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Abstract:
This paper presents a soft sensor model for melt index (MI) prediction in an industrial
polymerization process based on long short-term memory (LSTM) network. MI is one of
the important specifications that determine the quality and grade of thermoplastic polymers.
However, lack of online measurement of MI makes it difficult to monitor and control the quality
of polymer products. Thus, there has been a great effort to build accurate soft sensor models
to predict MI with easy-to-measure process variables by using black-box modeling approaches.
However, real chemical processes have strong nonlinearity and complicated temporal correlations
between the process and quality variables, which is very challenging for traditional static black-
box models to handle. Recently, LSTM network that is an advanced form of recurrent neural
network (RNN) has shown great advantages in capturing and modeling the long-term dynamic
nature of complex industrial processes. We develop an LSTM-based MI prediction model for an
industrial styrene-acrylonitrile (SAN) polymerization process in Korea. The developed model
provides the most accurate predictions compared to other soft sensor models based on partial
least squares (PLS), support vector machines (SVM), Gaussian process regression (GPR), and
feedforward artificial neural network (ANN).
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1. INTRODUCTION

Thermoplastic polymers such as polystyrene (PS), poly-
ethylene (PE), and polypropylene (PP) are essential chem-
ical materials that are widely used in various commercial
products. The melt index (MI) of a thermoplastic polymer
is a quality variable that indicates flow and mechanical
properties of the polymer. Because the quality and grade
of a polymer is directly affected by MI, MI is used to
determine whether a product is out of specification or
not. Therefore, it is necessary to monitor and control a
polymerization process to keep the MI of the product
within an acceptable range.

However, unlike process variables such as temperature
and pressure are measured online, online measurement of
MI is not available in industrial polymerization processes.
Instead, an offline laboratory analysis for MI is available
but it is costly and time-consuming. In most polymeriza-
tion processes, MI is measured only once every two or
four hours, which makes it very challenging to monitor
the polymer quality. Therefore, there have been extensive
studies to build soft sensor models to predict MI as quickly
and accurately as possible.
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There are two major challenges in modeling industrial
chemical processes: strong nonlinearity and temporal cor-
relations between variables. Since a number of chemical
reactions and phase equilibria are involved in a chemical
process, it is very time-consuming to build an accurate
first-principle model that requires the prior knowledge of
the process and mathematical equations, such as mass
and energy balances. Instead, with the rapid growth of
computer and sensor technology, data-driven modeling
methods have been extensively studied and applied to
industrial chemical processes.

In data-driven models, the modeling is based on historical
data of easy-to-measure variables and their relationships to
difficult-to-measure variables. The latent variable methods
such as principal component regression (PCR) and partial
least squares (PLS) are the most commonly used data-
driven modeling methods (Kourti (2005), Kadlec et al.
(2009), Han et al. (2005), Ahmed et al. (2013)). These
methods reconstruct raw measurement data into a lower-
dimensional space, and find the linear relationship between
newly constructed variables. Additionally, to address the
nonlinearity and temporal correlations, various extended
versions of principal component analysis (PCA) and PLS
have been developed and applied to chemical processes
(Ku et al. (1995), Dong and Qin (2018)).



Recently, there has been a growing interest in predicting
MI using nonlinear data-driven modeling approaches that
are able to capture and model the nonlinearity of complex
industrial polymerization processes. Han et al. (2005),
Park et al. (2010), Liu et al. (2013), and Zhang and Liu
(2013) developed soft sensor models based on support
vector machines (SVMs) to predict MI of commercial
polymerization processes. Furthermore, Gaussian process
regression (GPR) models (Liu and Gao (2015), Chan
and Chen (2017), Liu et al. (2017)) and artificial neural
network (ANN) models (Liu and Zhao (2012), Li et al.
(2012), Xu and Liu (2014)) were developed for industrial
polymerization processes.

While the nonlinear modeling approaches mentioned above
demonstrated accurate MI predictions, the prediction per-
formance can be improved by further investigating and
modeling temporal correlations and dynamic behavior of
processes. Heo and Lee (2018) showed that the modeling
performance of ANN was increased by augmenting input
data with lagged data to account for process dynamics.
Additionally, recurrent neural networks (RNNs) that have
recurrent connections inside the layers have been devel-
oped and demonstrated improved performance for time
series data of dynamic systems. However, RNNs have dif-
ficulties in modeling long sequences of data because of the
vanishing gradient (Bengio et al. (1994)).

Thus, an improved version of RNN, long short-term mem-
ory (LSTM) network, was developed by addressing the
long-term dependency problem and showed great perfor-
mances in modeling and predicting sequential data such
as speech recognition (Sundermeyer et al. (2012), Graves
et al. (2013)) and video representation (Srivastava et al.
(2015)). In recent years, there has been a growing effort
to build a soft sensor model based on LSTM for industrial
chemical processes such as a hydrocracking process (Yuan
et al. (2020)) and a sulfur recovery unit (Ke et al. (2017)).
In this work, we propose an LSTM-based soft sensor model
for prediction of MI in an industrial styrene-acrylonitrile
(SAN) polymerization process in Korea. The prediction
performance of the proposed model is compared with other
data-driven models, including PLS, SVM, ANN, and GPR.

2. METHODOLOGY

2.1 Recurrent Neural Network

RNN is a subset of neural networks and is mainly used
to describe the temporal dynamic behaviors of dynamic

Fig. 1. Structure of a recurrent neural network

systems. Unlike traditional feedforward neural networks,
RNN has recurrent connections inside its layers. Thus, the
hidden state ht at time t is determined by the input Xt

and the former hidden state ht−1. Fig. 1 shows the basic
structure of RNN where the left structure can be unfolded
into the right structure. The hidden state ht and output
vector Yt at time t are calculated as

ht = σh(UXt + V ht−1 + b) (1)

Yt = σY (Wht + c) (2)

where σh and σY are activation functions for the hidden
and output layer; b and c are the corresponding bias terms;
U , V , and W are the corresponding weight matrices.
However, it is difficult for the standard RNN to learn from
long sequences because of the gradient vanishing problem
(Pascanu et al. (2013)).

2.2 Long Short-Term Memory Network

LSTM is developed as an improved version of the standard
RNN by addressing the vanishing gradient problem. While
the standard RNN has only one connection between the
former and present hidden states, the basic LSTM unit has
three gates; the input, forget, and output gate. An LSTM
unit calculates the cell state, ct, and hidden state, ht, at
time t from the input vector Xt and previous states, ct−1

and ht−1 through the three gates.

The input gate it and output gate ot determine what
information from the input Xt and the previous hidden
state ht−1 should be remembered and passed into the
new cell state ct and hidden state ht, respectively. The
forget gate ft determines how much information from the
previous cell state should be remembered to calculate new
states.

Fig. 2 shows the structure of a basic LSTM unit. The three
gates are calculated as

ft = σ(WfxXt +Wfhht−1 + bf ) (3)

it = σ(WixXt +Wihht−1 + bi) (4)

ot = σ(WoxXt +Wohht−1 + bo) (5)

where W and b represent the corresponding weight and
bias matrices. Then the cell and hidden state are updated
as

ct = ft ⊙ ct−1 + it ⊙ tanh(WcxXt +Wchht−1 + bc) (6)

ht = ot ⊙ tanh(ct) (7)

Fig. 2. Structure of a basic LSTM unit



where ⊙ represents element-wise multiplication. Finally,
the output vector from the LSTM unit is calculated as

Yt = σ(Wyht + by) (8)

3. SOFT SENSOR FOR MELT INDEX PREDICTION

In this paper, an LSTM-based soft sensor model for MI
prediction in an industrial multiple-grade SAN polymer-
ization process is developed and its prediction performance
is compared with other soft sensor models based on PLS,
SVM, GPR, and ANN.

3.1 Process Description

The SAN polymerization process of interest is currently
operated in Korea. Fig. 3 depicts the simple schematic
diagram of the target process. The process consists of two
continuous reactors in series, followed by two devolatilizers
and a pelletizer. Styrene, acrylonitrile, α-methylstyrene,
and the initiator are mixed with monomers and solvents
recovered from the devolatilizers, then fed into the first re-
actor. The polymerization reaction occurs in a liquid phase
achieving monomer conversions of approximately 40 and
65 percent in the first and second reactor, respectively. The
reaction mixture is then dried in the devolatilizers from
which the residual monomers and solvents are vaporized
and recovered. Finally, the polymer products are pelletized
in the pelletizer and transported to be stored in silos. As
a result, two distinct grades of the SAN polymer products
with different values of MI are produced. Operating condi-
tions such as reaction temperature and monomer flow rate
vary from grade to grade.

Fig. 3. Schematic of SAN polymerization process

3.2 Dataset Preparation

There are two types of variables in measurement data
obtained from the SAN polymerization process. First, the
process variables, a total of 27 variables including the
temperatures and pressures of two reactors, are measured
online every hour by the sensors in the process. The quality
variables such as MI and color of the polymer product, the
other type of the measurement variables, are measured less
frequently than the process variables and measured with
an offline laboratory analysis.

The data were collected for a period of approximately
seventeen months from January 2, 2020 to May 23, 2021

including approximately four months of process shutdown
and eight grade changeovers. A total of 2285 labeled
quality measurement samples are available. 80 percent
of the samples are selected as the training dataset. The
remaining 20 percent of the samples are divided equally
into the validation and testing dataset.

Before training soft sensor models, the historical data are
preprocessed as follows. First, both the process measure-
ments X and MI measurements y are normalized to z-
scores X̃ and ỹ which have zero mean and unit variance
as in (9).

z =
x− x̄

σx
(9)

where x̄ and σx are the mean and standard deviation of
the variable x, respectively.

PCA is then applied to transform the normalized process
variables X̃ to linearly independent variables to remove
the multicollinearity between the process variables and
reduce computational load. PCA is a statistical dimension
reduction technique that is widely used in process moni-
toring and modeling. PCA finds the latent variables called
principal components (PCs) such that the variability of
PCs is maximized by the orthogonal linear transformation
of raw data. As shown in Fig. 4, the first 10 PCs explain ap-
proximately 94 percent of the total variance in raw process
measurements. Therefore, only 10 PCs with the highest
variances are used as model inputs rather than training a
model with all 27 PCs, which reduces the computational
requirements while retaining as much information in raw
data as possible.

Fig. 4. Scree plot of variances explained by PCs

3.3 LSTM-Based Soft Sensor Modeling

The network of the proposed LSTM-based soft sensor is
designed as follows. First, the sequence data of the process
variables is preprocessed as in the previous subsection
into a new sequence consisting of PCs that are linearly
independent to each other. It is then sequentially fed to
the input layer that is the first layer of the network. The
last layer of the network is a fully-connected layer with a
linear activation function whose output is ŷk, which is the
predicted value of MI at time tk.



The activation functions of the input, forget and output
gate of the LSTM layers are sigmoid functions. For training
of the LSTM network, the ADAM optimizer with the back
propagation through time (BPTT) method is used because
the ADAM optimizer has advantages in computational ef-
ficiency and memory requirements over stochastic gradient
descent algorithm and the root mean square propagation
(RMSProp) algorithm (Kingma and Ba (2014)). Before
the training starts, the input and recurrent weights of the
LSTM layers are initialized with Glorot initialization and
orthogonal initialization, respectively. The learning rate is
initially set as 0.1 and drops by a factor of 0.99 after every
10 epoch of training. The loss function for model training
is the mean square error (MSE) that is calculated as

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (10)

where n is the number of samples, yi and ŷi are the
measured and predicted value of MI, respectively. To
avoid over-fitting, MSE of the trained model on validation
dataset is monitored every 10 epoch. When the validation
loss ceases to decrease, the training stops and the early
stop model with the lowest validation loss is obtained.

4. RESULTS AND DISCUSSIONS

An LSTM model with three hidden layers of 10 neurons
was trained for MI prediction in the SAN polymerization
process described in Section 3.1. Since an LSTM network
takes a sequence as its input, MI is predicted using the
sequence consisting of four hours of process measurement
data. As shown in Fig. 5, the LSTM model was trained for
240 epochs. Both the training and validation loss decreased
rapidly at the beginning of the training. The validation loss
reached the lowest value at the 140-th epoch, after which
the validation loss ceased to decrease while the training
loss continued to decrease. Therefore, the early stop model
with the lowest validation loss and better generalization
performance was finally obtained in order to avoid over-
fitting.

For the comparison of the prediction performance, soft
sensor models based on PLS, SVM, GPR, and ANN were
trained. To account for dynamic behavior of the process,
the input data was augmented with four hours of time
lagged data. Thus, a total of 108 input variables were used
for soft sensor modeling. PLS is a traditional data-based
modeling method which aims to find the linear combina-
tion of the process variables that maximizes covariance

Fig. 5. Training procedure of the LSTM model

between the process variables and MI. The PLS model was
trained using the SIMPLS algorithm developed by De Jong
(1993). The PCA preprocessing step was omitted in PLS
modeling. Instead, MI was predicted using 27 PLS com-
ponents. The nonlinear SVM model was trained by solv-
ing a convex quadratic optimization problem constructed
with Gaussian kernel function. The kernel function for the
GPR model was an exponential kernel and quasi-Newton
optimizer was used in training. The network structure of
the ANN model was a feedforward multilayer perceptron
with 3 hidden fully-connected layers of 10 neurons, which
is the same as the number of hidden layers and neurons
of the LSTM model. The ANN model was trained using
the ADAM optimizer and the early stop model with the
lowest validation loss was obtained.

The prediction performance of a soft sensor model was
evaluated with four statistical indices; root mean square
error (RMSE), coefficient of determination (R2), mean
absolute percentage error (MAPE), and Theil’s inequality
coefficient (TIC). These performance indices are defined
as follows:

RMSE =
√
MSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (11)

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(12)

MAPE =
100

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (13)

TIC =

√∑n
i=1(yi − ŷi)2√∑n

i=1 y
2
i +

√∑n
i=1 ŷ

2
i

(14)

where ȳ = 1
n

∑n
i=1 yi. The RMSE and MAPE are measures

of the prediction accuracy of a soft sensor model, while
the R2 indicates the reliability of a model. The TIC
indicates how well the predicted sequence matches to the
measured sequence. For two identical sequences, the TIC
value equals zero.

Table 1. MI prediction results of all models on
the testing dataset

Method RMSE R2 MAPE TIC

PLS 0.3361 0.7144 2.749 0.01792
SVM 0.3049 0.7649 2.410 0.01627
ANN 0.2666 0.8204 2.275 0.01421
GPR 0.2653 0.8221 2.200 0.01414
LSTM 0.2583 0.8314 2.179 0.01379

Table 1 summarizes the prediction performance of the
soft sensor models on testing dataset. Furthermore, the
predicted values of MI of the PLS, SVM, ANN, GPR, and
LSTMmodel on the testing dataset are shown in Fig. 6. As
illustrated in Table 1 and Fig. 6, the LSTM model shows
the best prediction performance among all soft sensor
models. On the other hand, the PLS model shows the worst
prediction performance. Since PLS is unable to explain
the nonlinear relationships existent in complex chemical
processes, there are large deviations between the predicted
and measured MI values than other models. Although
the nonlinear SVM model shows better prediction perfor-
mance than the PLS model, there are still large deviations



(a) PLS

(b) SVM

(c) ANN

(d) GPR

(e)LSTM

Fig. 6. MI prediction results of all models: (a) PLS (b)
SVM (c) ANN (d) GPR (e) LSTM

between the predicted and measured MI values when the
process is in grade change-over and unsteady state. The
LSTM model captures the nonlinearity as well as the long-
term dynamics of the target process with its recurrent
network. As a result, the LSTM model outperformed other
soft sensor models in all 4 statistical performance indices.
As shown in Fig. 6, the predicted values of MI of the LSTM
model show better matches with the measured values than
other models, even when MI changes rapidly. For instance,
the monomer and initiator flow rates fluctuated abruptly
between the testing data of sample number 212 - 214,
which resulted in sharp decrease of MI. Additionally, the
LSTM model shows good prediction performance during
grade changeovers where MI changes from one range to
another in a short time.

Table 2. CPU time required for model training

Method Training epoch CPU time (s)
CPU time

per epoch (s)

PLS - 0.021 -
SVM - 0.246 -
ANN 300 13.227 0.044
GPR - 4.829 -
LSTM 240 21.879 0.091

Table 2 summarizes the required CPU time for training
each model. The CPU time was measured on a Intel Core
i7-8700 CPU @ 3.20 GHz. The PLS and SVM models
required less than one second for training. On the other
hand, training of the ANN and LSTM models required
13.227 and 21.879 seconds, which was much longer than
the other three models. Additionally, because an LSTM
network consists of more training parameters than a feed-
forward neural network, the LSTM model took longer
CPU time per epoch than the ANN model. Although both
the LSTM and ANN models consist of three hidden layers
of 10 neurons, a total of 2531 parameters were trained for
the LSTM model while only 641 parameters were required
for training the ANN model. Additionally, A large number
of parameters makes training of an LSTM network more
sensitive to parameter initialization.

In short, the proposed LSTM-based soft sensor model
outperformed other machine learning models in predicting
MI of polymer products from the industrial SAN process.
To address the high computation load required for training
an LSTM network, PCA was applied in data preprocessing
step to reduce the dimension of the data.

5. CONCLUSION

In this paper, we developed an LSTM-based soft sensor
model for MI prediction in an industrial polymerization
process and compared its prediction performance with
other black-box soft sensor models based on PLS, SVM,
GPR, and ANN. The soft sensor models were trained
and tested with the measurement data obtained from a
commercial SAN polymerization process in Korea. The
measurement data was normalized and then preprocessed
by applying PCA to remove multicollinearity and reduce
computational load. With the ability to capture the non-
linearity and long-term dynamic behavior of the process,
the LSTM model accomplished the best prediction per-
formance among all soft sensor models. The LSTM model



predicts MI accurately even when the process is in abrupt
changes while other soft sensor models show large devia-
tions between the predicted and measured MI values. The
results suggest that an LSTM network is more effective
in modeling complex chemical processes than traditional
black-box modeling methods.

For further research, there are several suggestions that aid
in more accurate prediction of MI using LSTM network.
First, the improvement of the prediction performance can
be achieved by the optimization of the network structure
and hyperparameters. Second, the modeling performance
of a black-box model is only guaranteed for the data in the
training region. Thus, the chemical and thermodynamic
knowledge of polymerization processes can be combined to
build a hybrid soft sensor model to improve generalization
ability.
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