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Abstract: In order to produce terpolymer of desired quality a model capable of simulating
terpolymerization is required. Terpolymerization involves complex reactions, full-scale modeling
using the first principle model is not practical to simulate reaction because there are many
parameters to be estimated. In this study, a hybrid model that integrates the first-principles
model and the DNN model is proposed. The proposed hybrid model reduces the parameters
that need to be estimated using a cumulative composition model, through the steady-
state assumption. Afterward, DNN model in a hybrid model estimates the conversion using
measurement data from process sensors, and the terpolymer composition according to conversion
is calculated. In the process, by estimating model parameters with error in variables model,
hybrid model specific to the system is constructed. Validation of the hybrid model is performed
using measurement data of 600 days and the result shows a good agreement with the
actual data. The proposed hybrid model has high fidelity, scalability and robustness to other
terpolymerization process.
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1. INTRODUCTION

A polymer using one or two monomers often fails to
achieve desired physical and chemical properties. For this
reason so-called terpolymerization, a polymerization that
includes an additional third component as a reactive
monomer, has been suggested to obtain the desired proper-
ties (Brar and Hekmatyar (1999)). Meanwhile, operating
conditions including the reaction temperature and pres-
sure along with the initial feed ratio of the monomers play
a key role in the composition of terpolymer and product
properties. In the polymer manufacturing process, CSTR
(continuous stirred-tank reactor) is widely used for contin-
uous operation. Several experimental studies showed the
effect of variables such as feeding ratio and initiator con-
centration on terpolymerization in CSTR (Moslemi et al.
(2018), Lee et al. (2001)). In order to produce a polymer
of desired quality, it is important to know the reaction
mechanism and internal composition, which is currently
being measured through samples. Therefore, many stud-
ies have attempted to model terpolymerization through
first principles (Alfrey and Goldfinger (1946), Dubé et al.
(1997), Keramopoulos and Kiparissides (2003), Luciani
and Choi (2021)).

A first-principle model of multi-component chain-growth
polymerization has been presented by Dubé et al. (1997).
Terpolymerization involving three reactive monomers has
numerous reaction mechanisms and kinetic equations in-
cluding the thermal and chemical initiation, reinitiation,
propagation, chain transfer, and termination reaction.
Each reaction has kinetic parameters, which need to be

estimated by experimental data. However, since estimating
all the parameters is very difficult, full-scale modeling
of the system is not a practical option. Instead, Kazemi
(2010) suggested a new cumulative model for the reaction
with a few parameters to be estimated through several
assumptions. The model predicts the composition of the
terpolymer with respect to the reaction conversion using
the parameters. In this sense, in order to apply the model
to the CSTR process, estimation of the conversion has to
be conducted in advance.

DNNs (Deep neural networks) can generalize and pre-
dict highly nonlinear behaviors such as chemical reac-
tions. Gbadago et al. (2021) estimate the yield and con-
version of butadiene polymerization process using DNN.
In this study, we integrate the first-principle model and
DNN as a digital twin to simulate terpolymerization in
CSTR. Specifically, the DNN model estimates the con-
version from the process measurement data and the first-
principle model calculates the product composition using
the estimated conversion. Since the integrated model is
based on both the first-principle model and the data, The
constructed model is robust, simple, and physically in-
terpretable. Simulation of acrylonitrile (AN)-styrene (St)-
methyl methacrylate (MMA) terpolymization using the
hybrid model is conducted as a case study. Due to its high
ionic conductivity and acceptable mechanical stability, this
terpolymer is widely used in the industry of batteries as a
polymer matrix of the electrolytes (Kim and Sun (1998))



2. SIMULATION SETUP

2.1 First-principle model

The AG (Alfrey-Goldfinger) model suggested by Alfrey
and Goldfinger (1946) is based on the terminal model
and steady state approximation. The model reduces the
model parameters for the terpolymerization system using
reactivity ratios as reduced parameters and the resulting
instantaneous composition equations are
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where f1, f2 and f3 are the mole fraction of unreacted
monomer 1, 2 and 3, respectively, F is the instantaneous
terpolymer composition and rij is the reactivity ratio
between monomers i and j.

Kazemi (2010) showed the performances of the instanta-
neous model and cumulative model are similar at a low
conversion level(less than 5-10%), but the instantaneous
model shows performance degradation at a high conversion
level because it ignores the initial feed change. Besides, the
instantaneous model also requires instantaneous terpoly-
mer composition which is practically not possible to mea-
sure using sensors. Meanwhile the cumulative model using
DNI (direct numerical integration) approach developed by
Kazemi et al. (2011) does not require the instantaneous
data. Instead, the cumulative terpolymer composition and
mole fraction of unreacted monomer are used. The com-
position and mole fraction are expressed as a function of
conversion using the Skeist equation;
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, where the overall molar conversion Xn is expressed as
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where Xw is the weight conversion, fi,0 is the initial
composition of monomer i, F̄i is the cumulative terpolymer
composition of monomer i, and Mwi is the molecular
weight of monomer i.

2.2 EIV model reactivity ratio estimation

Terpolymerization reactions are highly sensitive to the
changes in the model parameters. However, most of the

previous terpolymer studies generally adopt the kinetic
parameters from binary polymerization reactions. Scott
and Penlidis (2018) showed that parameter estimation
specific to the system is essential in that the ternary
reactivity ratio is significantly different from the binary
reactivity ratio.

As one of the methods for parameter estimation, EIV
(error in variables) model takes into account the non-
linearity of the system and the measurement error which
are the general characteristics of the terpolmerization pro-
cess Reilly and Patino-Lea1 (1981). The error in measure-
ment and the optimization problem of the EIV model are
represented in (7) - (9).
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where ϕ is the objective function, g is the cumulative model
function, θ is the parameter vector, xi is the measure-
ments, x̃i is the true value and ϵi is the measurement noise
which is assumed to be independent of x̃i.

Parameter estimation scheme for nonlinear model based
on nested-iterative EIV model is suggested by Kazemi
et al. (2013). The nested-iterative EIV algorithm has two
iteration loops, inner loop and outer loop. The true values
are found through inner loop using measurement values
and the covariance matrix as shown in (10).
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The covariance matrix represents the variance of each
measurement and the covariance between measurements.
We transform (8) into (11) using the covariance matrix
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where ri is the number of repeated measurements for the
same sample.

Through tayler expansion in x̃i near xi, equation (9) can
be linearized as

g(x̃i, θ) +Bi(xi − x̃i) = 0 (12)

Bi = [
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where Bi is the vector of partial derivatives of function
respect to variables.

Iterative calculation is performed for predicting x̃i. The
x̃i is set as the xi at the initial time step, and the x̃i



of the next time step obtain towards to minimize the ϕ.
Estimation of x̃i at k + 1 step is expressed as
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where k denotes the iteration step.

In the outer loop, the parameters are estimated using
the estimate of x̃ from the inner loop. Vector of partial
derivatives of the objective function with respect to the
parameters q and expected information matrix G are
shown in equations (16) and (17). Parameters at next step
is estimated using equation (15) by minimizing the ϕ.
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All inner and outer loops iterate until the parameter values
are converged with a specified stopping criterion.

2.3 Deep neural network model for estimating conversion

In order to calculate the cumulative composition of ter-
polymer in the first-principle model, weight conversion is
required. However, unlike the batch reactor, CSTR reactor
is difficult to determine the conversion at a specific inlet
composition because the residence time appears as a distri-
bution. However, if there is sufficient data on temperature
and inlet composition at CSTR, a conversion prediction
model considering residence time distribution can be cre-
ated through the data driving technique. To overcome the
shortcomings of the first-principle model, a new approach
for predicting conversion using the DNN model is proposed
in this study.

DNN is comprised of the interconnection of nodes called
artificial neurons. Each artificial neuron consists of a set of
adjustable weights, that is, numerical parameters that can
be adjusted by a learning algorithm (Bengio et al. (2013)).
In this study, a fully-connected seven-layer DNN model
with five hidden layers which used the ReLU(rectified
linear unit) activation function was used to estimate the
conversion. Supervised learning using the mean squared
error loss function was performed with molecular conver-
sion data corresponding to the measurement data. In order
to reduce the possibility of overfitting, taking 60% of the
data set model training, 20% of the data set for validation,
and using the remaining 20% for test. Early stopping was
also applied to prevent overfitting. Overfitting degrades
the performance and generalizability of the DNN model.
Instead of using all the measurement variables, few vari-
ables having high correlation with the conversion through
Spearman’s rank correlation was used for learning. Spear-
man’s rank correlation coefficient represents the nonlinear
correlation of two variables (Spearman (1961)).

Fig. 1. Schematic flow diagram of AN-St-MMA terpoly-
merization process

2.4 AN-St-MMA terpolymization simulation using hybrid
model

In the process of terpolymerization, as shown in Fig. 1,
the monomers are recycled after passing through CSTR
and devolatilizer. The flow rate of each monomer at
the feed inlet stream and recycle stream along with the
temperature and pressure of CSTR at various locations
are measured in real-time through the sensors. In this
study, we suggest a hybrid model for estimating the
concentration of each monomer in the recycle stream. The
overall procedure of the simulation scheme is shown in Fig.
2.

• Initial concentration of each monomer in the recycle
stream is obtained experimentally.

• Next, molecular conversion is estimated from the pre-
trained DNN model using measurement data from the
sensors.

• The flow rate and concentration of the total inlet
stream are calculated using the concentrations in the
recycle stream and the flow rate of the inlet stream.

• Afterward, cumulative product composition is calcu-
lated through the first-principle model.

• The next step concentration in the recycle stream is
calculated through the mass balance.

• The process simulation is conducted sequentially by
estimating the molecular conversion of the cumulative
product composition until the end of simulation.

3. RESULT AND DISCUSSION

3.1 Reactivity ratio estimation

Estimation of reactivity ratio was conducted as in Sec-
tion 2.2 using EIV model. Cumulative composition of
terpolymer and reactivity ratio were set as measurement
variable and the parameter. The binary reactivity ratios
were used as the initial value from Steinfatt and Schmidt-
Naake (2001) and the actual data was provided by LG
Chem. Table 1 shows the initial values of binary reactivity
ratio and ternary estimation result using EIV model. The
estimated ternary reactivity ratio shows a difference of up
to 27% compared with the initial values. This shows that
the estimation of reactivity ratio specific to the terpoly-
merization system is essential.

Table 1. Reactivity ratio estimation result
(monomer 1: AN, monomer 2: St, monomer 3: MMA)

r12 r13 r21 r23 r31 r32
binary 0.02 0.07 0.65 0.42 0.98 0.61
ternary 0.0259 0.0825 0.897 0.500 1.254 0.565



Fig. 2. Flowsheet representation of terpolymerization sim-
ulation using hybrid model

3.2 Validation of the DNN model

DNN model was used to predict the conversion from the
process measurement data as in Section 2.3. The measure-
ment data set from the sensor consists of a total of 46
variables: the temperature and pressure according to the
position of each reactor, the flow rate of each monomer
in the inlet stream, and the recovery amount of recycle
stream. In order to reduce the number of input variables
for the convenience of training the model, Spearman’s
rank correlation coefficient for the conversion was used.
Through the results of Spearman’s rank correlation co-
efficient, 28 variables having an absolute value of 0.20 or
more of the correlation coefficient with the conversion were
selected as the input variables. Prediction of the conversion
using the trained DNN model in the test set are shown in
Fig. 3, and the MAPE (mean absolute percentage error)
was 0.4056%.

3.3 Cumulative composition of terpolymer prediction

Based on the estimated reactivity ratio and predicted
conversion, the cumulative composition of terpolymer can
be calculated from the first-principle model. Cumulative
composition of terpolymer was scaled to the range of 0–1.
The estimation results of each monomer are shown in Fig.
4. The MAPEs of AN, St, and MMA are 1.217%, 1.403%,
and 0.2832%, respectively, implying that the error of the
composition estimates are insignificant and the process

Fig. 3. Prediction of molecular conversion

simulation using hybrid model shows a high fidelity. Al-
though the absolute error values of each composition are
almost the same, the MAPE of MMA having a large ab-
solute value compared to the other components is smaller
than that of AN and St. Meanwhile, a bias in the predic-
tion results also exist. It could be inferred that unmeasured
variables such as flow rates of solvents and contaminants
affect the overall model.

3.4 AN-St-MMA terpolymization simulation

The terpolymization simulation was performed using 600
days of measurement data and initial concentration of
each monomer at the recycle stream. As mentioned above,
28 variables were selected as the measurement data. The
concentration of each monomer at recycle stream was
predicted every 2 hours for 600 days. For the validation
of simulation result, the predicted concentration was com-
pared with the actual data every 4 hours. All the concen-
tration was scaled to the range of 0–1. Fig. 5 shows the
simulated and actual concentrations of each monomer at
recycle stream. The MAPE of the simulation result was
less than 3% for each monomer and that the simulation
shows a good agreement with the actual data. The MAPEs
of AN, St, and MMA are 2.933%, 2.606% and 0.423 %,
respectively. As with the result of cumulative composition
prediction, MAPE of MMA with a large absolute value
showed a small error compared to that of AN and St and
bias existed due to the variables that were not taken into
account.

4. CONCLUSION

This study proposed a hybrid model for simulating ter-
polymerization in CSTR. For hybrid model, we developed
the DNN model for estimating conversion using measure-
ment from sensor, and integrated the cumulative model
with the DNN model for the prediction of cumulative
composition using measurement data only. When training
the DNN model, 28 variables having high correlations with



(a) Cumulative composition of AN

(b) Cumulative composition of St

(c) Cumulative composition of MMA

Fig. 4. Cumulative composition of terpolymer

the conversion were selected as the input variables through
Spearman’s rank correlation coefficient, and the conver-
sion prediction result was acceptable when compared with
the actual data. For terpolymerization simulation, model
parameters, reactivity ratios of AN-St-MMA terpolymer-
ization, were estimated by EIV model. Validation of the
hybrid model was conducted using actual data of 600 days
and the result showed a good agreement with the actual
data. Instead of experimentally measuring the concentra-
tion, we proposed a high-fidelity and reliable hybrid model
for predicting the concentration using measurement data
from sensors. The model is expected to be extended to
other terpolymerization process and the resulting concen-

(a) Concentration of AN

(b) Concentration of St

(c) Concentration of MMA

Fig. 5. Concentration of monomer at recycle stream

tration prediction in real time through the model can be
used for the process optimization and control.
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