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Abstract: A two–degree–of–freedom control strategy is developed and experimentally validated
for a set-point change along a desired trajectory of the cell distribution in yeast fermentation.
Based on a mathematical model of yeast growth and cell population dynamics, an inversion–
based feedforward controller is designed, utilizing a transformation between the biomass
concentration and the cell distribution at the equilibrium points. To take disturbances and
model inaccuracies into account, the controller is extended by a feedback control law. The
controller is applied to a lab–scale stirred tank reactor with Saccharomyces cerevisiae.
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1. INTRODUCTION

The control of cell population distributions in bioreactors
is of particular interest when it comes to maintaining
product quality or ensuring cell viability. The combination
of feedforward and feedback control has turned out to be
a robust strategy for set–point changes along a desired
trajectory (Graichen et al., 2006; Schaum and Meurer,
2015; Garćıa-Sandoval et al., 2016; Schaum et al., 2017).
The calculation of the feedforward signal is usually re-
lated to inverting the model equations and thus can rise
in complexity when more detailed models are considered
(Chen and Paden, 1996). Classical mass balance models of
bioreactors are usually described by a set of ordinary dif-
ferential equations (Schügerl and Bellgardt, 2000), whereas
the modelling of cell population balances is more involved
and typically leads to a partial integro–differential equa-
tion, which is coupled with a set of ordinary differential
equations (Tsuchiya et al., 1966; Villadsen, 1999; Mhaskar
et al., 2002; Daoutidis and Henson, 2002). Taking model
and parameter uncertainties into account, which are usu-
ally present in biological processes, and in order to ensure
robustness of the control strategy, it is advantageous to
extend the feedforward controller by a feedback control
law leading to the so called two–degree–of–freedom con-
trol (Horowitz, 2013). In process applications feedback
controllers are typically designed by considering either
direct output– or state–feedback control. In (Schaum et al.,
2011, 2013) a model-free feedback controller is presented,
which is motivated in its structure by a passive state–
feedback control and leads to an equivalent PI controller
with observer-based anti–windup protection. The suitabil-
ity of this control approach for biological reactors has been
experimentally validated in (Garćıa-Sandoval et al., 2016;
Schaum et al., 2017).

? Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Project-ID 395461267.

Having these results as points of departure, in this work
a two–degree–of–freedom controller is designed for a set–
point change of the cell mass distribution density function
in the framework of an early lumping approach. It is
shown that for every stationary biomass value there exists
a unique stationary cell distribution. Exploiting this fact,
and the relative degree of one for a pointwise output of the
cell mass distribution density function and the internal sta-
bility property, a passivity–based two–degree–of–freedom
control approach with model–free output–feedback control
is designed and experimentally validated in an anaerobic
continuous yeast fermentation experiment.

The paper is organized as follows. In Section 2 the cell
population balance model is described. In Section 3 the
equilibrium points of the lumped model are characterized.
This is followed in Section 4 by an analysis of the struc-
tural controllability. The controller design is addressed in
Section 5. The experimental setup is described in Section
6 and the obtained validation results discussed in Section
7. Conclusions are summarized in Section 8.

2. MODEL DESCRIPTION

Yeast growth follows the three substantial pathways

S + a1O2
ρ1−→ g1B + c1CO2 (1a)

S
ρ2−→ c2CO2 + g2B + d2E (1b)

E + a3O2
ρ3−→ g3B + c3CO2, (1c)

where B, S, E, O2 and CO2 denote the biomass, glucose,
ethanol, oxygen, and carbon dioxide compounds respec-
tively. The reaction rates of the metabolism pathways are
given by ρi and the related stoichiometric coefficients are
denoted by ai, gi and di, with i ∈ {1, 2, 3}. Reaction (1a)
describes the oxidation of glucose to biomass, reaction
(1b) the anaerobic production of ethanol and biomass
and reaction (1c) represents the oxidation of ethanol to



biomass. Usually these reaction rates are chosen to cap-
ture characteristic effects of yeast growth like the crabtree
effect (Deken, 1966). When considering anaerobic growth
of yeast, only reaction (1b) takes place and the reaction
dynamics can be described by a Monod growth rate

ρ(s) = ks
s

s+Ks
, (2)

where s denotes the glucose concentration, ks is the
maximum growth rate, and Ks is the half saturation
constant.

2.1 Mass balance model

Based on the reaction scheme for anaerobic yeast growth
in a chemostat reactor the following set of ordinary differ-
ential equations for the mass balance can be derived

ḃ = g2ρ(s)b−Db, b(0) = b0 (3a)

ṡ = − ρ(s)b+D(sin − s), s(0) = s0, (3b)

where b and s denote the concentrations of biomass and
glucose, respectively. The glucose concentration in the
inlet is given by sin and D denotes the dilution rate,
i.e., the quotient of in–/outflow and the reactor liquid
volume. Note that in (3) the differential equation for
ethanol production has been neglected, since ethanol will
not be further considered, which is due to an anaerobic
growth restriction.

2.2 Cell population balance model

The mass balance is complemented by the general cell
population balance model (Villadsen, 1999; Mhaskar et al.,
2002; Daoutidis and Henson, 2002; Mantzaris and Daou-
tidis, 2004) in chemostat operation mode

∂tn(m, t) = −g2∂m[r(m, s)n(m, t)]+

− [Γ(m, s) +D]n(m, t)+

+ 2

∫ m∗

m

Γ(µ, s)p(m,µ)n(µ, t)dµ

(4a)

ṡ(t) = −
∫ m∗

0

r(m, s)n(m, t)dm+D(sin − s) (4b)

n(m∗, t) = 0

n(m, 0) = n0(m), s(0) = s0,
(4c)

with m ∈ [0,m∗] being the cell mass, m∗ the maximum
cell mass, t the time, n(m, t) the cell mass distribution
density at mass m at time t, r(m, s) the cell growth rate
function for mass m and substrate concentration s, Γ(m, s)
the associated cell division rate, p(m,µ) the partition
probability density function determining the probability
that by division of a mother cell of mass µ a daughter cell
of mass m is produced. Note that in virtue of its definition,
p has the property that

∀µ ≤ m : p(m,µ) = 0 (5)

and is chosen as a symmetric binomial distribution
(Mantzaris and Daoutidis, 2004)

p(m,µ) =
1

B(q)

1

µ

(
m

µ

)q−1(
1− m

µ

)q−1

,

with the normalization factor

B(q) =
2Γf (q)

Γf (2q)
,

where Γf (·) denotes the Gamma–function. Next a linear
dependency of r(m, s) on the cell mass m, as discussed in
(Mantzaris and Daoutidis, 2004), is considered

r(m, s) = ρ(s)m. (6)

Moreover the cell division rate Γ(m, s) is assumed to be
proportional to the cell growth rate

Γ(m, s) = γ(m)r(m, s). (7)

The function γ(m) is chosen to be a ramp function

γ(m) =

{
0, if m ≤ m∗

β(m−m∗), if m∗ < m,
(8)

where m∗ is the minimal cell mass required for division
and β is given by a constant. Note that the existence,
uniqueness and positivity of solutions in L1 × R+ for (4)
has been shown in (Beniich et al., 2018). The first moment
of the cell population mass distribution density function is
given by

b(t) =

∫ m∗

0

mn(m, t)dm. (9)

Recalling mass conservation during cell division (Mantzaris
and Daoutidis, 2004; Schaum and Jerono, 2019), one ob-
tains

ḃ(t) = g2ρ(s)

∫ m∗

0

mn(m, t)dm−D
∫ m∗

0

mn(m, t)dm

= g2ρ(s)b−Db (10a)

ṡ(t) = −ρ(s)

∫ m∗

0

mn(m, t)dm+D(sin − s)

= −ρ(s)b+D(sin − s), (10b)

which corresponds to the mass balance model (3a) and
(3b), so that both models are connected via the first
moment of the cell mass distribution density function.

2.3 Discretized model equations

For the design of a controller in the framework of an early
lumping approach and in virtue of its real–time imple-
mentation on a process control system, the cell population
partial integro–differential equation (4) is discretized with
respect to the mass domain. For this purpose, the par-
tial derivative is approximated using the backwards finite
differences scheme and the integral term is approximated
using the trapezoidal rule. The discretized model equations
are then given by

ṅi = − 1

∆m
g2ρ(s)(mini −mi−1ni−1)− [Γ(mi, s) +D]ni+

+ 2∆m

z∑
j=i+1

Γ(mj , s)p(mi,mj)nj (11a)

ṡ = −ρ(s)b+D(sin − s) =: fs(D,x) (11b)

n(mz+1, t) = 0

n(m, 0) = n0(m), s(0) = s0,
(11c)

where ∆m is given by the discretization step size and z is
the number of interior discretization points. Introducing
the state vector xn = [nT , s]T = [n1, ... , nz, s]

T equations
(11) can be re–cast into the form

ẋn = fn(D,xn) =

[
A(D,s)n
fs(D,x)

]
, x(0) = x0 ∈ Rz+1 (12)

with A(s,D) being constructed from (11a) having an
upper diagonal matrix structure with additional elements



on the lower diagonal originating from the backwards
finite differences. Note that the boundaries of the cell
distribution n(0, t) and n(m∗, t) can be excluded from the
state vector, because ρ(s)mmin = 0 and n(m∗, t) = 0. By
this the approximated biomass b using the trapezoidal rule
reads

b ≈ ∆m

z∑
i=1

mini. (13)

3. EQUILIBRIUM POINTS IN CHEMOSTAT

For the simple mass balance model (3) it is well known
that in a chemostat reactor in steady–state it holds that
D∗ = g2ρ(s∗) with the equilibrium points b∗ and s∗ given
by (Schügerl and Bellgardt, 2000; Schaum et al., 2011)

b∗ = g2(sin − s∗), s∗ =
D∗Ks

g2ks −D∗ . (14)

Considering the cell population balance model (11) the
equilibrium points can be calculated by solving the trans-
formed system equations[

0
0

]
=

[
TA(D∗,s∗)n∗

−ρ(s∗)b∗ +D∗(sin − s∗)

]
(15)

T =


∆mm1 ∆mm2 ... ∆mmz

0 1 ... 0
...

...
. . .

...
0 0 ... 1

 (16)

which leads to

s∗ =
D∗Ks

g2ks −D∗

n∗i = θi(n
∗
z)

θi(n
∗
z) =

θi+1(n∗z)(
g2mi+1

∆m +mi+1γ(mi+1) + g2)
1

∆mg2mi

−
2∆m

∑z
j=i+2mjγ(mj)p(mi+1,mj)θj(n

∗
z)

1
∆mg2mi

θz(n
∗
z) = n∗z
n∗z = ζ−1(s∗, n∗z)

ζ(s∗, n∗z) = −ρ(s∗)∆m

z∑
i=1

miθi(n
∗
z) +D∗(sin − s∗).

It can be seen that the solution of n∗i only depends on the
functions γ(m), p(m,µ) and the value of g2. Furthermore,
by recursion, the solution of n∗i can be expressed as a
function of n∗z and the value of n∗z can be calculated based
on the substrate dynamics by means of ζ−1(s∗, n∗z). This
means that for every i = 1, . . . , z there exists a linear (and
thus invertible) transformation Φi such that b∗ = Φi(n

∗
i ).

Note that by this transformation the problem formulation
of controlling the number of cells with specific mass can
be rewritten in terms of biomass concentration.

To analyse if the equilibrium solution is locally stable,
the eigenvalues λ of the linearized system are numerically
determined and visualized for D∗ = 0.3 h−1 and D∗ =
0.2 h−1 which is shown in Fig. 1. It can be seen that all
eigenvalues are located in the complex left half plane, i.e.,
the solution is locally asymptotically stable.
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Fig. 1. Eigenvalues of the linearized system in equilibrium
at D∗ = 0.3 h−1 (blue stars) and D∗ = 0.2 h−1 (red
circles) with z = 150.

4. CONTROLLABILITY ANALYSIS

The controllability analysis of the model equations (11)
is an involved task, because it usually relies on the cal-
culation of Lie–derivatives up to a high order. In this
work the structural controllability is analyzed by a graph–
theoretical approach (Lin, 1974; Liu et al., 2011), where
the calculation of Lie–derivatives can be avoided by only
analysing the interconnections of the system states. In
return, this analysis does not give any insight to the loss
of the controllability property due to unfavourable param-
eters in the model equations. The network graph of the

n1 . . . nz u

s

b

Fig. 2. Network graph of the system equations (11).

model equations (11) is shown in Fig. 2. Without the input
node u the network graph is already strongly connected,
i.e., from two distinct nodes i and j there exist a path i→ j
and j → i through the network. Additionally all system
states are self–edged nodes. These facts allow to exclude
the existence of inaccessibility and dilation (Liu et al.,
2011). Therefore an arbitrary node of the network could be
chosen as the driver (or leader) node. The interconnections
from the input u to the system states are given by the
dashed lines. It can be seen that every system state has
an interconnection to the input, meaning that each state



is influenced by the input, which in the considered SISO-
case corresponds to a relative degree of one for every node.
Thus any chosen driver node can be modified by the input
and therefore the system is structurally controllable.

5. CONTROLLER DESIGN

In this section a two–degree–of–freedom control strategy
is developed for a set–point change of the cell distribution
along a desired trajectory.

5.1 Feedforward controller

In order to determine the corresponding input trajectory
for a given desired state trajectory xd, one would have to
invert the system dynamics, i.e.,

ud = Dd = f−1
n (xd) (17)

which again is an involved task. The previous analysis of
the equilibrium points revealed that there exists a unique
transformation b∗ = Φi(n

∗
i ) for all i = 1, . . . , z. According

to the controllability analysis, an arbitrary node of the
system can be chosen to design the feedforward controller.
This allows to design the desired trajectory for the cell
distribution and transform it to the corresponding biomass
concentration such that the feedforward input signal can
be determined based on inverting the mass balance model
(3), which is a much easier task. Note that this requires
that the cell population dynamics are sufficiently fast for
small changes in the dilution rate, which at this point is an
assumption. The desired trajectory nd(t) for a given point
d ∈ {1, . . . , z} is chosen to be

nd(t) = nd,0 + (nd,T − nd,0)

[
3

(
t

T

)2

− 2

(
t

T

)3
]
, (18)

where T is the final transition time and nd,0 is the
initial value of n at m = md, and nd,T the desired final
value. The desired trajectory is then transformed to the
corresponding biomass values

bd(t) = Φd(nd(t)). (19)

The input signal can finally be calculated by

Dd(t) = g2ρ(sd(t))−
ḃd(t)

bd(t)
, (20)

where sd(0) is determined from (14) and sd(t) is obtained
by substituting (20) in (3b) and solving the obtained
differential equation numerically.

5.2 Feedback controller

In order to take model uncertainties, approximation errors
or parameter offsets into account and to ensure robustness
against process disturbances it is advantageous to extend
the feedforward controller by an stabilizing feedback con-
trol law. In this work the model–free approach employed
in (Gonzalez and Alvarez, 2005; Diaz-Salgado et al., 2012;
Garćıa-Sandoval et al., 2016; Schaum et al., 2017) is con-
sidered. Since the feedforward controller is reformulated
in terms of biomass concentrations, which is an on–line
measurement at our reactor by means of optical density, it
is also possible to design the feedback controller in terms
of biomass concentrations. For this consider the variables

ỹ = y − yd, D̃ = D −Dd, yd = h(xd) = bd (21)

and the error dynamics of the mass balance model (3)

˙̃y = g2ρ(s)b−Db− g2ρ(sd)bd +Ddbd =: Ψ(x, D)

ỹ(0) = ỹ0.
(22)

The error dynamics can be rewritten as the feedback
interconnection

˙̃y = −αD̃ + v (23a)

v = αD̃ + Ψ(x, D) =: ν(x, D) (23b)

with the weighting factor α 6= 0. According to the con-
structive control approach (Sepulchre et al., 2012) a sta-
bilizing passivity-based state-feedback controller is given
by

D̃ =
κỹ + v

α
= ω̃(ỹ, v), v = ν(x, D). (24)

With the assumption that the function ν(x, D) is slowly
time varying compared to a time–scale ω−1 of an appro-
priately parameterized observer, the value of v can be
estimated by

˙̂v = −ω(v̂ − ( ˙̃y + αD̃)). (25)

In terms of the estimated state

χ = v̂−ωỹ (26)

the dynamics (25) can be rewritten as

χ̇ = −ωχ− ω(ωỹ − αD̃), v̂ = χ+ ωỹ. (27)

Utilizing the estimate v̂ in (24) and considering controller

saturation by means of D̃+ and D̃− (which are functions
of Dd) the output–feedback tracking controller is given by

χ̇ = −ωχ− ω(ωỹ − αD̃), v̂ = χ+ ωỹ (28a)

D̃ =


D̃+, ω̃(ỹ, v̂) > D̃+

ω̃(ỹ, v̂), D̃− ≤ ω̃(ỹ, v̂) ≤ D̃+

D̃−, ω̃(ỹ, v̂) < D̃−
. (28b)

For implementation purposes, following (Schaum et al.,
2017) α = bd is chosen, which leads to a time–varying
weighting in the feedback controller (24). As shown in
(Schaum et al., 2011, 2013) the resulting controller can
be rewritten in terms of a saturated PI control scheme
(with time–varying gain).

Note that the feedback controller could also be constructed
based on the cell population density function, which (for
our reactor setup) would require the design of an appropri-
ate state observer. The structural observability property
of the system (11) for available biomass measurements is
derived in (Jerono et al., 2021a) together with the design
of an extended Kalman Filter, that can be implemented
in parallel for process monitoring purposes.

6. EXPERIMENTAL SETUP

A yeast fermentation chemostat experiment was carried
out in a 2 liter stirred–tank reactor. The process con-
ditions are listed in Table 1. To ensure that the yeast
growth process is performed under anaerobic conditions
the reactor is aerated with nitrogen, such that ethanol will
only be produced as a byproduct and can be neglected in
the model description. Optical density measurements are
taken on–line at 750 nm wavelength with a sample time
of 1 second. Cell distribution measurements are taken at
discrete time steps with a Casy Cell Counter and Analyser.



The parameters of the cell population balance model are
determined to fit the experimental data from previous
experiments. A detailed explanation of the parameter iden-
tification process of the presented cell population balance
model can be found in (Jerono et al., 2021b). The complete
set of model parameters is listed in Table 2. Note that the

Table 1. Process conditions

Parameter Value Unit

Temperature 25 ◦C
Aeration (N2) 0.10 vvm
controlled pH 5.5 -
Stirrer speed 750 rpm
Glucose (sin) 9.2 g/l

Table 2. Model parameter

Parameter Value Unit

ks 2.9660 h−1

Ks 0.7000 gS/l
g2 0.1847 gB/gS
q 5.0000 -
m∗ 5.4808 · 10−11 g
m∗ 1.5000 · 10−10 g
β 1.2142 · 1021 -

parameter values listed in Table 2 slightly differ to those
presented in (Jerono et al., 2021b), which is due to recent
adaptations in the process and reactor setup.

7. RESULTS

The results of the proposed two–degree–of–freedom control
in a yeast fermentation chemostat experiment are pre-
sented in Fig. 3 to Fig. 6. For the parameterization of
the feedback controller (28) ω = 0.1 h−1 and κ = 1.5 h−1

are chosen. The transition time is fixed to T = 5 h and the
initial and final states in (18) are chosen as nd,0 = 8.992 ·
1020 #/g/l and nd,T = 9.435 · 1020 #/g/l with d = 15
and md = 4.327 · 10−11 g/l, leading to bd,0 = 1.61 g/l
and bd,T = 1.69 g/l. The transition between two operation
points is carried out two times. First from the initial to the
final operation point according to (18) and in the second
step a transition back to the initial operation point is
realized, by switching nd,0 and nd,T . In Fig. 3 the desired
biomass trajectory (red), the on–line measurement (blue)
and the estimation of an extended Kalman Filter (EKF)
(yellow) are shown. In Fig. 4 the feedforward signal and the
applied input are presented and a significant mismatch be-
tween both signals can be observed. This can be attributed
to a required higher dilution rate for stabilizing the initial
equilibrium point in the experiment, which is due to the
presence of perturbations and model inaccuracies. These
facts motivate the combination of a feedforward and feed-
back controller. In Fig. 5 snapshots of the cell distribution
density function are presented, where the continuous (red)
line in time shows the desired trajectory nd(t). In Fig. 6 the
measurement are evaluated at the cell mass of m = 4.33 ·
10−11g/l. At each measurement time instance of the cell
distribution three samples are taken and for each sample
three measurement cycles are performed, which leads to
overall nine distribution measurements. The y1 (green), y2

(blue) and y3 (purple) signals correspond to the average
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Fig. 3. Biomass in the experiment. Measurement y (blue),
desired bd (red) and estimated by EKF (yellow).
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Fig. 4. Input in the experiment. Feedforward Dd (dashed-
red) and two–degree–of–freedom controller D (blue).

of three measurements for each taken sample. Comparing
these signals a high spread can be recognized, which
can be explained by the high dilution factors required for
the measurements and small measurement deviations in
each sample. Therefore all taken measurements have been
averaged once more leading to ȳ (filled–black) in Fig. 6
which show a good agreement with the desired trajectory.
The experimental results support the assumption from
Section 5 that for small changes in the dilution rate the
cell population dynamics are sufficiently fast.

8. CONCLUSION

A two–degree–of–freedom controller for the transition be-
tween operation points of a chemostat bioreactor with
respect to the cell number of a specific mass along a desired
trajectory is designed. Based on the analysis of the equi-
librium points and the structural controllability of the cell
population balance model the problem formulation can be
rewritten in terms of biomass concentrations. Finally the
controller is validated in an experimental setup showing a
good agreement of the desired and measured trajectory.



Fig. 5. Cell distribution density function measurements
from three samples y1, y2 and y3 (green, blue and
purple) and desired trajectory nd (continuous–red).
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Fig. 6. Cell density measurements at the desired mass.
Measurements from three samples y1, y2 and y3

(green, blue and purple), average value (black) and
desired trajectory nd (continuous–red).
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