
Physics Constrained Learning in Neural Network based Modeling

Rahul S. Patel*, Sharad Bhartiya** and Ravindra D. Gudi***

Department of Chemical Engineering, Indian Institute of Technology Bombay,

Powai, Mumbai 400076, India

* (E-mail: rahul.patel@iitb.ac.in)

** (E-mail: sharad_bhartiya@iitb.ac.in)

*** (E-mail: ravigudi@iitb.ac.in)

Abstract: Neural Network (NN) models based on training solely using data are limited in their use due to

issues related to extrapolability and interpretability. On the other hand, while mechanistic models based on

governing physical laws can overcome these limitations, the unavailability of accurate mechanistic models

render them unsuitable for critical applications. In this paper, we propose an approach to develop an NN

model that is trained to exploit available data while also being regularized by physics based information; in

other words the loss function of NN is augmented by constraints associated with the system physics. This

approach, also known as PINNs (Raissi et al. 2019) has been applied to representative problems in process

systems engineering (PSE) to evaluate its efficacy to represent the knowledge about the physics of the

system while also exploiting the information in the data. It has been shown that in the presence of noisy

data and partially known physics model, this approach can give better predictions compared to the

conventional training methodology. It has also been shown that the constraints given by the physics based

model are also satisfied to a greater extent as compared to models trained only on data.

Keywords: Artificial intelligence and machine learning; Modeling and identification; Dynamic modelling

and simulation for control and operation

1. INTRODUCTION

Neural networks (NN) have been used as universal function

approximators which are primarily trained using data on cause

and effect (C-E) measurements from physical systems. As

such, they have found eminent use in various process systems

engineering (PSE) applications. However, the training and the

resulting knowledge representation about the variable inter-

relationships seldom utilize the significant prior knowledge

available in the form of physical and empirical laws. The NN

based approaches have been constrained to represent

knowledge based on information present in the data alone, and

have therefore been associated with drawbacks such as poor

interpretability & limited extrapolability; this has affected

their acceptance in critical applications to some extent.

On the other hand, models based on prior knowledge about the

physics are of course richer and help in relatively accurate

knowledge representation about the C-E relationships. While

they have relatively better extrapolability due to structural

information present in them, such models are also incomplete

due to relatively lesser understanding of the physics and the

related first-principles relationships.

Approaches to exploit knowledge from the physics / first-

principles as well as from data have been quite prevalent in the

PSE literature. Depending on the relative accuracies of the

model and the measurements, as well as the intended

application at hand, estimates of system parameters as well as

critical variables are generated by suitable weighing

information from the sources, for realizing decisions in

optimization and control. For instance, approaches in

estimation & filtering (such as the Kalman filter and its various

nonlinear extensions) have adopted methods to combine

information from both the sources, viz. models and

measurements to arrive at statistically optimal estimates of the

key variables of interest.

While approaches to learn the C-E relationships using NN

(both shallow as well as deep learning) structures has been

primarily an exercise in empirical model identification, there

are merits to bring in improved interpretability by augmenting

the NN structures with prior physics-based knowledge of the

C-E relationships. In the recent literature, data driven learning

frameworks have been augmented with physics based models

to give rise to a new class of deep learning approach known as

physics-informed neural networks (PINN)(Raissi et al. 2017a,

2017b). PINNs have been successful for the solution and

inversion of equations governing the physical systems.

Raissi et al. (2019) have used PINNs to solve PDEs for the

applications in domains such as fluid mechanics & solid

mechanics. Rudy et al. (2019) have used PINNs for data driven

identification of parametric partial differential equations. Li et

al. (2021) developed a electrochemical thermal model and

have used it to generate data to train the PINNs for the task of

electrode level state estimation in lithium ion batteries. Arnold

and King (2021) have used PINNS for state space modelling

of dynamical system and used them for control-based

applications. It is important to note that all of the above

approaches are oriented towards generating an NN structure

(including their weights/ biases) that solves and interprets such

differential equations (i.e. they are data driven solution

approaches to the differential equations). These developments

have been accelerated by the advances in automatic

differentiation and availability of open source platforms such

as Theano, Tensorflow (Abadi et al., 2016) and Keras (Chollet

et al.,2015). Haghighat and Juanes (2021) have introduced

SciANN package that is well suited for neural networks

application for scientific computation based on PINN.

Chen et. al (2018) developed a new family of deep neural

network models by parameterizing the derivative of the hidden

state using NN and calculating the network output using a

blackbox differential equation solver. Their study discusses

about training the NN by converting them into a form similar

to ODE-IVP where the inputs are considered as values at time

0 and outputs at values as time T. The hidden states of the NN

are represented as values at the intermediate time steps t (0 < t

< T). Whereas, PINNs proposed in our work are focused on

approximating the solution of PDEs/ODEs by a neural

network which are trained to find the weights and biases that

minimises the residuals of the differential equation. Krishnan

et al. (2015) introduced techniques to learn causal generative

temporal models from noisy high-dimensional data for

medical applications. In such medical applications, a

mechanistic model to correlate the inputs and outputs is not

available to be used in Kalman filters. They developed a

generative model by using healthcare claims data to look into

effect of anti-diabetic drugs on a population of 8000 diabetic

and pre-diabetic patients. They used this generative temporal

model to perform counterfactual inference in Kalman filter

setting.

An alternate approach to combine first-principles knowledge

with the data generated from the system is to formulate an

optimization problem for training the neural network using the

data (i.e. minimizing the loss function) but also subject the

solution to adhere to the constraints that are posed from the

physics of the system. The associated NN parameters could

then be expected to more closely reflect the physics-based

relationships and therefore lend the composite model to better

accuracy for predictions. In this context, Degroote et al.,

(2021) have used a similar approach for predicting unknown

friction phenomena in crank servo mechanisms. Such

augmentation approaches could offer several merits in terms

of overcoming the drawbacks of relatively unknown or

uncertain parameters in the physics, as well as noise/ biases in

the measurements. The composite model could help

complement knowledge from both these sources, and thereby

serve to generate relative accurate predictions of the key

variables.

In this paper, we propose to develop and evaluate such an

augmentation of the physical laws based model with data

generated from the system, for the task of developing a

composite model. We revisit some of the typical, important

PSE problems and propose methods to complement

knowledge from physics as well as data. We demonstrate that

such approaches can result in generating more accurate

estimates for decision making related to optimization and

control.

The remainder of the paper is structured as follows: Section 2

outlines the methodology applied. In Section 3, we cast

representative PSE problems in the augmentation based

optimization framework. Section 4 discusses results from the

augmented learning and optimization approach, followed by

summarizing conclusions in Section 5.

2. METHODOLOGY

A single-layer feed-forward neural network with inputs

 x ∈ Rm, outputs y ∈ Rn, and d hidden units is written as:

 y =W1σ (W0x + b0) + b1 (1)

where (W0 ∈ ℝdxm, b0 ∈ ℝd), (W1 ∈ ℝnxd, b1 ∈ ℝn) are parameters

known as weights and biases, and σ is the activation function.

Any approach to NN training is typically formulated to

identify the weights Wi and bias bi of all layers in terms of

minimizing a loss function of the form.

 MS𝐸𝑑 =
1

𝑁𝑑
∑ |𝑦𝑖 − 𝑦̂𝑖|

2𝑁d
𝑖=1 (2)

Where ŷ is the prediction of the neural network and y is the

actual value that has been used for training.

In the PINN framework, the loss optimization framework is

recast with an additional constraint and results in an

optimization problem with a new loss function that can be

written as

MSE = MSEd + 𝜆 * MSEm (3)

                     MS𝐸𝑚 =
1

𝑁𝑓
∑ |𝑓(𝑦𝑖 , 𝑥𝑖)|2𝑁𝑓

𝑖=1
 (4)

Here f is the function derived from physics that captures the

relationship between outputs y and inputs x. The first term in

the total loss term MSE given by Equation (3) is used to

capture the C-E relationships from the data and the second

term captures the knowledge inferred from the physics based

model. The parameter 𝜆 can be tuned to give more importance

to data or model as per the requirements. Since the

optimisation problem is non-convex, suitable optimisation

algorithm and optimisation parameters must be chosen. One

can also use choices of loss function other than mean squared

error (MSE) such as mean absolute error (MAE) or cross

entropy based on end applications.

The NN models are model are trained mainly by the back-

propagation algorithm by taking the derivatives with respect to

weights and biases. The ability of Opensource python

packages such as TensorFlow and Pytorch have been exploited

for Automatic differentiation of neural networks to obtain the

model parameters (Güne ̧et al., 2018).

The augmentation of physics based loss term ensures that the

training of NN Model constrains the weights and biases to

obey the physics and capture the knowledge from data as well.

This approach can work with simple feed-forward NN

architectures on small amounts of data as the physics based

loss term introduces a regularization mechanism (Raissi et al.

2019).

3. CASE STUDIES

This section discusses the representative problems in the

augmentation based optimization framework for application in

process systems engineering.

3.1 Case 1: Approximation of an arbitrary Nonlinear function

representation

Neural networks have been extensively used to find mappings

between outputs and inputs features for the given set of data.

However, such training methods do not take into consideration

the underlying constraints that influence the data evolution. By

augmenting the loss term with prior knowledge, the extent of

constraint violation in the predictions could be minimised.

Let y1 and y2 be nonlinear functions of x1, x2, and x3 and

nonlinear relationship between them is given as:

𝑦1 = 𝑥1

2𝑥3 + 𝑥2
2 + 𝑥1𝑥2 + 𝑥3 (5)

𝑦2 = 𝑥3𝑥2

3 + 𝑥1𝑥3 + 𝑥1
2 (6)

Further let us assume, that there is an additional constraint on

the output as Equation (7).

𝑦1 + 𝑦2 = 1 (7)

For mapping this nonlinear function, a dataset of 1500 samples

was generated with x1, x2, x3, y1 and y2 such that it satisfies the

Equations (5),(6) and (7). Of these 1200 samples were taken

as training dataset and 300 samples for test data set. A feed

forward neural network with two hidden layers and 20 neurons

each with rectified linear unit (ReLu) as activation unit was

chosen. An NN trained on this clean data could be expected to

satisfy the constraint (Equation 7) too; however, in presence of

the noisy inputs the constraint violations would be

unacceptable. To test this constraint satisfaction of the

augmented model with noisy data, Random noise is added to

the inputs x1, x2, and x3 and the NN is trained on the loss

function augmented by physics, with a view to satisfy the

constraints. The penalty factor can be tuned as a

hyperparameter to meet the extent of constraint fulfilment.

The NN is trained on the loss function:

𝑀𝑆𝐸𝑑 =
1

𝑁𝑑
  ∑ |𝑌𝑖 − 𝑌𝑖̂|

2𝑁𝑑
𝑖=1 (8)

𝑀𝑆𝐸𝑚 =
1

𝑁𝑚
∑ |1 − (𝑦̂1,𝑖 + 𝑦̂2,𝑖)|

2𝑁𝑚
𝑖=1 (9)

Where Y=[y1,y2] are actual target values and 𝑌̂ = [𝑦̂1,𝑦̂2] are

the NN predictions.

3.2 Case 2: Data reconcilation problem

Process Data reconciliation (PDR) is an approach which uses

process information represented in the form of models to

ensure data validation and reconciliation by the correcting

measurements in industrial processes. The use of PDR allows

for extracting knowledge about the processes from noisy

measurement data and produces a set of refined data

representing the most likely process operation.

Consider a distillation process in which the flow rates of feed,

distillate and bottoms are represented by F1, F2 and F3

respectively. The estimated flow rates must satisfy the steady

state mass balance equation:

𝐹1 = 𝐹2 + 𝐹3 (10)

Let x1, x2 and x3 be the feed, distillate and bottoms

composition; these introduce an additional constraint as shown

by Equation 11.

𝐹1 𝑥1 = 𝐹2 𝑥2 + 𝐹3 𝑥3 (11)

However, in the presence of noisy measurements of the input

features – F2, F3, x2, x3 and targets F1 and x1 the constraints

given by Equation (10) and (11) are less likely to be satisfied.

Here we aim to train the NN from data and the partial

knowledge represented by Equation (10) to check the

satisfaction of constraints represented by Equation (11) in

presence of noisy data.

A dataset of 1500 samples was generated such that it satisfies

the Equations (10) and (11). The measurements F1, F2, F3, x1,

x2, and x3 are corrupted with random noise.1200 samples were

taken as training dataset and 300 samples for test data set. A

feed forward neural network with two hidden layers and 20

neurons each with ReLu unit as activation unit was trained

using Adam optimiser for 1000 epochs.

The loss functions are:

MS𝐸𝑑1 =
1

𝑁𝑑
  ∑ |𝐹1𝑖 − 𝐹̂1,𝑖|

2𝑁𝑑
𝑖=1 (12)

𝑀𝑆𝐸𝑑2 =
1

𝑁𝑑
  ∑ |𝑥1,𝑖 − 𝑥̂1,𝑖|

2𝑁𝑑
𝑖=1 (13)

𝑀𝑆𝐸𝑚 =
1

𝑁𝑚
∑ |𝐹̂1,𝑖 − (𝐹2,𝑖 + 𝐹3,𝑖)|

2𝑁𝑚
𝑖=1 (14)

𝑀𝑆𝐸𝑚 =
1

𝑁𝑚
∑ |𝐹̂1,𝑖𝑥̂1,𝑖 − (𝐹2,𝑖𝑥2,𝑖 + 𝐹3,𝑖𝑥3,𝑖)|

2𝑁𝑚
𝑖=1 (15)

Where 𝐹̂1 and 𝑥̂1 are the predictions from the NN. The PINN

loss function will be the sum of all the four losses.

Figure 1: Flowchart to obtain the loss from NN model

Figure 2: Predicting the corrections in case of noisy data.

The trained NN model is used to make predictions and

calculate the total loss as shown in Figure 1. The higher the

noise in the test data the higher will be the terms of the los

functions. An optimiser is used to find corrections that

minimises the prediction loss as shown in Figure 2. Here we

have used the Nelder-Mead optimiser of Python’s

Scipy.optimise package.

3.3 Case 3: Kalman like adaptive estimation

Filtering and smoothening have multiple applications in PSE

to produce estimates of unknown variables based on the series

of noisy measurement observed over time. These applications

require a model for estimation. An accurate and complete

model that replicates the true state of plant is usually

unavailable.

In presence of noisy measurements and partial knowledge

about the model both of which express the ground truth to

some extent, a physics constrained NN can be developed to

generate noise free estimates.

The loss functions in all the three cases discussed below are:

𝑀𝑆𝐸𝑑 =
1

𝑁𝑑
  ∑ |𝑦𝑖 − 𝑦̂,𝑖|

2𝑁𝑑
𝑖=1 (16)

𝑀𝑆𝐸𝑚 =
1

𝑁𝑑
  ∑ |𝑦̂𝑖 − 𝐶𝑥𝑖|

2
𝑁𝑑
𝑖=1 (17)

Where y and x are defined according model equations dicussed

in case studies below.

Case 3.1: Bias in measurements

Consider the following one dimensional, discrete-time,

nonlinear dynamical system, where yk is the measurement of

states xk and uk is the external input.

Ground truth:

𝑥𝑘 =
𝑥𝑘−1

2
+

25𝑥𝑘−1

1+𝑥𝑘−1
2 + 5𝑢𝑘−1 (18)

Measurement model:

𝑥𝑘 =
𝑥𝑘−1

2
+

25𝑥𝑘−1

1+𝑥𝑘−1
2 + 5𝑢𝑘−1 + 𝑤𝑘 (19)

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 (20)

Figure 3: a) Training the NN model b) Using the trained model

for forecasting.

The actual measurements obtained from the plant will have

noise and bias as compared to the ground truth shown in

Equations (18), (19) and (20). For the given system, C is

assumed to be 1, wk is assumed gaussian noise of mean 0 and

standard deviation 2 and vk is a constant bias of 5. The data set

of 1900 samples is generated by providing xk-1 and uk-1 as the

input to the measurement model with the corresponding output

yk. 1500 samples are used for training the NN model and 400

samples are used for validation. A single layer NN with 20

neurons with ReLu activation function is used for training. For

the forecasting of the future measurement yk, we start with a

known value of xk and use the ANN model that is trained on

augmented loss function to predict the future 400 steps as

shown in Figure 3b.

Case 3.2: Bias in both model and measurements

Plant model:

𝑥𝑘 =
𝑥𝑘−1

2
+

0.1𝑥𝑘−1

1+𝑥𝑘−1
2 + 5𝑢𝑘−1 + 𝑤𝑘 (21)

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 (22)

In the real-world, we do not have an accurate measurement

model to reflect the true states as estimated by the ground truth.

Therefore, we corrupt our model by changing the prefactor 25

in the model to 0.1 as shown in Equation (21) and same tests

are performed as in the previous section by changing the value

of penalty factor. Here, we have trained the NN model on the

measurement generated from Equation (19) and the loss

function is augmented with Equation (21).

Case 3.3: Parameter estimation

Parameter estimation:

𝑥𝑘 =
𝑥𝑘−1

2
+

𝜶∗𝑥𝑘−1

1+𝑥𝑘−1
2 + 5𝑢𝑘−1 + 𝑤𝑘 (23)

𝑦𝑘 = 𝐶𝑥𝑘 (24)

Consider the case as shown in Equation (23), where the model

parameter α is unknown. We can estimate the parameter α by

using the noisy data measurement generated by Equations (19)

and (20) to train the NN model. The NN model will optimize

the weights and the parameter α to fit the training dataset by

minimising the loss functions given by Equations (16) and

(17). The NN model in this case was trained using 1500

datapoints and the NN structure had single layer with 20

neurons for which the ReLu activation function was used.

4. RESULTS AND DISCUSSION

4.1 Approximation of an arbitrary Nonlinear function

representation:

Table 1 shows the performance of trained NN models on the

validation dataset. The extent of constraint violations in the

NN model that is trained without any noisy data, are seen to be

minimum. The trained NN model will have parameters such

that it will only obey the constraints and won’t give any

priority to predicting the data, which can be seen from Figure

5. When the NN model is trained only on data i.e 𝜆 = 0, the

extent of constraint violations will be larger than the case when

the NN loss function is augmented with constraints. With an

increase in penalty factor the extent of constraint violations

will decrease as seen in Figure 4. This improvement in extent

of constraint violation will be at the cost of loss in prediction

accuracy given by MSE. However, the parameter λ can be

tuned as per requirement to maintain trade-off between MSE

and the constraint violations.

Table 1 : Validation errors for nonlinear approximation

Training criteria MSE Constraint violation (MSE)

Only data 0.084 0.00494

Only model 276.52 4.87E-05

Data and model 0.502 0.000389

Figure 4: Effect of λ on extent of constraint violations.

Figure 5: Actual vs Predicted values for NN trained only on

model

4.2 Data reconcilation problem:

The NN model was trained with a penalty factor of 1 where

the constraints were given by Equations (10) and (11). Model

1 is the total mass balance equation given by Equation (10) and

Model 2 is component mass balance equation given by

Equation (11). Table 2 shows that even in absence of model 2

i.e in presence of partial knowledge given by Model 1, the

extent of constraint violations is better (lower) than the model

trained only on data. The errors MSE1, MSE2, constraint

violation 1 and constraint violation 2 are given by Equations

12-15 respectively. This trained model can now be used for

reconciliation purposes of noisy data and to find the

corrections using the scheme shown in Figure 2. The

measurement F1, F2 and F3 were corrupted by adding a bias

and then the optimisation scheme was used to find those

corrections such that the constraints are satisfied. Figure 6

shows that this scheme is able to predict these corrections

accurately.

Table 2: Validation errors for Data reconciliation

Training

criteria MSE1 MSE2

Constraint

violation

1 (MSE)

Constraint

violation

2 (MSE)

Only

data
0.09355 0.00228 0.03553 0.0164

Model 1 0.10006 1.08E-4 0.01004 0.00591

Model 1

and 2
0.10003 0.00117 0.01387 0.004807

Figure 6: Reconciliation of the biased data

4.3 Kalman like adaptive estimation

For all the 3 subcases shown below, the external inputs U, the

measurements yk and the ground truth are taken to be the same

as shown in the Figure (7) and (8).

Figure 7: External inputs given to the system.

4.3.1 Bias in measurements

Since the data on which the NN is trained is corrupted with

noise and a bias, the predictions of the test dataset using the

NN model trained solely on the data will be far from the

ground truth as shown in Figure 9. Also as the equations

representing the ground truth are augmented with the NN loss

function, with increase in the penalty factor, it can be seen that

the prediction made by composite models are more accurate.

The extent of constraint violations and the mean absolute error

of predictions are compared in Table 3 for the penalty factor

values of 0,1 and 10. For the case of penalty factor 10, The

predictions are seen to be closer to the ground truth and

constraint violations are fewer. This shows that the overall

composite model performance can be improved by

augmenting the loss function with model.

Figure 8: Comparison of Noisy measurements and ground

truth.

Table 3: Performance of NN on Validation dataset

Training criteria MAE Constraint violation (MAE)

λ = 0 8.65 15.92

λ = 1 4.31 12.87

λ = 10 0.15 12.01

4.3.2 Bias in both model and measurements

The deviation of the states given by corrupted model and

measurements from ground truth are shown as model truth in

Figure 11. The noisy measurements with bias will lie above

the ground truth and the model is corrupted in a manner such

that it lies below the ground truth.

Figure 9: Training and test predictions for Case 3.1

The NN model is trained with different values of λ as

mentioned in Table 4 to find the one which minimises the loss.

The training and test predictions for values of λ 0, 3 and 50 are

plotted in Figure 11. It can be observed that for λ = 0, and λ =

50 the predictions will deviate far away from the ground truth

since, they will prioritise noisy measurements and corrupted

model respectively. Of the chosen values the penalty factor λ

= 3 gives the closest estimate of the ground truth and it can be

further tuned so that the predictions match the ground truth.

Figure 10: Model truth and measurements as compared to

ground truth.

With this it can be concluded that by choosing a suitable value

of penalty factor, aspects related to model inadequacies

possible including bias can be suitably dealt with towards

evolving more accurate estimates/predictions. even the

presence of corrupted model and noisy data set with bias we

can make predictions that are closer to ground truth.

Table 4: Effect of λ on extent of constraint violations.

Training criteria MAE Constraint violation (MAE)

λ = 0 8.65 15.92

λ = 0.1 8.56 15.86

λ = 1 3.8 12.99

λ = 2 0.76 11.52

λ = 3 0.57 11.2

λ = 5 1.18 11.23

λ = 10 1.46 12.77

λ = 50 1.58 12.807

Figure 11: Training and test predictions for Case 3.2

4.3.3 Parameter estimation

For this case corresponding to formulation described in section

in 3.3, the parameter α is estimated to be 24.61 by using the

noisy data set in absence of bias, which is close to the actual

value of 25. This shows that the approach can be used to

identify unknown model parameters.

5. CONCLUSION

The training of NN by the use of data and physical models to

regularize the predictions such that it obeys the physical

constraints have been discussed in the mentioned case studies.

It has been shown that by tuning the penalty factor, the extent

of constraint violations can be satisfied as per the

requirements. This approach can also be used to identify the

unknown model parameters. The issues related to

extrapolability of the neural network can be explored by this

approach. Such physics constrained NN can find applications

in areas such as fault detection and diagnosis, system model

identification and process control in the field of process system

engineering. Here we have only used feed forward NN for all

the cases; however, one can also explore the possibility of

using recurrent neural network and other deep learning

architectures for estimation of states.

REFERENCES

Abadi, M. et al. (2016) “TensorFlow: A system for large-scale

machine learning,” in Proceedings of the 12th USENIX

Symposium on Operating Systems Design and

Implementation.

Arnold, F. and King, R. (2021) “State–space modeling for

control based on physics-informed neural networks,”

Engineering Applications of Artificial Intelligence.

Chen, Ricky TQ, Yulia Rubanova, Jesse Bettencourt, and

David K. Duvenaud. (2018) "Neural ordinary differential

equations." Advances in neural information processing

systems 31.

Chollet, F. & others, 2015. Keras. Available at:

https://github.com/fchollet/keras.

Degroote, W. et al. (2021) “Neural Network Augmented

Physics Models for Systems with Partially Unknown

Dynamics: Application to Slider-Crank Mechanism,”

IEEE/ASME Transactions on Mechatronics [Preprint].

Güne ,̧ A. et al. (2018) Automatic Differentiation in Machine

Learning: a Survey, Journal of Machine Learning Research.

Haghighat, E. and Juanes, R. (2021) “SciANN: A

Keras/TensorFlow wrapper for scientific computations and

physics-informed deep learning using artificial neural

networks,” Computer Methods in Applied Mechanics and

Engineering.

Krishnan, Rahul G., Uri Shalit, and David Sontag.(2015)

"Deep kalman filters." arXiv preprint arXiv:1511.05121.

Li, W. et al. (2021) “Physics-informed neural networks for

electrode-level state estimation in lithium-ion batteries,”

Journal of Power Sources.

Raissi, M., Perdikaris, P. and Karniadakis, G.E. (2017a)

“Inferring solutions of differential equations using noisy

multi-fidelity data,” Journal of Computational Physics.

Raissi, M., Perdikaris, P. and Karniadakis, G.E. (2017b)

“Machine learning of linear differential equations using

Gaussian processes,” Journal of Computational Physics.

Raissi, M., Perdikaris, P. and Karniadakis, G.E. (2019)

“Physics-informed neural networks: A deep learning

framework for solving forward and inverse problems

involving nonlinear partial differential equations,” Journal

of Computational Physics.

Rudy, S. et al. (2019) “Data-driven identification of parametric

partial differential equations,” SIAM Journal on Applied

Dynamical Systems.

