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Abstract: In this paper, a data-driven or model-free approach is presented to design a fault
detection system of continuous-time linear time-invariant (LTI) systems based on input and
output data in the time domain. The main idea is to directly identify the subspaces and their
related matrices relevant for parity-space-based residual generation based on a modulated output
equation by use of modulation functions and their properties. Therefore, the explicit model
identification of the process for a model-based approach in a conventional two-step procedure can
be avoided saving design effort especially for large-scale systems. A simulation of the resulting
fault detection system is provided showing the effectiveness of the design approach.
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1. INTRODUCTION

Modern society increasingly depends on the correct func-
tioning of its technical systems which becomes harder as
the complexity of these systems increases. To account
for this challenge, over the last decades fault detection
and isolation (FDI) techniques have been established
(Frank, 1990; Frank et al., 2000; Blanke et al., 2015; Chen
et al., 2016). Applications can be found in various fields,
including process industries, automotive industries and
aerospace and aeronautics.

An essential part for the design of fault detection sys-
tems is to find fault-indicating signals, which are usually
called residual signals. In the context of model-based fault
detection, these signals are determined from a model,
which needs to be identified from process or test data
collected during a data-acquisition stage, e.g. by subspace
identification methods (Van Overschee and De Moor, 1996;
Wang and Qin, 2002). Figure 1 shows the design procedure
following this standard two-stage approach. On the other
hand, in Ding et al. (2005, 2009) it was shown that the FDI
design procedure can be simplified by a parity-space-based
residual generation in combination with a subspace-aided
identification of the parity space directly from the test data
instead of identifying the system first. Figure 2 shows that,
by this design procedure, system identification becomes an
implicit part of FDI design and implementation.

However, this design procedure was only presented for
discrete-time linear time-invariant (LTI) systems and the
straight-forward transfer to continuous-time LTI systems
poses some challenges as the derivatives of the test data
are needed. In order to handle this problem, Zhang (2005)
proposed to use frequency domain data instead of time
domain data for the subspace identification procedure.

Later, she also showed that using a Poisson filter chain,
a similar result can be achieved using time domain data
(Zhang and Ding, 2007).

In this paper, another approach is proposed to de-
sign parity-space-based residual signals using only input
and output data of the system acquired during a data-
acquisition stage or test stage. Motivated by Enciso et al.
(2021) and Jahn and Shardt (2021), the difficulty of differ-
entiating the input and output signals which is inevitable
when dealing with a continuous-time LTI system is over-
come by filtering the input and output data over a receding
horizon using modulation functions before applying sub-
space identification. Thus, the parity space and its related
matrices can be directly obtained, which leaves it to the
FDI designer to continue with either a direct residual
generation based on the analytic redundancy relations
(ARRs) or with an observer-based residual generator.

2. BACKGROUND

Residual signals are used to quantify the amount of
mismatch or discrepancy between the expected/nominal
and observed behavior of a process or system. Figure 3
shows a FDI system that has two stages: a diagnostic /
residual signal generation stage and a decision making
or diagnostic classification stage (Chen et al., 2001). A
residual signal must satisfy the specific properties given
by Definition 1. This means that the generation or con-
struction of a residual signal based on input and output
data only is a nontrivial task and will be the focus of
this paper. Different residual generation approaches can
be divided into three categories: observer-based, parity-
space-based and parameter-estimation-based / parameter-
identification-based approaches (Frank, 1990). As men-
tioned in the introduction, parity-space-based residual sig-
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nals can be derived from the input and output data in
the time domain directly without explicit modeling and
identification of model parameters.
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Definition 1 (Jahn et al., 2020). A residual is a signal
that is zero when the system under diagnosis is free of
faults, and nonzero when particular faults are present in
the system. Additionally, a residual must be invariant to
any unmeasured, and therefore unknown, input signals
(e.g. disturbances) as their influence is not considered to
be a fault.

2.1 Parity-Space-Based Approach for LTI Systems

Consider a nonlinear system that is to be operated only
about a nominal operating point which corresponds to a
steady-state. Its dynamic behavior can be approximated
by a linear time-invariant (LTI) system model of the form

ẋ(t) = Ax(t) +Bu(t) + Exd(t) + Fxf(t) (1a)

y(t) = Cx(t) +Du(t) + Eyd(t) + Fyf(t) (1b)

where x ∈ R
n is the state vector, u ∈ R

p is the vector of
known inputs, y ∈ R

q is the vector of measured outputs,
d ∈ R

nd represents unknown disturbances, and f ∈ R
nf is

the vector of faults which are to be detected. 1

1 Although not explicitly indicated, x, u, d, and f represent the

deviation from their respective steady-state values.

Definition 2. A set of nr linear relations of the known
input u and measured output y and their respective deriva-
tives up to a certain order ν

r(t) =

ν∑

i=0

Wy,iy
(i)(t) +

ν∑

i=0

Wu,iu
(i)(t) (2)

where Wy,i ∈ R
nr×q and Wu,i ∈ R

nr×p, are called (parity)
linear analytic redundancy relations (ARRs) if and only if

r(t)

{
= 0, in the absence of faults

6= 0, in the presence of faults
. (3)

They are sometimes synonymous with residual signals,
since assuming accessibility of all derivatives needed for
their evaluation, they could be directly used for fault detec-
tion.

For the purpose of fault detection and isolation, analytic
redundancy relations (ARRs), as introduced by Definition
2, are of great importance in the context of residual
generation. The subsequent determination of ARRs for
LTI systems of the form (1) is taken from Kinnaert (2003).
Therefore, let us consider the successive derivatives of the
output y(t) with respect to time up to order ν

y = Cx+Du+ Eyd+ Fyf

ẏ = C(Ax +Bu+ Exd+ Fxf) +Du̇+ Eyḋ+ Fy ḟ

...

y(ν) = CAνx+

CAν−1Bu+ · · ·+ CBu(ν−1) +Du(ν)+

CAν−1Exd+ · · ·+ CExd
(ν−1) + Eyd

(ν)+

CAν−1Fxf + · · ·+ CFxf
(ν−1) + Fyf

(ν) . (4)

Stacking y, u, d, f and their derivatives (i.e. Y = [y⊤,
ẏ⊤, . . . , y(ν)⊤]⊤ ∈ R

(ν+1)q and correspondingly for U ∈
R

(ν+1)p, D ∈ R
(ν+1)nd and F ∈ R

(ν+1)nf ) allows us to
write the equations in a more compact form as

Y (t) = Ox(t) + TuU(t) + TdD(t) + TfF (t) (5)

where O = [C⊤, (CA)⊤, . . . , (CAν)⊤]⊤ ∈ R
(ν+1)q×n is the

well-known observability matrix and the lower triangular
block Toeplitz matrix Tu ∈ R

(ν+1)q×(ν+1)p is



Tu = T (B,D) =







D 0 0 . . . 0
CB D 0 . . . 0
...

. . .
. . .

CAν−1B . . . . . . CB D







. (6)

A similar definition holds for the lower block triangular
Toeplitz matrices Td = T (Ex, Ey) ∈ R

(ν+1)q×(ν+1)nd and

Tf = T (Fx, Fy) ∈ R
(ν+1)q×(ν+1)nf .

As x(t) and D(t) are the only unknown quantities in
Equation (5), consider the extended matrixM = [O, Td] ∈
R

(ν+1)q×(n+(ν+1)nd). According to the fundamental theo-
rem of linear algebra, if there exists a value ν such that
the dimension of its column space col(M) is less than its
number of rows (ν +1)q, then the left nullspace null(M⊤)
is nonempty. As the left nullspace is orthogonal to the
column space, its dimension is given by nr = (ν + 1)q −
rank[O, Td]. As all vectors of col(O) and col(Td) are in
this left nullspace, we can annihilate x(t) and D(t) from
Equation (5) as follows

M⊥Y (t)−M⊥Ox(t)
︸ ︷︷ ︸

=0

−M⊥TuU(t)−M⊥TdD(t)
︸ ︷︷ ︸

=0

= M⊥TfF (t) (7)

where M⊥ ∈ R
nr×(ν+1)q denotes a basis for the left

nullspace of M . Note that in the absence of faults the
right-hand side equals zero. It is different from zero in
the presence of faults. Therefore, the set of all (parity)
linear analytic redundancy relations (for a given number
of considered output derivatives) of the form (2) is given
by

r(t) = M⊥Y (t)−M⊥TuU(t) . (8)

This is equivalent to the form of Equation (2), as it is only
a concatenated version, i.e. M⊥ = [Wy,0,Wy,1, . . . ,Wy,ν ]
and M⊥Tu = [Wu,0,Wu,1, . . . ,Wu,ν ].

As the basis of the left nullspace M⊥ is nonunique, there
exists an infinite number of parity vectors r. The method
presented for LTI systems gets its name from the space
comprising these parity vectors, the parity space.

2.2 Subspace Identification from Input and Output Data

For a data-driven or model-free approach only input and
output data during fault-free operation is available. Ad-
ditionally, during fault-free data collection, disturbances
are supposed to be avoided as they cannot be measured.
Therefore, all disturbances acting on the systems during
data collection will be recognized as part of the process and
are not considered explicitly by the data-driven approach.
Accordingly, output Equation (5) simplifies to

Y (t) = Ox(t) + TuU(t), (9)

while M = O reduces to the observability matrix and
only a basis for its left nullspace O⊥ is needed for residual
design, that is,

r(t) = O⊥Y (t)−O⊥TuU(t) . (10)

Subspace identification methods based on singular value
decomposition (SVD) (Van Overschee and De Moor, 1996;
Wang and Qin, 2002) have been used in Ding et al.
(2005, 2009) to identify the corresponding matrices O⊥

and O⊥Tu for direct design of fault detection systems
based on input and output data of discrete-time LTI sys-
tems. This approach can be transferred to the continuous-
time LTI systems in a straight-forward manner. There-
fore, for the sake of convenience, we denote y(i)(k) =
y(i)(t)|t=tk , u

(i)(k) = u(i)(t)|t=tk , x
(i)(k) = x(i)(t)|t=tk for

i = 0, . . . , ν and k = 1, . . . , N with N being the number
of measurements. Then, the output Equation (9) for a
collection of N measurements can be represented as

YN = OXN + TuUN , (11)

with

YN = [Y (1), Y (2), . . . , Y (N)] ∈ R
(ν+1)q×N

UN = [U(1), U(2), . . . , U(N)] ∈ R
(ν+1)p×N

XN = [x(1), x(2), . . . , x(N)] ∈ R
n×N . (12)

Following the general approach of Zhang and Ding (2007),
the output equation for the collection of measurements
(11) can be reformulated as

ZN =

[
O Tu

0(ν+1)p×n I(ν+1)p×(ν+1)p

]

︸ ︷︷ ︸

H

[
XN

UN

]

, (13)

where ZN = [Y ⊤

N , U⊤

N ]⊤ ∈ R
(ν+1)(q+p)×N .

Under the assumption of persistently exciting input and
for a sufficient large number of measurements N , the
matrix [X⊤

N , U⊤

N ]⊤ is of full row rank, i.e. its column

space is R
(ν+1)(q+p), and has therefore no left nullspace.

Subsequently, according to Equation (13) ZN and H
must have the same left nullspace, which allows for the
extraction of the parity-space relevant subspaces using
singular value decomposition (SVD) from the input and
output data matrix ZN alone as follows

ZN = UΣV ⊤, (14)

where

U =

[
U11 U12

U21 U22

]

∈ R
(ν+1)(q+p)×(ν+1)(q+p) (15)

Σ =

[
ΣH 0
0 0

]

∈ R
(ν+1)(q+p)×N , V ⊤ ∈ R

N×N (16)

ΣH ∈ R
((ν+1)p+n)×((ν+1)p+n)
+ (17)

and U, V are orthogonal matrices and Σ is a rectangular
diagonal matrix with non-negative real numbers on the
diagonal, i.e. the singular values of ZN .

Due to the two zero matrices in the last block row of Σ we
have

[U⊤

12, U
⊤

22]ZN = [U⊤

12, U
⊤

22]UΣV ⊤ = 0 (18)

which implies that

[U⊤

12, U
⊤

22]

[
O Tu

0(ν+1)p×n I(ν+1)p×(ν+1)p

] [
XN

UN

]

= 0 . (19)

Since we have ensured that [X⊤

N , U⊤

N ]⊤ has no left
nullspace we get

[U⊤

12, U
⊤

22]

[
O Tu

0(ν+1)p×n I(ν+1)p×(ν+1)p

]

= 0 (20)

which results in the relations



U⊤

12O = 0 (21)

U⊤

12Tu + U⊤

22 = 0 (22)

from which we can identify the needed subspaces for the
analytic redundancy relations as follows

O⊥ = U⊤

12 (23)

O⊥Tu = −U⊤

22 . (24)

Since any linear combination of rows αU⊤
12 and −αU⊤

22 can
be used for the final residual, the number of derivatives
needed can be reduced by a QL decomposition of U⊤

12 =
UQUL and selection of α as the first row of U⊤

Q .

In order to ensure the existence of the left nullspace of
ZN and H , the number of derivatives considered ν needs
to be large enough. This already indicates the problem
of such straight-forward extension to continuous-time LTI
systems as the calculation of estimates of these derivatives
based on the measured input and output signals is highly
sensitive to noise. The problem becomes even worse as the
order of derivatives increases. In the context of subspace
identification methods, Poisson filter chains (Johansson
et al., 1997) and Laguerre filter chains (Chou et al.,
1999) have been proposed to circumvent this problem.
This allows subspace identification methods to be applied
to filtered input and output data avoiding the need for
derivatives. Thus, the next section presents a different
approach to circumvent the need of input and output
signal derivatives using modulation functions that can be
directly used for the design of fault detection systems.

3. DESIGN APPROACH

The basic idea of this paper is motivated by Ding et al.
(2009) and Zhang and Ding (2007) for a subspace-aided
residual generation, and the use of modulation functions
to apply these ideas to input / output data of a continuous-
time LTI system.

Modulation functions have been classically used in param-
eter estimation of dynamical systems to avoid the com-
putation of derivatives of noisy input and output signals
(Shinbrot, 1957; Pearson, 1992; Preisig and Rippin, 1993;
Unbehauen and Rao, 1998) but can also be used for state
estimation as shown by Jouffroy and Reger (2015).

Definition 3. A function ϕ : [0, T ] 7→ R is called a
modulation function of order m if it is sufficiently smooth
and if, for some fixed T , one has

ϕ(i)(0) = ϕ(i)(T ) = 0 (25)

for all i ∈ {0, 1, . . . ,m− 1}.

Multiplication of an unknown derivative signal y(i) of
arbitrary order i of the base signal y with a modulation
function ϕ of Definition 3 yields by integration by parts in
combination with the boundary conditions (25)

∫ T

0

ϕ(τ)y(i)(τ)dτ =

∫ T

0

(−1)iϕ(i)(τ)y(τ)dτ (26)

This fundamental result of modulation functions allows
us to avoid the need to compute derivatives of the mea-
sured base signal and to eliminate unknown initial and
final conditions of the integration which otherwise have to

be considered. Over the last decades, various modulation
functions have been proposed and used such as trigono-
metric functions ϕ(t) = sin(mπt/T)m (Shinbrot, 1957) and
polynomial functions ϕ(t) = (T −t)mtm (Loeb and Cahen,
1965), where m is the order of the modulation function.

Similar to Enciso et al. (2021), the modulation function
operator li{·} : y(t) 7→ li{y(t)} is introduced based on the
modulation function shifted by t− T as

li{y(t)} =

∫ t

t−T

(−1)iϕ(i)(τ − (t− T ))y(τ)dτ . (27)

which acts over the receding time horizon [t− T, t].

In order to yield the output equation for a data collection
similar to Equation (11) but without any input and output
derivatives, a modulation function as defined in Definition
3 is applied to the subsequent output derivatives (4).
Making use of the modulation function operator notation
gives

l0{y} = Cl0{x}+Dl0{u}+ Eyl0{d}+ Fyl0{f}

l1{y} = C(Al0{x}+Bl0{u}+ Exl0{d}+ Fxl0{f})+

Dl1{u}+ Eyl1{d}+ Fyl1{f}

...

lν{y} = CAν l0{x}+

CAν−1Bl0{u}+ · · ·+Dlν{u}+

CAν−1Exl0{d}+ · · ·+ Eylν{d}+

CAν−1Fxl0{f}+ · · ·+ Fylν{f}. (28)

Stacking all the shifted derivatives of the output signal y
as follows L{y} = [l0{y}

⊤, l1{y}
⊤, . . . , lν{y}

⊤]⊤ as well
as for the input u, disturbances d and faults f , yields
the compact form of the modulated output equation in
comparison to the original one (5)

L{y} = Ol0{x}+ TuL{u}+ TdL{d}+ TfL{f} . (29)

Note that the matrices O, Tu are preserved under the mod-
ulation operation. Therefore, the relevant subspaces can be
directly identified without intermediate step depending on
filter parameters as needed in Zhang and Ding (2007).

Similar to the straight-forward extension to continuous-
time LTI systems presented in the last section, for a model-
free approach input and output data is acquired in fault-
free operation avoiding unknown external disturbances
analog to Equation (9)

L{y} = Ol0{x}+ TuL{u} . (30)

However, the main difference is that modulation function
filtered input and output data is acquired. A simple
implementation of such filtering based on discrete-time
measurements is presented in Appendix A.

Considering a collection of N samples (i.e. L{y}(k) =
L{y}(t)|t=tk)

YN = [L{y}(1), L{y}(2), . . . , L{y}(N)] ∈ R
(ν+1)q×N

UN = [L{u}(1), L{u}(2), . . . , L{u}(N)] ∈ R
(ν+1)p×N

XN = [l0{x}(1), l0{x}(2), . . . , l0{x}(N)] ∈ R
n×N (31)

the aggregated output equation has the same form as for
the straight-forward extension (11). Therefore, we can use
the same subspace aided method in order to identify O⊥



and O⊥Tu for residual generation directly without explicit
system identification from the time domain input and
output data.

The following algorithm summarizes the major steps in
the modulation-function-based design of a data-driven
residual generator:

S1: Set ν, ϕ, T and N .
S2: Filter input and output signal over the receding

horizon [t− T, T ] according to (27).
S3: Build the matrix YN and UN by (31).
S4: Perform an SVD of ZN = [Y ⊤

N , U⊤

N ]⊤ to get matrix
U and its partitions U12 and U22.

S5: Using U12 and U22, calculate O
⊥ and O⊥Tu accord-

ing to Equation (24).
S6: (Optional) Reduce order by QL decomposition.

S7a: Design a residual generator based on the (reduced)
ARRs (10) directly. During fault detection opera-
tion, the derivatives of the input and output data are
not easily available as well. Modulation functions
can be used again to circumvent this problem as
presented in Enciso et al. (2021) and as applied to
permanent magnet synchronous motors (PMSM) in
Jahn and Shardt (2021).

S7b: Design a (reduced) observer-based residual genera-
tor (Frank et al., 2000) as done by Zhang (2005).

4. SIMULATION EXAMPLE

To show the effectiveness of the proposed algorithm, it is
applied to the same example system considered in Zhang
(2005) in order to make the results comparable

ẋ =

[
0 0.5 1
−1 −1 0.25
1 0.25 −2

]

x+

[
1 1
1 0
0 1

]

u+

[
0 0
1 0
0 0

]

f

y = [1 1 0]x+ [1 1.5]u+ [0 1] f . (32)

The system is excited over 45 s by a chirp signal varying
from 0 to 10 rad s−1 for the first input channel and from 10
to 0 rad s−1 for the second channel. The response data is
sampled at Ts = 50ms. Set ν = 9, T = 5 s and ϕ(t) = (T−
t)mtm with m = 10 in order to fulfill Equation (25)
for the needed derivatives. Filter the sampled input and
output data using the discrete approximation presented in
Appendix A with order of T/Ts = 100. Build the matrices
YN ∈ R

10×800, UN ∈ R
20×800 and aggregate them to

ZN ∈ R
30×800. Note that due to the receding nature of the

filtering, the integral interval is only completely covered
after T = 5 s, therefore the first 100 values of the filtered
responses are neglected in the data collection, resulting in
N = 800. Do an SVD of ZN , a QL decomposition of the
resulting partition U⊤

12 = UQUL ∈ R
7×10 and select α as

the first row of U⊤

Q , namely

α = [0, 0, 0, 0, 0.7032, −0.6356, −0.3188] .

Using α, the design of a (reduced) observer-based residual
generator as in Zhang (2005) leads to a similar result
for the observer-based FD system. The example system
and the designed observer-based FD system have been
simulated for 80 s with a unit step at 0 s for the first input
channel and sin(t) for the second input channel. Step-wise
faults of amplitude 1 at 50 s for each component have
been considered separately. Figure 4 shows the responses

of the residual for both simulations, confirming the results
compared to Zhang (2005). It can be seen, that each fault
can be detected based on the residual behavior.
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Fig. 4. Simulation result: Residual response for each fault

5. CONCLUSION AND FUTURE WORK

In this paper, a data-driven or model-free approach is
presented to design a fault detection system of continuous-
time LTI systems based on input and output data in the
time domain. The main idea of the approach is to directly
identify the subspaces and their related matrices rele-
vant for parity-space-based residual generation based on
a filtered output equation using modulation functions and
their properties. Thus, the design effort has been reduced
as the relevant subspaces are directly identified without
intermediate step depending on the filtering. Overall, the
explicit model identification of the process for a model-
based approach in a conventional two-step procedure can
be avoided saving design efforts especially for large-scale
systems. Future work will consider the choice of modula-
tion functions for specific processes and the influence of
noise and external disturbances.
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Appendix A. DISCRETE-TIME IMPLEMENTATION
OF MODULATION FUNCTION FILTERING

For discrete-time implementation with sample time Ts of a
receding horizon integral as in (27), consider the simplest
approximation of the integral by the endpoint rule

∫ T

0

(−1)iϕ(i)(τ)y(τ)dτ =

T/Ts∑

k=1

(−1)iϕ(i)(ktk)y(ktk)Ts

(A.1)

where T is a multiple of Ts and T/Ts is the order of approx-
imation. The following linear discrete system (Ak, bk, c

⊤

k )
with input y realizes such an approximation of the receding
horizon integral
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, bk =
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,

c⊤k = (−1)(i)
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ϕ(i)(tk)

ϕ(i)(T − tk)
ϕ(i)(T )
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
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
. (A.2)

However, there are many other options of implementing
the modulation-function-based filtering starting with dif-
ferent methods for numerical integration.


