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Abstract:   Neural Network (NN) models based on training solely using data are limited in their use due to 

issues related to extrapolability and interpretability. On the other hand, while mechanistic models based on 

governing physical laws can overcome these limitations, the unavailability of accurate mechanistic models 

render them unsuitable for critical applications. In this paper, we propose an approach to develop an NN 

model that is trained to exploit available data while also being regularized by physics based information; in 

other words the loss function of NN is augmented by constraints associated with the system physics. This 

approach, also known as PINNs (Raissi et al. 2019) has been applied to representative problems in process 

systems engineering (PSE) to evaluate its efficacy to represent the knowledge about the physics of the 

system while also exploiting the information in the data. It has been shown that in the presence of noisy 

data and partially known physics model, this approach can give better predictions compared to the 

conventional training methodology. It has also been shown that the constraints given by the physics based 

model are also satisfied to a greater extent as compared to models trained only on data.  

Keywords: Artificial intelligence and machine learning; Modeling and identification; Dynamic modelling 

and simulation for control and operation 

1. INTRODUCTION 

Neural networks (NN) have been used as universal function 

approximators which are primarily trained using data on cause 

and effect (C-E) measurements from physical systems. As 

such, they have found eminent use in various process systems 

engineering (PSE) applications. However, the training and the 

resulting knowledge representation about the variable inter-

relationships seldom utilize the significant prior knowledge 

available in the form of physical and empirical laws. The NN 

based approaches have been constrained to represent 

knowledge based on information present in the data alone, and 

have therefore been associated with drawbacks such as poor 

interpretability & limited extrapolability; this has affected 

their acceptance in critical applications to some extent.  

 

On the other hand, models based on prior knowledge about the 

physics are of course richer and help in relatively accurate 

knowledge representation about the C-E relationships. While 

they have relatively better extrapolability due to structural 

information present in them, such models are also incomplete 

due to relatively lesser understanding of the physics and the 

related first-principles relationships.  

 

Approaches to exploit knowledge from the physics / first-

principles as well as from data have been quite prevalent in the 

PSE literature. Depending on the relative accuracies of the 

model and the measurements, as well as the intended 

application at hand, estimates of system parameters as well as 

critical variables are generated by suitable weighing 

information from the sources, for realizing decisions in 

optimization and control.  For instance, approaches in 

estimation & filtering (such as the Kalman filter and its various 

nonlinear extensions) have adopted methods to combine 

information from both the sources, viz. models and 

measurements to arrive at statistically optimal estimates of the 

key variables of interest. 

  

While approaches to learn the C-E relationships using NN 

(both shallow as well as deep learning) structures has been 

primarily an exercise in empirical model identification, there 

are merits to bring in improved interpretability by augmenting 

the NN structures with prior physics-based knowledge of the 

C-E relationships. In the recent literature, data driven learning 

frameworks have been augmented with physics based models 

to give rise to a new class of deep learning approach known as 

physics-informed neural networks (PINN)(Raissi et al. 2017a, 

2017b). PINNs have been successful for the solution and 

inversion of equations governing the physical systems. 

 

Raissi et al. (2019) have used PINNs to solve PDEs for the 

applications in domains such as fluid mechanics & solid 

mechanics. Rudy et al. (2019) have used PINNs for data driven 

identification of parametric partial differential equations. Li et 

al. (2021) developed a electrochemical thermal model and 

have used it to generate data to train the PINNs for the task of 

electrode level state estimation in lithium ion batteries. Arnold 

and King (2021) have used PINNS for state space modelling 

of dynamical system and used them for control-based 

applications. It is important to note that all of the above 



approaches are oriented towards generating an NN structure 

(including their weights/ biases) that solves and interprets such 

differential equations (i.e. they are data driven solution 

approaches to the differential equations). These developments 

have been accelerated by the advances in automatic 

differentiation and availability of open source platforms such 

as Theano, Tensorflow (Abadi et al., 2016) and Keras (Chollet 

et al.,2015). Haghighat and Juanes (2021) have introduced 

SciANN package that is well suited for neural networks 

application for scientific computation based on PINN.  

 

Chen et. al (2018) developed a new family of deep neural 

network models by parameterizing the derivative of the hidden 

state using NN and calculating the network output using a 

blackbox differential equation solver. Their study discusses 

about training the NN by converting them into a form similar 

to ODE-IVP where the inputs are considered as values at time 

0 and outputs at values as time T. The hidden states of the NN 

are represented as values at the intermediate time steps t (0 < t 

< T). Whereas, PINNs proposed in our work are focused on 

approximating the solution of PDEs/ODEs by a neural 

network which are trained to find the weights and biases that 

minimises the residuals of the differential equation. Krishnan 

et al. (2015) introduced techniques to learn causal generative 

temporal models from noisy high-dimensional data for 

medical applications. In such medical applications, a 

mechanistic model to correlate the inputs and outputs is not 

available to be used in Kalman filters. They developed a 

generative model by using healthcare claims data to look into 

effect of anti-diabetic drugs on a population of 8000 diabetic 

and pre-diabetic patients. They used this generative temporal 

model to perform counterfactual inference in Kalman filter 

setting.  

 

An alternate approach to combine first-principles knowledge 

with the data generated from the system is to formulate an 

optimization problem for training the neural network using the 

data (i.e. minimizing the loss function) but also subject the 

solution to adhere to the constraints that are posed from the 

physics of the system.  The associated NN parameters could 

then be expected to more closely reflect the physics-based 

relationships and therefore lend the composite model to better 

accuracy for predictions. In this context, Degroote et al., 

(2021) have used a similar approach for predicting unknown 

friction phenomena in crank servo mechanisms. Such 

augmentation approaches could offer several merits in terms 

of overcoming the drawbacks of relatively unknown or 

uncertain parameters in the physics, as well as noise/ biases in 

the measurements. The composite model could help 

complement knowledge from both these sources, and thereby 

serve to generate relative accurate predictions of the key 

variables. 

In this paper, we propose to develop and evaluate such an 

augmentation of the physical laws based model with data 

generated from the system, for the task of developing a 

composite model. We revisit some of the typical, important 

PSE problems and propose methods to complement 

knowledge from physics as well as data. We demonstrate that 

such approaches can result in generating more accurate 

estimates for decision making related to optimization and 

control. 

The remainder of the paper is structured as follows: Section 2 

outlines the methodology applied. In Section 3, we cast 

representative PSE problems in the augmentation based 

optimization framework. Section 4 discusses results from the 

augmented learning and optimization approach, followed by 

summarizing conclusions in Section 5. 

2. METHODOLOGY 

A single-layer feed-forward neural network with inputs 

 x ∈ Rm, outputs y ∈ Rn, and d hidden units is written as: 

 

       y =W1σ (W0x + b0) + b1  (1) 

 

where (W0 ∈ ℝdxm, b0 ∈ ℝd), (W1 ∈ ℝnxd, b1 ∈ ℝn) are parameters 

known as weights and biases, and σ is the activation function. 

Any approach to NN training is typically formulated to 

identify the weights Wi and bias bi of all layers in terms of 

minimizing a loss function of the form. 

 

                          MS𝐸𝑑 =
1

𝑁𝑑
∑ |𝑦𝑖 − 𝑦̂𝑖|

2𝑁d
𝑖=1   (2)  

Where ŷ is the prediction of the neural network and y is the 

actual value that has been used for training.  

In the PINN framework, the loss optimization framework is 

recast with an additional constraint and results in an 

optimization problem with a new loss function that can be 

written as  

MSE = MSEd + 𝜆 * MSEm    (3) 

 

                              MS𝐸𝑚 =
1

𝑁𝑓
∑ |𝑓(𝑦𝑖 , 𝑥𝑖)|2𝑁𝑓

𝑖=1
              (4) 

 

Here f is the function derived from physics that captures the 

relationship between outputs y and inputs x. The first term in 

the total loss term MSE given by Equation (3) is used to 

capture the C-E relationships from the data and the second 

term captures the knowledge inferred from the physics based 

model. The parameter 𝜆 can be tuned to give more importance 

to data or model as per the requirements. Since the 

optimisation problem is non-convex, suitable optimisation 

algorithm and optimisation parameters must be chosen. One 

can also use choices of loss function other than mean squared 

error (MSE) such as mean absolute error (MAE) or cross 

entropy based on end applications. 

 

The NN models are model are trained mainly by the back-

propagation algorithm by taking the derivatives with respect to 

weights and biases. The ability of Opensource python 

packages such as TensorFlow and Pytorch have been exploited 

for Automatic differentiation of neural networks to obtain the 

model parameters (Güne  ̧et al., 2018).  

The augmentation of physics based loss term ensures that the 

training of NN Model constrains the weights and biases to 

obey the physics and capture the knowledge from data as well. 

This approach can work with simple feed-forward NN 

architectures on small amounts of data as the physics based 

loss term introduces a regularization mechanism (Raissi et al. 

2019). 



3. CASE STUDIES 

This section discusses the representative problems in the 

augmentation based optimization framework for application in 

process systems engineering. 

3.1 Case 1: Approximation of an arbitrary Nonlinear function 

representation 

Neural networks have been extensively used to find mappings 

between outputs and inputs features for the given set of data. 

However, such training methods do not take into consideration 

the underlying constraints that influence the data evolution. By 

augmenting the loss term with prior knowledge, the extent of 

constraint violation in the predictions could be minimised. 

 

Let y1 and y2 be nonlinear functions of x1, x2, and x3 and 

nonlinear relationship between them is given as: 

 
𝑦1 =  𝑥1

2𝑥3 + 𝑥2
2 + 𝑥1𝑥2 + 𝑥3   (5) 

 
𝑦2 = 𝑥3𝑥2

3 + 𝑥1𝑥3 + 𝑥1
2               (6) 

 

Further let us assume, that there is an additional constraint on 

the output as Equation (7). 
 

𝑦1 + 𝑦2 = 1                (7) 

 
For mapping this nonlinear function, a dataset of 1500 samples 

was generated with x1, x2, x3, y1 and y2 such that it satisfies the 

Equations (5),(6) and (7). Of these 1200 samples were taken 

as training dataset and 300 samples for test data set. A feed 

forward neural network with two hidden layers and 20 neurons 

each with rectified linear unit (ReLu) as activation unit was 

chosen. An NN trained on this clean data could be expected to 

satisfy the constraint (Equation 7) too; however, in presence of 

the noisy inputs the constraint violations would be 

unacceptable. To test this constraint satisfaction of the 

augmented model with noisy data, Random noise is added to 

the inputs x1, x2, and x3 and the NN is trained on the loss 

function augmented by physics, with a view to satisfy the 

constraints. The penalty factor can be tuned as a 

hyperparameter to meet the extent of constraint fulfilment. 
 

The NN is trained on the loss function: 

 

𝑀𝑆𝐸𝑑 =
1

𝑁𝑑
  ∑ |𝑌𝑖 − 𝑌𝑖̂|

2𝑁𝑑
𝑖=1           (8) 

 

𝑀𝑆𝐸𝑚 =
1

𝑁𝑚
∑ |1 − (𝑦̂1,𝑖 + 𝑦̂2,𝑖)|

2𝑁𝑚
𝑖=1     (9) 

 

Where Y=[y1,y2] are actual target values and 𝑌̂ = [𝑦̂1,𝑦̂2] are 

the NN predictions. 

 

3.2 Case 2: Data reconcilation problem      

  

Process Data reconciliation (PDR) is an approach which uses 

process information represented in the form of models to 

ensure data validation and reconciliation by the correcting 

measurements in industrial processes. The use of PDR allows 

for extracting knowledge about the processes from noisy 

measurement data and produces a set of refined data 

representing the most likely process operation.  

Consider a distillation process in which the flow rates of feed, 

distillate and bottoms are represented by F1, F2 and F3 

respectively.  The estimated flow rates must satisfy the steady 

state mass balance equation: 

𝐹1 =  𝐹2 +  𝐹3     (10) 

Let x1, x2 and x3 be the feed, distillate and bottoms 

composition; these introduce an additional constraint as shown 

by Equation 11. 

𝐹1 𝑥1 =  𝐹2 𝑥2 + 𝐹3 𝑥3    (11) 

However, in the presence of noisy measurements of the input 

features – F2, F3, x2, x3 and targets F1 and x1 the constraints 

given by Equation (10) and (11) are less likely to be satisfied.  

Here we aim to train the NN from data and the partial 

knowledge represented by Equation (10) to check the 

satisfaction of constraints represented by Equation (11) in 

presence of noisy data.  

A dataset of 1500 samples was generated such that it satisfies 

the Equations (10) and (11). The measurements F1, F2, F3, x1, 

x2, and x3 are corrupted with random noise.1200 samples were 

taken as training dataset and 300 samples for test data set. A 

feed forward neural network with two hidden layers and 20 

neurons each with ReLu unit as activation unit was trained 

using Adam optimiser for 1000 epochs.  

 

The loss functions are: 

 

MS𝐸𝑑1 =
1

𝑁𝑑
  ∑ |𝐹1𝑖 − 𝐹̂1,𝑖|

2𝑁𝑑
𝑖=1                                 (12) 

 

𝑀𝑆𝐸𝑑2 =
1

𝑁𝑑
  ∑ |𝑥1,𝑖 − 𝑥̂1,𝑖|

2𝑁𝑑
𝑖=1                                (13) 

 

𝑀𝑆𝐸𝑚 =
1

𝑁𝑚
∑ |𝐹̂1,𝑖 − (𝐹2,𝑖 + 𝐹3,𝑖)|

2𝑁𝑚
𝑖=1                     (14) 

 

𝑀𝑆𝐸𝑚 =
1

𝑁𝑚
∑ |𝐹̂1,𝑖𝑥̂1,𝑖 − (𝐹2,𝑖𝑥2,𝑖 + 𝐹3,𝑖𝑥3,𝑖)|

2𝑁𝑚
𝑖=1    (15) 

  

Where 𝐹̂1 and 𝑥̂1 are the predictions from the NN. The PINN 

loss function will be the sum of all the four losses. 

 

 
Figure 1:  Flowchart to obtain the loss from NN model 

 



 
 

 

Figure 2: Predicting the corrections in case of noisy data. 

 

The trained NN model is used to make predictions and 

calculate the total loss as shown in Figure 1. The higher the 

noise in the test data the higher will be the terms of the los 

functions. An optimiser is used to find corrections that 

minimises the prediction loss as shown in Figure 2. Here we 

have used the Nelder-Mead optimiser of Python’s 

Scipy.optimise package. 

  

3.3 Case 3: Kalman like adaptive estimation 

 

Filtering and smoothening have multiple applications in PSE 

to produce estimates of unknown variables based on the series 

of noisy measurement observed over time. These applications 

require a model for estimation. An accurate and complete 

model that replicates the true state of plant is usually 

unavailable.  

In presence of noisy measurements and partial knowledge 

about the model both of which express the ground truth to 

some extent, a physics constrained NN can be developed to 

generate noise free estimates. 

 

The loss functions in all the three cases discussed below are: 

 

𝑀𝑆𝐸𝑑 =
1

𝑁𝑑
  ∑ |𝑦𝑖 − 𝑦̂,𝑖|

2𝑁𝑑
𝑖=1                    (16) 

 

𝑀𝑆𝐸𝑚 =
1

𝑁𝑑
  ∑ |𝑦̂𝑖  −  𝐶𝑥𝑖|

2              
𝑁𝑑
𝑖=1 (17) 

 

Where y and x are defined according model equations dicussed 

in case studies below.  

 

Case 3.1: Bias in measurements 

 

Consider the following one dimensional, discrete-time, 

nonlinear dynamical system, where yk is the measurement of 

states xk and uk is the external input.   

 

Ground truth: 

 

𝑥𝑘 =
𝑥𝑘−1

2
+

25𝑥𝑘−1

1+𝑥𝑘−1
2 + 5𝑢𝑘−1                      (18) 

 

Measurement model:  

 

𝑥𝑘 =
𝑥𝑘−1

2
+

25𝑥𝑘−1

1+𝑥𝑘−1
2 + 5𝑢𝑘−1 + 𝑤𝑘               (19) 

 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘                                            (20) 

 

 

 

Figure 3: a) Training the NN model b) Using the trained model 

for forecasting. 

The actual measurements obtained from the plant will have 

noise and bias as compared to the ground truth shown in 

Equations (18), (19) and (20). For the given system, C is 

assumed to be 1, wk is assumed gaussian noise of mean 0 and 

standard deviation 2 and vk  is a constant bias of 5. The data set 

of 1900 samples is generated by providing xk-1 and uk-1 as the 

input to the measurement model with the corresponding output 

yk. 1500 samples are used for training the NN model and 400 

samples are used for validation. A single layer NN with 20 

neurons with ReLu activation function is used for training.  For 

the forecasting of the future measurement yk, we start with a 

known value of xk and use the ANN model that is trained on 

augmented loss function to predict the future 400 steps as 

shown in Figure 3b. 

 

Case 3.2: Bias in both model and measurements 

Plant model: 

𝑥𝑘 =
𝑥𝑘−1

2
+

0.1𝑥𝑘−1

1+𝑥𝑘−1
2 + 5𝑢𝑘−1 + 𝑤𝑘   (21) 

 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘      (22) 

 

In the real-world, we do not have an accurate measurement 

model to reflect the true states as estimated by the ground truth. 

Therefore, we corrupt our model by changing the prefactor 25 

in the model to 0.1 as shown in Equation (21) and same tests 

are performed as in the previous section by changing the value 



of penalty factor. Here, we have trained the NN model on the 

measurement generated from Equation (19) and the loss 

function is augmented with Equation (21). 

            
Case 3.3: Parameter estimation 

Parameter estimation: 

𝑥𝑘 =
𝑥𝑘−1

2
+

𝜶∗𝑥𝑘−1

1+𝑥𝑘−1
2 + 5𝑢𝑘−1 + 𝑤𝑘    (23) 

 

𝑦𝑘 = 𝐶𝑥𝑘      (24) 

 

Consider the case as shown in Equation (23), where the model 

parameter α is unknown. We can estimate the parameter α by 

using the noisy data measurement generated by Equations (19) 

and (20) to train the NN model. The NN model will optimize 

the weights and the parameter α to fit the training dataset by 

minimising the loss functions given by Equations (16) and 

(17). The NN model in this case was trained using 1500 

datapoints and the NN structure had single layer with 20 

neurons for which the ReLu activation function was used.  

 

4. RESULTS AND DISCUSSION 

4.1 Approximation of an arbitrary Nonlinear function 

representation: 

Table 1 shows the performance of trained NN models on the 

validation dataset.  The extent of constraint violations in the 

NN model that is trained without any noisy data, are seen to be 

minimum. The trained NN model will have parameters such 

that it will only obey the constraints and won’t give any 

priority to predicting the data, which can be seen from Figure 

5. When the NN model is trained only on data i.e 𝜆 = 0, the 

extent of constraint violations will be larger than the case when 

the NN loss function is augmented with constraints. With an 

increase in penalty factor the extent of constraint violations 

will decrease as seen in Figure 4. This improvement in extent 

of constraint violation will be at the cost of loss in prediction 

accuracy given by MSE. However, the parameter λ can be 

tuned as per requirement to maintain trade-off between MSE 

and the constraint violations.  
 
Table 1 : Validation errors for nonlinear approximation 

Training criteria MSE Constraint violation (MSE) 

Only data 0.084 0.00494 

Only model 276.52 4.87E-05 

Data and model 0.502 0.000389 

 

 
 
Figure 4: Effect of λ on extent of constraint violations. 

 
 
Figure 5: Actual vs Predicted values for NN trained only on 

model 

 

4.2 Data reconcilation problem: 

The NN model was trained with a penalty factor of 1 where 

the constraints were given by Equations (10) and (11). Model 

1 is the total mass balance equation given by Equation (10) and 

Model 2 is component mass balance equation given by 

Equation (11). Table 2 shows that even in absence of model 2 

i.e in presence of partial knowledge given by Model 1, the 

extent of constraint violations is better (lower) than the model 

trained only on data. The errors MSE1, MSE2, constraint 

violation 1 and constraint violation 2 are given by Equations 

12-15 respectively. This trained model can now be used for 

reconciliation purposes of noisy data and to find the 

corrections using the scheme shown in Figure 2. The 

measurement F1, F2 and F3 were corrupted by adding a bias 

and then the optimisation scheme was used to find those 

corrections such that the constraints are satisfied. Figure 6 

shows that this scheme is able to predict these corrections 

accurately.  
 
Table 2: Validation errors for Data reconciliation 

Training 

criteria MSE1 MSE2 

Constraint 

violation 

1 (MSE) 

Constraint 

violation 

2 (MSE) 

Only 

data 
0.09355 0.00228 0.03553 0.0164 

Model 1 0.10006 1.08E-4 0.01004 0.00591 

Model 1 

and 2 
0.10003 0.00117 0.01387 0.004807 

 



 
Figure 6: Reconciliation of the biased data 

 

4.3 Kalman like adaptive estimation 

For all the 3 subcases shown below, the external inputs U, the 

measurements yk and the ground truth are taken to be the same 

as shown in the Figure (7) and (8).  

 
Figure 7: External inputs given to the system. 

 

4.3.1 Bias in measurements 

 

Since the data on which the NN is trained is corrupted with 

noise and a bias, the predictions of the test dataset using the 

NN model trained solely on the data will be far from the 

ground truth as shown in Figure 9. Also as the equations 

representing the ground truth are augmented with the NN loss 

function, with increase in the penalty factor, it can be seen that 

the prediction made by composite models are more accurate. 

The extent of constraint violations and the mean absolute error 

of predictions are compared in Table 3 for the penalty factor 

values of 0,1 and 10. For the case of penalty factor 10, The 

predictions are seen to be closer to the ground truth and 

constraint violations are fewer. This shows that the overall 

composite model performance can be improved by 

augmenting the loss function with model. 

 

 

Figure 8:  Comparison of Noisy measurements and ground 

truth. 

 

Table 3: Performance of NN on Validation dataset  

Training criteria MAE Constraint violation (MAE) 

λ = 0 8.65 15.92 

λ = 1 4.31 12.87 

λ = 10 0.15 12.01 

 

4.3.2 Bias in both model and measurements  

 

The deviation of the states given by corrupted model and 

measurements from ground truth are shown as model truth in 

Figure 11. The noisy measurements with bias will lie above 

the ground truth and the model is corrupted in a manner such 

that it lies below the ground truth.  

 

Figure 9: Training and test predictions for Case 3.1 

 

The NN model is trained with different values of λ as 

mentioned in Table 4 to find the one which minimises the loss. 

The training and test predictions for values of λ 0, 3 and 50 are 

plotted in Figure 11. It can be observed that for λ = 0, and λ = 

50 the predictions will deviate far away from the ground truth 

since, they will prioritise noisy measurements and corrupted 

model respectively.  Of the chosen values the penalty factor λ 

= 3 gives the closest estimate of the ground truth and it can be 

further tuned so that the predictions match the ground truth.  

 
Figure 10: Model truth and measurements as compared to 

ground truth. 



With this it can be concluded that by choosing a suitable value 

of penalty factor, aspects related to model inadequacies 

possible including bias can be suitably dealt with towards 

evolving more accurate estimates/predictions. even the 

presence of corrupted model and noisy data set with bias we 

can make predictions that are closer to ground truth. 

 
Table 4: Effect of λ on extent of constraint violations. 

Training criteria MAE Constraint violation (MAE) 

λ = 0 8.65 15.92 

λ = 0.1 8.56 15.86 

λ = 1 3.8 12.99 

λ = 2 0.76 11.52 

λ = 3 0.57 11.2 

λ = 5 1.18 11.23 

λ = 10 1.46 12.77 

λ = 50 1.58 12.807 

 

Figure 11: Training and test predictions for Case 3.2 

 

4.3.3 Parameter estimation 

 

For this case corresponding to formulation described in section 

in 3.3, the parameter α is estimated to be 24.61 by using the 

noisy data set in absence of bias, which is close to the actual 

value of 25. This shows that the approach can be used to 

identify unknown model parameters. 

 

5.  CONCLUSION 

The training of NN by the use of data and physical models to 

regularize the predictions such that it obeys the physical 

constraints have been discussed in the mentioned case studies. 

It has been shown that by tuning the penalty factor, the extent 

of constraint violations can be satisfied as per the 

requirements. This approach can also be used to identify the 

unknown model parameters. The issues related to 

extrapolability of the neural network can be explored by this 

approach. Such physics constrained NN can find applications 

in areas such as fault detection and diagnosis, system model 

identification and process control in the field of process system 

engineering. Here we have only used feed forward NN for all 

the cases; however, one can also explore the possibility of 

using recurrent neural network and other deep learning 

architectures for estimation of states.  
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