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Abstract: The goal of this study is to investigate stochastic optimal solutions for a boiler process in a pulp 
mill. The objective function is a steam generation while two pollutant emissions should be complied with 
their regulations. Support Vector Regression (SVR) is employed to build empirical models for representing 
a boiler process and air temperatures are considered as uncertainties. To make stochastic problems, Sample 
Average Approximation (SAA) based on Monte-Carlo sampling is introduced and Particle Swarm 
Optimization (PSO) technique is applied to investigate stochastic solutions. The results show that the 
stochastic optimal solutions can provide improved performances compared to the deterministic approach. 
Keywords: Stochastic Optimization, SAA, PSO, SVM, Chemical recovery boiler, Pulp mill. 

1. INTRODUCTION 

In general, process modeling works are done based on 
mathematical models representing the first principle equations 
of chemical engineering such as mass and energy balances, 
reaction kinetics, and so on (Gustavo M. A. et al., 2019). 
Throughout satisfactory process models, various researches 
including process optimizations can be done. If process 
modeling works are unavailable due to the lack of 
understanding the process knowledge, it is very hard to find 
the optimal solutions indicating the best set points of a process. 
Even if process knowledge is available, modeling works are 
often very expensive. These reasons are more specifically for 
chemical recovery boilers in pulp mills. Moreover, emission 
modeling should be modeled with the lack of pure 
mathematical models (Rahat et al. (2018), Repo (2018)). 

Ghaffari and Romagnoli (2003), Blasiak et al. (1997), and 
Leiviska (1996) performed the static or dynamic modelings of 
Kraft recovery boilers based the first principle equations and 
various assumptions regarding chemical reduction efficiency, 
smelt temperature, boiler efficiency, and so on. Therefore, 
model parameters such as the reaction kinetics should be tuned 
again and many studies have concerned on specific boiler 
subsystems.  

To solve inherent difficulties of process modeling, data-driven 
methods have been widely used as an alternative. Maakala et 
al. (2018) employed simulated annealing, local polynomial 
regression, and computational fluid dynamics for geometry 
optimization of the superheaters to mimic the convective heat 
transfer section of a chemical recovery boiler. Safdarnejad et 
al. (2019) designed a model based on a recurrent neural 

network for the prediction of NOx and CO emissions in a 
boiler. Wang et al. (2018) applied a Gaussian process to reduce 
NOx emissions and Song et al. (2016) researched the 
combustion phenomena based on neural network and Gaussian 
adaptive resonance theory. Zhou et al. (2012) built a predictive 
model for NOx emissions in a power boiler using Support 
Vector Regression (SVR). 

In this study, the SVR-based empirical model is employed for 
process modeling due to its many advantages for handling 
nonlinear processes. Vincent et al. (2018) showed that SVR is 
enough to predict variables of a reboiler process. 

Unfortunately, in the SVR-based empirical models, traditional 
optimization approaches using the derivatives cannot 
investigate the optimal solutions. This study adopts a sample-
based approach, which is a free-derivative one, to design a 
stochastic optimal problem. Realistic processes contain 
inherently uncertain variables. Thus, a deterministic optimal 
solution may be insufficient for realistic processes, and 
stochastic optimization approaches yield more realistic 
solutions (Lee et al. (2011), Yang et al. (2018)).  

Many researchers have generated stochastic optimal problems 
to find more realistic solutions (Halemane and Grossmann, 
(1983), Maranas (1997), Tayal and Diwekar (2001), Shastri 
and Diwekar (2006), Lee et al. (2011), Yang et al., (2018)). In 
their studies, it is assumed that uncertain variables follow a 
specific probability functions and complex models are divided 
into a few linear systems. (Lee et al. (2011)). When it is hard 
to divide several linear systems, the sample-based approach 
can be used (Lee et al. (2011), Yang et al. (2018)). In this study, 
the optimal solutions, which provide the best results which 



have the maximum or minimum values in terms of averages 
on the objective function under the scenarios. And these 
scenarios are generated by the combinations of samples on 
uncertain variables. 

In this study, SVR is employed to make empirical models of a 
boiler system and generate a stochastic problem based on the 
sample-based approach.  In order to find the best optimal 
solutions, Particle Swarm Optimization (PSO) technique, 
which is gradient-free optimization, is used. 

The paper is organized as follows. In sections 2 and 3, the basic 
model of the case study and its optimization problem are 
introduced. Section 4 explains how to generate the stochastic 
problem, and describes the PSO technique. In Section 5, the 
objective function and the stochastic optimization is described.  

2. A RECOVERY BOILER 

In this study, a chemical recovery boiler of a Kraft pulp mill in 
Brazil would be tested. In a pulp mill, the recovery of specific 
sodium-based compounds for reuse as cooking chemicals in 
the cooking stage of the wood chips, from which the cellulose 
pulp is obtained for papermaking (Gustavo et. al. (2020)). A 
recovery boiler produces high-pressure steam for electric 
power generation and heat exchange operations in the mill. Its 
fuel is a residual liquor, which is the byproduct of the cooking 
stage and aqueous solutions containing organic and inorganic 
compounds. Fig. 1 shows the brief steps of Kraft pulp mills 
with an emphasis on the boiler (Vakkilainen (2005), 
Gullichsen and Fogelholm (1999)). 

 

Figure 1. Main stages of Kraft pulp mills. 

 
Figure 2. Scheme of the chemical recovery boiler of the case study 

This boiler has two main sections; a furnace and a convective 
heat transfer section (Gustavo et. al. (2020)). In a furnace, the 
combustion and the recovery of the inorganic compounds 
occur. And there are three air injections. In a convective heat 
transfer section, a fresh water is transformed into high-pressure 
steam approximately (480◦C and 6.5MPa). Fig. 2 shows the 
chemical recovery boiler. 

In collected data sets, there are nineteen process variables 
(Table 1). These data set composes of fifteen input variables, 
one intermediate variable, and three output variables. These 
data sets are hourly average data and contain four months of 
operations. Thus, the measurements of each variable are 2,928 
and it is confirmed that the operating conditions are normal. 

Table 1.Process variables of a boiler process 

Number Variable Unit 

1 Fuel flow rate(residual liquor) ton/h 

2 Fuel temperate ℃ 

3 Fuel pressure(walls 2 and 4) 𝑚𝑚𝐻ଶ𝑂 

4 Fuel pressure(walls 1 and 3) 𝑚𝑚𝐻ଶ𝑂 

5 Dry solids content(measure 1) % 

6 Dry solids content(measure 2) % 

7 Primary air flow rate ton/h 

8 Primary air temperature ℃ 

9 Primary air pressure 𝑚𝑚𝐻ଶ𝑂 

10 Secondary air flow rate ton/h 

11 Secondary air temperature ℃ 

12 Secondary air pressure 𝑚𝑚𝐻ଶ𝑂 

13 Tertiary air flow rate ton/h 

14 Tertiary air temperature ℃ 

15 Tertiary air pressure 𝑚𝑚𝐻ଶ𝑂 

16 Boiler drum pressure 𝑘𝑔/𝑐𝑚ଶ 

17 𝐻ଶ𝑆 emissions 𝑝𝑝𝑚 

18 𝑆𝑂ଶ emissions 𝑝𝑝𝑚 

19 Steam flow rate ton/h 

3. STOCHASTIC PROBLEMS FOR A BOILER 

3.1 The SVR-based Modeling of a Boiler Process 

To build empirical models for representing steam generation 
of the boiler, four discrete-time dynamical models containing 
process variables are described by (1), where x(t), u(t) and Y(t) 
represent the input vector, manipulated variables, and the 
output vector. BP (t) is the boiler drum pressure. 

𝐵𝑃 ሺ𝑡 ൅ 1ሻ  ൌ  𝑔ሺ𝓍ሺ𝑡ሻ, 𝑢ሺ𝑡ሻ, 𝐵𝑃ሺ𝑡ሻሻ 
𝑌ௌ௧௘௔௠ሺ𝑡 ൅ 1ሻ  ൌ ℎଵሺ𝓍ሺ𝑡ሻ, 𝑢ሺ𝑡ሻ, 𝐵𝑃ሺ𝑡 ൅ 1ሻሻ 
𝑌ௌைమሺ𝑡 ൅ 1ሻ  ൌ  ℎଶሺ𝓍ሺ𝑡ሻ, 𝑢ሺ𝑡ሻ, 𝐵𝑃ሺ𝑡 ൅ 1ሻሻ 
𝑌ுమௌሺ𝑡 ൅ 1ሻ  ൌ  ℎଷሺ𝓍ሺ𝑡ሻ, 𝑢ሺ𝑡ሻ, 𝐵𝑃ሺ𝑡 ൅ 1ሻሻ    (1) 

Ysteam is the steam flow rate and YSO2 and YH2S indicate the 
amount of chemical compounds emissions. These 
relationships are based on the prior process knowledge and the 
functions g and h should be trained via SVR.  



SVR is one of the most effective regression techniques for 
handling nonlinear information (Vapnik (1995)). SVR has the 
advantage of high predictive capabilities by minimizing model 
complexities (Nandi et al. (2004)). In (2), w is the weight 
vector and x is the input data. 𝛷 and b are the kernel function 
and the bias. 

𝑓ሺ𝑥, 𝑤ሻ ൌ  𝑤்𝛷ሺ𝑥ሻ ൅  𝑏    ሺ2ሻ 

The parameter estimation is given by minimizing (3), in which 
‖𝑤‖ଶ is the model complexity, ξ is the error tolerance, and C 
is a scalar value, to control the trade-off between both of them 
(Vapnik (1995)). In this study, the ϵ-insensitive loss function 
is adopted (an error ξ greater than ϵ is penalized). 

min
௪,௕,క𝒾

ଵ

ଶ
‖𝑤‖ଶ ൅ 𝐶 ∑ 𝜉𝒾

௠
௜ୀଵ ,   subject to 

𝜉𝒾 ൌ ൝
|𝑦𝒾  െ  𝑓ሺ𝑥𝒾 , 𝑤ሻ| െ  𝜖, 𝑖𝑓|𝑦𝒾  െ  𝑓ሺ𝑥𝒾 , 𝑤ሻ| ൒  𝜖 

.
 0,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
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This work used the radial basis function (RBF) as the kernel 
function, where σ is a free parameter in (4) and all parameters 
(C, s, and σ) are optimized by the PSO technique. Detailed 
concepts and equations regarding SVR may be found in the 
study of Vapnik (1995). 

𝐾൫𝑥௜, 𝑥௝൯ ൌ  ቀ𝜙ሺ𝑥௜ሻ ∙ 𝜙൫𝑥௝൯ቁ ൌ  𝑒𝑥𝑝 ቆെ
‖𝑥 െ 𝑥ᇱ‖

2𝜎ଶ ቇ ሺ4ሻ 

Fig. 3 shows the predictive performances of four regression 
models. Their all parameters are optimized by PSO. These 
models can be applied to find the stochastic optimal design 
variables. In the SO2 model, there are sensor faults. Except 
these, most estimates are really close to real measurements. 

3.2 Sensitive analysis 

A sensitive analysis was done to identify the importance of 
process variables. At first, all variables should be normalized. 
And, the sampling points of each variable were selected 
according to the same intervals from their nominal values. In 
this study, the changes in the objective function were evaluated 
according to changes of the standard deviations on decision 
variables (−σ, −0.8σ, −0.6σ, −0.4σ, −0.2σ, 0.2σ, 0.4σ, 0.6σ, 
0.8σ, and σ). The only one variable was changed while fixed 
other variables on their nominal values. Table 2 shows the 
results of a sensitivity analysis study. The next section 
describes how to generate a stochastic optimization problem. 

4. SAMPLE AVERAGE APPROXIMATIONS AND 
PARICLE SWARM OPTIMIZATION 

4.1 Sample average approximations 

The aim of stochastic optimization problem is to investigate a 
robust optimal values of decision variables under uncertain 
variables. Stochastic optimization may provide more realistic 
solutions than deterministic optimization depending on the 
strength of the impact of the random components (Lee et al. 
(2011), Yang et al. (2018)). 

 

Figure 3. Comparisons between measurements (a soild line) and 
model estimates (points) (boiler pressure drum, steam flow rate, 
SO2 and H2S emissions). 

In this study, the SVR-based empirical models, which are a 
kind of models, are built. To solve this problem, Monte Carlo 
sampling-based Sample Average Approximation (SAA) is 
used. In this approach, huge scenarios are generated by the 
combination of the sampling points of uncertain variables and 
the optimal solutions, which provides the best performance of 
the objective function, on average, under generated scenarios, 
are investigated (Lee et al. (2011), Yang et al. (2018)). The 
advantage of this approach is to find the optimal solution 
without differentiability of process models. However, this may 
suffer from a huge amount of computational works and the 
number of scenarios grow exponentially. SAA is formulated 
in (5). 
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𝑓መேሺ𝑄ሻ ൌ
1
𝑁

෍ 𝑓ሺ𝑄, 𝜀௞ሻ

ே
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In (5), f and Q are the objective function and the set of design 
variables with all possible scenarios, εk. N is the total number 
of scenarios. The goal is to find the best Q solution. 

In this study, because the objective function is based on 
empirical models, PSO, a gradient-free optimization solver, is 
employed to find the best Q. This solver can easily handle 
empirical black box or highly nonlinear models. 

Based on the sensitivity analysis, the significant variables are 
identified. To reduce the number of scenarios, the sampling 
points of negligible variables were controlled. 

Table 2. The results of a sensitivity analysis 

Random variable 
Absolute average slope  

ሾton/ሺhour ∙ σሻሿ 
Rank

Fuel flow rate 1.50 1 

Dry solids content(Measure 2) 0.53 2 

Dry solids content(Measure 1) 0.34 3 

Primary air pressure 0.23 4 

Boiler drum pressure 0.17 5 

Secondary air pressure 0.13 6 

Fuel pressure (Wall 2&4) 0.11 7 

Tertiary air pressure 0.10 8 

Fuel pressure (Wall 1&3) 0.05 9 

4.2 Particle Swarm Optimization 

The PSO, which is a population-based heuristic optimization 
technique, is employed without the need of explicit derivatives. 
(Kennedy and Eberhart (1995)). A population of particles is 
randomly generated on a search space and their position and 
velocity are then updated according to the historical best 
solutions (Kennedy and Eberhart (1995)). At the end, the 
particles are centered and converged around the best optimal 
solution. The PSO can be used to black-box models. More 
detailed algorithms and its concepts can be found in the study 
of Schwaab et al. (2008). 

5.  The OBJECTIVE FUNCTION AND STOCHATSTIC 
OPTIMAL SOLUTIONS 

5.1 The objective function 

In this study, the stochastic optimal solution under generated 
scenarios provides the maximization of the expected values on 
an objective function. The objective function (F) is described 
by (6). 

𝑚𝑎𝑥௨𝔼ሾFሺxሺtሻ, u, εሻሿ  

subject to 

𝐶௜ ൝
𝑌௜൫𝑥ሺ𝑡ሻ, 𝑢, 𝐵𝑃ሺ𝑡 ൅ 1ሻ൯ െ 𝑅௜,   𝑖𝑓 𝑌௜ െ 𝑅௜ ൒ 0

.
0,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
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𝔼ሾFሺxሺtሻ, u, εሻሿ ൌ
1
𝑁

෍ ෍ 𝐹ሺ𝑥ሺ𝑡ሻ, 𝑢, 𝜖௞ሻ
ே

௞ୀଵ
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௧ୀଵ
  ሺ6ሻ 

Ri is the upper emission limit value of chemical compound i. 
Ci indicates the penalty in case the predictive emission for i is 
larger than its upper emission limit.  W is the weighting 
parameter to penalize the emission limit and εk is a scenario 
generated by the combination of sampling points. In (6), there 
are N scenarios and u(t) is the set of decision variables; and 
𝔼[F (u, ε)] is the expected value of the objective function under 
scenarios. In this study, three hundred populations on decision 
variables are randomly generated and stochastic solutions are 
investigated by PSO.  

5.2 Results and discussions 

Throughout a sensitivity analysis results, the importance of 
decision variables was identified. To make the number of 
scenarios proper, the number of sampling points on significant 
variables was increased and the sampling points of negligible 
ones were reduced. 

It was assumed that all uncertain variables follow the Gaussian 
probability distribution. Five sampling points were randomly 
selected on the significant variables (the fuel flow rate, dry 
solid contents (measures 1 and 2), and primary air pressure), 
and three samples were randomly selected on the negligible 
variables. The total number of scenarios was 54 × 35. In case 
of 300 population sets, 54 × 35 × 300 calculations should be 
performed at each calculation. The drawback of SAA is that a 
global stochastic solution cannot be investigated. To overcome 
this disadvantage, twenty computers containing an AMD 
Athlon 2.9 GHz were operated. 

To verify the efficacy of the stochastic optimization, the 
comparison between stochastic and deterministic solutions 
were compared each other. In case of a deterministic problem, 
it is assumed that all variables are fixed at their nominal values. 
Table 3 shows the stochastic and the deterministic optimal 
solutions. Fig. 4 shows that most differences of a steam flow 
rate between the stochastic and the deterministic solutions are 
positive values and it means that the stochastic optimal 
solution provided better performances. At least, 1.914% steam 
production under a stochastic solution can be increased.  

Table 3 A comparison of decision variables between the stochastic 
and deterministic optimizations 

Design variable 
Stochastic 
solutions 

Deterministic 
solutions 

Fuel temperature 125.47 ℃ 125.46 ℃ 

Primary air flow rate 147.49 ton/h 146.94 ton/h 

Primary air temperature 148.16 ℃ 148.08 ℃ 

Secondary air flow rate 205.36 ton/h 208.47 ton/h 

Secondary air temperature 163.10 ℃ 163.06 ℃ 

Tertiary air flow rate 51.08 ton/h 51.47 ton/h 

Tertiary air temperature 34.34 ℃ 34.47 ℃ 



 

Figure 4. Differences between the stochastic and the deterministic 
optimal solutions on a steam flow rate.  

6. CONCLUSIONS 

Since there are many unknown phenomena and conventional 
simulators cannot be employed for a reboiler process, SVR 
was selected to build four empirical models in this study. The 
goal of a stochastic optimization is to maximize the steam 
generation while avoiding the violation of pollutant emissions. 
Throughout a sensitivity analysis, the impacts of process 
variables are identified and the stochastic problem is generated 
by SAA based on Monte Carlo sampling. Due to the 
difficulties of using the derivatives of the empirical models, a 
gradient-free based PSO technique was introduced. The results 
show that a stochastic optimal solution provides better results 
than a deterministic solution. Overall, the proposed method is 
based on SVR, which is a black box model, and PSO, which is 
a gradient-free technique. Therefore, the proposed strategy can 
be easily applied to various problems including uncertain 
variables. 
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