursive Bayesian
state estimators (i.e. EKF and UKF) as shown in Tuveri
et al. (2021). However, here we want to present the MHE
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Fig. 4. Estimation results for the CO2 output with a
sampling interval of 10 minutes. The dashed-dotted
grey lines (sensor measurements) correspond to the
experimental results. The solid grey is the open-loop
model prediction and the solid black is the estimated
value. The estimated value presents a steady state
offset.

as an alternative framework where constraints can be in-
corporated explicitly. Moreover, the reader must take into
account that in this application the initial state vector
x0 was initialized by using the true states of the system
at the initial time, given a certain initial error covariance
matrix P0 as in Tuveri et al. (2021). In the case of uncertain
initial state vector x0, the error covariance matrix would
be initialized to a different value and the MHE would show
slower convergence to correct the states. Our implementa-
tion of the MHE was dependent on the sampling frequency.
The estimates of biomass X and CO2 exhibited a steady
state offset (Fig. 4) when the sampling rate was lower than
60 seconds. There are several explanations to that, and we
will discuss two of them that we think are more relevant:

1) The tuning of the parameters R and Qk weights differ-
ently the contribution of measurements and model infor-
mation in the optimization problem. Indeed, tuning needs
to be done after the frequency of the output measurements
is defined. In our case we selected a sampling rate of 60 sec-
onds as in Tuveri et al. (2021) and a relatively short hori-
zon (30 minutes). We found that a short sampling interval
combined with a sufficient horizon length improves the
performance of the MHE, consistent with what reported
in Schei (2008), where the author states that it is desirable
to choose short sampling times intervals and a long data
window. This is also consistent with what was reported
in Haseltine and Rawlings (2005). Here the authors state
that for short time horizons there is the possibility that
the data within the horizon can not overcome the biasing
of the arrival cost approximation. The tuning of the MHE
presents therefore a compromise between performance and
computational requirement (Schei, 2008), since longer time
horizons imply a bigger optimization problem. However,
the time it took to solve our optimization problem was in
the interval 0.05 to 1 seconds, well within the time update
interval (60 seconds).

2) Model mismatch can deteriorate the optimal solution,
leading to steady-state offsets (Kühl et al., 2011). As
it was presented previously (Elsheikh et al., 2021), due



to the complexity of biological systems, model mismatch
is often encountered in bioprocesses and it can not be
simply handled by a proper design of Qk. Moreover, as
already presented in Tuveri et al. (2021), the system un-
der consideration presents a high model mismatch due
to sudden metabolic changes after an exposure of the
bacteria to high glucose concentration following an oxygen
deprivation period. There are two possible remedies to this
problem. One is to consider the system with unknown non-
Gaussian uncertainties (through the use of a Gaussian
mixture model) as was recently presented in Valipour
and Ricardez-Sandoval (2022). Indeed the authors show
how their approach is effective in cases involving either
unexpected process or measurement (e.g. sensor drift)
noises. The other is to include model parameters as de-
cision variables in the optimization problem (Bae et al.,
2021). Interestingly, the optimization problem will adapt
the model (by adapting the parameter values) during the
metabolic change periods. The inclusion of parameters as
decision variables in the optimization problem may not
only reduce the time for the practitioner to manually
tune the MHE by trial and error, but also reveal possible
changes in metabolic behaviors, leading to more robust
models. However, if this is not coupled with a proper
choice of parameter selection to optimize, it may lead to
an ill-conditioned problem with over-fitted parameters, as
previously discussed in Bae et al. (2021). This will be
however part of further investigations.

6. CONCLUSION

This work presents the implementation of an MHE for
the estimation of biomass, glucose concentrations and CO2

formation in a fed-batch cultivation process. We reported
here the efficacy of the MHE as an alternative state
estimator in bioprocesses, demonstrating its advantage
under necessity of hard state constraints. We showed
that although the results were accurate with respect to
the off-line measurements, simple tuning could not fully
compensate for unmodelled dynamics. As a future work,
the MHE has the potential to serve as a powerful tool
that can both estimate the states in real-time and allow
an adaptive parameter estimation. This will enable the
detection of changes in metabolic behaviours and, as a
consequence, the basis for more robust model predictions.
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Räıssi, T., Ramdani, N., and Candau, Y. (2005). Bounded
error moving horizon state estimator for non-linear
continuous-time systems: application to a bioprocess
system. Journal of Process control, 15(5), 537–545.

Rao, C.V. (2000). Moving horizon strategies for the con-
strained monitoring and control of nonlinear discrete-
time systems. The University of Wisconsin-Madison.

Rao, C.V., Rawlings, J.B., and Mayne, D.Q. (2003). Con-
strained state estimation for nonlinear discrete-time
systems: Stability and moving horizon approximations.
IEEE transactions on automatic control, 48(2), 246–258.

Rawlings, J.B. and Bakshi, B.R. (2006). Particle filtering
and moving horizon estimation. Computers & chemical
engineering, 30(10-12), 1529–1541.

Robertson, D.G., Lee, J.H., and Rawlings, J.B. (1996). A
moving horizon-based approach for least-squares esti-
mation. AIChE Journal, 42(8), 2209–2224.

Schei, T.S. (2008). On-line estimation for process control
and optimization applications. Journal of Process Con-
trol, 18(9), 821–828.
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