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Abstract: We illustrate the potential of PDE-based traffic flow control in cardiovascular flow analysis,
monitoring, and control, presenting a PDE-based control-oriented formulation, for 1-D blood flow
dynamics in the presence of stenosis. This is achieved adopting an approach for modeling and analysis
that relies on the potential correspondence of 1-D blood flow dynamics in the presence of stenosis,
with 1-D traffic flow dynamics in the presence of bottleneck. We reveal such correspondence in relation
to the respective (for the two flow types), speed dynamics and a (consistent with them) fundamental
diagram-based reduction; bottleneck dynamic effects description and resulting boundary conditions; and
free-flow/congested regimes characterization.

1. INTRODUCTION

Arterial stenosis, due to, for example, atherosclerotic plaque
building up in arteries or in-stent restenosis, is a primary cause
of human losses worldwide Chen et al. (2018). A great num-
ber of deceases, attributed to congested blood flow, currently
accounting for about 50% of deaths within the European Union
Quarteroni et al. (2019), could be avoided with accurate/timely
detection and action implementation. This is true particularly
in view of the practical feasibility that is supported by existing
technologies, such as, for example, smart, stents and bypass
grafts, and other implantable devices, where actuation and sens-
ing may be performed wirelessly, via communication with a
central computer; see, for example, Chen et al. (2018), Chazali
et al. (2020), Kiourti & Nikita (2017), Yi et al. (2020).

Despite the technological advancement and urgent need for
availability of respective advanced methodologies, illustrated
by their potential in congested blood flow detection/treatment,
there exists no control-theoretic approach tackling the formu-
lation, analysis, monitoring, and feedback control problems of
congested blood flow, in its natural, continuous in time/space,
domain, in the presence of stenosis. However (and despite the
domain and dimensional complexity of cardiovascular flow),
there exist 1-D, second-order, hyperbolic Partial Differential
Equation (PDE) systems that may effectively describe (on av-
erage) blood flow dynamics; see, e.g., Canic & Kim (2003),
Formaggia et al. (2003), Li & Canic (2009), Quarteroni &
Formaggia (2004), Wang (2014). Thus, such models may be
utilized as basis for control-theoretic modeling, analysis, and
design purposes.

In this paper we launch an effort in this direction formulating
and analyzing, from a PDE-based traffic flow control (see, e.g.,
Blandin et al. (2017), Claudel & Bayen (2010), Delle Monache
et al. (2017), Goatin et al. (2016), Karafyllis et al. (2019),
Piacentini et al. (2020), Tumash et al. (2021a), Tumash et al.
(2021b), Yu et al. (2021b), Zhang et al. (2019)) perspective,
the dynamics of 1-D blood flow in the presence of stenosis.
The stenosis is considered to be located at the boundary of the
arterial segment considered. We present two alternative formu-

lations in which the stenosis dynamics are characterized via a
static or dynamic description for the pressure drop through the
stenosis. Together with utilization of a baseline dynamic model
for blood flow, capturing the main transport phenomena and
respective mass/momentum conservation principles, such for-
mulation gives rise to a 2×2 (heterodirectional; see, e.g., Auriol
& Di Meglio (2020), Hu et al. (2015)) hyperbolic PDE system,
with a static or dynamic boundary condition, at the outlet of
the artery segment considered, respectively. As the location,
geometry, and length of the potential stenosis are considered
to be unknown, the derived model may incorporate unknown
PDE domain length and boundary conditions parameters.

For the derived dynamic descriptions of 1-D blood flow in the
presence of stenosis, we then illustrate the correspondence, of
certain features, with traffic flow dynamics in the presence of
bottleneck. We explore correspondence with Payne-Whitham-
and Aw-Rascle-Zhang-type models, in particular, in relation to
speed dynamics and a consistent (with respect to reduction to
conservation law equation, for instance, of Lighthill-Whitham-
Richards-type) fundamental diagram. Furthermore, we illus-
trate the connection to respective, dynamic models of traffic
flow bottlenecks. In particular, boundary blood flow stenosis
may be characterized via the pressure drop at the stenosis
location, while boundary traffic flow bottleneck may be de-
scribed via the capacity drop at the bottleneck area. Moreover,
for each type of stenosis description, we provide a consistent
boundary condition at the outlet, which could either be static
or dynamic, also illustrating the correspondence with the re-
spective boundary conditions, in the case of traffic flow bottle-
neck. We also discuss the analogy between characterization of
free-flow/congested traffic regimes and supercritical/subcritical
blood flow regimes.

We start in Section 2 presenting a control-oriented model for
blood flow in which arterial stenosis is described either as static
or dynamic, boundary bottleneck. In Section 3 we analyze the
obtained hyperbolic system, revealing the dynamic correspon-
dence with traffic flow dynamics in the presence of bottlenecks.
In Section 4 we discuss potential research directions that may
emerge from the results presented.



2. CONTROL-THEORETIC MODELING OF STENOSIS

2.1 Baseline 1-D cardiovascular flow model

We consider the following 2×2 hyperbolic system, which con-
stitutes an 1-D approximation of cardiovascular flow dynamis
(see, e.g., Formaggia et al. (2003), Quarteroni & Formaggia
(2004))

At(x, t) =−Ax(x, t)V (x, t)−A(x, t)Vx(x, t) (1)

Vt(x, t) =−V (x, t)Vx(x, t)−
1
ρ

∂P(A(x, t))
∂x

−Kr
V (x, t)
A(x, t)

(2)

A(0, t)V (0, t) = Qin(t), (3)

where A > 0 is section area of artery, V > 0 is average blood
speed, ρ > 0 is blood density, Kr > 0 is friction parameter
related to blood viscosity, t ≥ 0 is time, x ∈ [0,D] is spatial
variable, D > 0 is length of artery segment considered, P ∈ R
is pressure, which accounts for vessel wall displacement, and
Qin > 0 is flow at the inlet of the artery segment considered
(it could, for example, be described by a periodic signal, with
period equal to the cardiac cycle, see, e.g., Quarteroni & For-
maggia (2004)). A possible expression for the pressure function
is (see, e.g., Formaggia et al. (2003), Quarteroni & Formaggia
(2004))

P(A) =
β

A0

(√
A−

√
A0

)
(4)

β = hE
√

πb, (5)

where A0 is reference arterial section area at rest, h > 0 is
artery wall thickness, E > 0 is Young’s modulus, and b is a
positive parameter. One boundary condition, associated with
(1), (2), is provided in (3), describing the blood flow entering
the arterial segment considered. The second boundary condition
is specified in the following sections since it depends both on
the sign of the eigenvalues of hyperbolic system (1), (2) as well
as the stenosis dynamic description adopted.

In the present setup, in which the case of a boundary bottleneck
is considered, it is assumed that parameters β and A0, in the
pressure equation (4), are known and constant throughout the
domain, which may be a reasonable requirement given that
variations in geometry and mechanical properties of the artery,
imposed by the stenosis, are considered to be located at the
boundary x = D. Although most of modeling and analysis de-
velopments could be performed considering spatially-varying
coefficients β , A0, for presentation and formulation simplicity,
as well as to not distracting the reader from the main scope
of the paper, which is presentation and analysis of a control-
theoretic, stenosis model and its correspondence with traffic
flow bottleneck model, we do not consider this case here.

2.2 Formulation of available measurements output equation

In the present paper we consider the case in which the pressure
and flow at the inlet of the artery segment considered are
measured in real time. Although such a setup may appear, at
first sight, as unrealistic, current technological advancements
enable the availability of these measurements. In particular,
such measurements could be wirelessly transmitted to a central

computer, utilizing smart stent (or bypass graft) devices, see,
for example, Chen et al. (2018), Kiourti & Nikita (2017), Yi
et al. (2020). Thus, besides having available Qin, a measured
output is available, given by

y(t) = P(A(0, t)) . (6)

Since location, geometry, and material properties of the stent,
in realistic scenarios, could be considered as known, it follows
that β and A0 at x = 0 are known (even in the case in which β ,
A0 may take different values, as compared with their values for
x ∈ (0,D)). Thus, using (4), measurements of A(0, t) could be
obtained, and hence, using (3), measurements of V (0, t).

2.3 Stenosis model as static boundary bottleneck

This potential formulation of a bottleneck is derived assuming
that the stenosis (e.g., due to atherosclerotic plaque building up
at arterial wall Quarteroni et al. (2019) or in-stent restenosis
Chen et al. (2018)) is located downstream of the inlet (i.e., the
known location of a, for instance, stent device). In particular, we
treat the right boundary of the arterial segment considered as the
point at which the potential stenosis is located. Therefore, the
spatial variable x belongs to [0,D], where D may be unknown
as the stenosis location may be unknown. The right boundary
condition is derived such that it incorporates the effect of
stenosis in the outlet. A schematic view of the setup considered
is shown in Fig. 1.

Fig. 1. Simplified schematic of an 1-D approximation of an
arterial segment at rest with boundary stenosis. At the inlet
of the segment considered (i.e., for x = 0) an implantable
smart stent device measures pressure and flow (i.e., Pin
and Qin, respectively). The bottleneck location D, stenosis
cross-sectional area As, and stenosis length Ls may be
unknown.

Modeling assumptions: In the present setup, the domain length
D and the effective section area at the stenosis location As may
be unknown. In particular, the stenosis section area is assumed
to be constant, which may be a reasonable assumption given the
material and elastic properties of atherosclerotic plaque (see,
for example, Takashima et al. (2007)). It is further assumed
that (for constant As) flow is conserved through the stenosis.
Moreover, the least complex formulation of the stenosis effect
(at least in terms of the number of potentially unknown model
parameters) could be obtained assuming (initially) zero (or,
effectively, very small) length for the stenosis.

Boundary condition formulation: Consequently, at the stenosis
location the following relation may be satisfied (Seeley &
Young (1976), Young & Tsai (1973a), Young & Tsai (1973b);
see also Clark (1976), Koeppl et al. (2018), Stergiopoulos et al.
(1992) for relevant expressions)

∆P(A(D, t),V (D, t)) =V (D, t)2 Ksρ

2

(
A(D, t)

As
−1
)2

, (7)



where ∆P(A(D),V (D)) denotes the pressure drop due to the
stenosis, while parameter Ks > 0 is known (obtained, for exam-
ple, from experimental data, see, e.g., Seeley & Young (1976)).
The pressure drop denotes the pressure difference between the
locations before and after the stenosis. For the former we may
assume that it is given by (4), while for the latter, we may
assume that it is described such that a terminal boundary con-
dition, modeling the effect of blood flow dynamics in arteries
downstream of the stenosis (see, for example, Formaggia et al.
(2006), Stergiopoulos et al. (1992)), is imposed. Therefore, we
may define

∆P(A(D, t),V (D, t)) = P(A(D, t))−RTA(D, t)V (D, t), (8)

with Qs = A(D)V (D) denoting the flow at the inlet of the
stenosis, where RT ≥ 0 denotes a total, terminal resistance.
Parameter RT may be chosen depending on the blood flow
conditions modeled for a considered arterial network, and thus,
it may be considered as known. Using (4), (7), (8) we obtain

β

A0

(√
A(D, t)−

√
A0

)
−RTA(D, t)V (D, t)

−V (D, t)2 Ksρ

2

(
A(D, t)

As
−1
)2

= 0. (9)

Equation (9) prescribes a boundary condition at x = D, associ-
ated with system (1)–(3), with As and D being unknown.

Although, as starting point and under the assumption of zero
stenosis length, formulation (9) may appear to be adequately
realistic, a more accurate, nevertheless more complex, formula-
tion for the right boundary condition (at the inlet of the stenosis)
may be obtained utilizing the following relation for the pressure
drop (see, for example, Seeley & Young (1976), Young & Tsai
(1973a), Young & Tsai (1973b))

∆P(A(D, t),V (D, t)) =
8πµLs

A2
s

A(D, t)V (D, t)+V (D, t)2

×Ksρ

2

(
A(D, t)

As
−1
)2

, (10)

where Ls > 0 is unknown stenosis length and µ is known blood
viscosity coefficient. Thus, using (4), (8), (10) we obtain

β

A0

(√
A(D, t)−

√
A0

)
−
(

RT +
8πµLs

A2
s

)
A(D, t)

×V (D, t)−V (D, t)2 Ksρ

2

(
A(D, t)

As
−1
)2

= 0. (11)

In the case of boundary condition (11), in addition to As and D,
the stenosis length Ls may also be an unknown parameter.

2.4 Stenosis model as dynamic boundary bottleneck

Boundary condition formulations (9), (11) may be accurate
for zero or, effectively, very small, stenosis length. A poten-
tially more realistic, nevertheless more complex, model of the
pressure drop dynamics, accounting for larger stenosis length
(yet, much smaller than the length D of the arterial segment
considered), may be written as (see, for example, Stergiopoulos
et al. (1992), Young & Tsai (1973b))

Vt(D, t) =
1

ρLs
∆P(A(D, t),V (D, t))−V (D, t)2 Ks

2Ls

×
(

A(D, t)
As

−1
)2

− 8πµ

ρA2
s

A(D, t)V (D, t). (12)

Employing (4), (8), relation (12) may be written as

Vt(D, t) =
β

ρA0Ls

(√
A(D, t)−

√
A0

)
−
(

A(D, t)
As

−1
)2

× Ks

2Ls
V (D, t)2−

(
8πµ

ρA2
s
+

RT

ρLs

)
A(D, t)V (D, t).(13)

Model (1)–(3), (13) consists of a nonlinear, hyperbolic PDE -
Ordinary Differential Equation (ODE) coupled system.

3. CARDIOVASCULAR FLOW MODEL ANALYSIS AND
ITS RELATION TO TRAFFIC FLOW DYNAMICS

3.1 Analysis of the hyperbolic system

Blood flow information propagation: In physiological condi-
tions blood flow is reported to lie in congested (or, subcritical)
regime (see, e.g., Formaggia et al. (2003), Quarteroni & For-
maggia (2004)). In particular, the eigenvalues of the hyperbolic
system (1), (2) are given by

λ̄1 (A,V ) =V +

√
β

2ρA0
A

1
4 (14)

λ̄2 (A,V ) =V −

√
β

2ρA0
A

1
4 . (15)

Since we are concerned with the case of subcritical regime we
restrict our attention in a nonempty, connected open subset Ω

of the set Ω̄ =
{
(A,V ) ∈ R2 : 0 < A,0 <V

}
, such that V <√

β

2ρA0
A

1
4 , and hence, λ̄1 > 0 and λ̄2 < 0, in the region of

interest. System (1)–(3) is then strictly hyperbolic with distinct,
real nonzero eigenvalues, as long as (A,V ) ∈Ω, which implies
that information propagates both forward (with blood flow) and
backward (at a lower speed).

Transformation to Riemann variables: The Riemann variables,
corresponding to system (1), (2) with eigenvalues (14), (15), are

u(A,V )=V +2

√
2β

ρA0
A

1
4 , v(A,V )=V −2

√
2β

ρA0
A

1
4 .(16)

The inverse transformations that correspond to (16) are

V (u,v) =
1
2
(u+ v) , A(u,v) =

ρ2A2
0

45β 2 (u− v)4 . (17)

In the new variables, system (1), (2) is written as

ut(x, t) =−λ1 (u(x, t),v(x, t))ux(x, t)+ f1 (u(x, t),v(x, t))(18)

vt(x, t) =−λ2 (u(x, t),v(x, t))vx(x, t)+ f1 (u(x, t),v(x, t))(19)

f1 (u,v) =−
4

9
2 Krβ

2

ρ2A2
0

u+ v

(u− v)4 (20)

λ1 (u,v) =
5u+3v

8
, λ2 (u,v) =

3u+5v
8

. (21)



Boundary condition (3) at the inlet is expressed in terms of the
Reimann variables as

ρ2A2
0

4
11
2 β 2

(u(0, t)+ v(0, t))(u(0, t)− v(0, t))4 = Qin(t). (22)

Together with (18)–(22) we associate a boundary condition at
x = D, which may be specified as follows.

Boundary condition at the outlet: Since hyperbolic system (18),
(19) is heterodirectional, together with boundary condition (22)
at x = 0, one should specify a boundary condition at x = D.
There are different options for specifying a boundary condition
at x = D, also depending on the coupling type, of the arterial
segment considered, with different arteries (also considering
different types of arteries; see, e.g., Formaggia et al. (2006),
Koeppl et al. (2018), Quarteroni & Formaggia (2004)).

Since in the present paper we are concentrated on the modeling
of bottleneck effects, the boundary condition is specified in or-
der to describe the pressure difference between the locations be-
fore and after the bottleneck, also accounting for a cumulative
effect of arteries downstream of the stenosis area. This could be
achieved employing a static (see Section 2.3) or dynamic (see
Section 2.4) description for the effect of the stenosis.

1) In the case of static bottleneck, the boundary condition
at x = D is specified in order to describe the pressure drop at
the outlet of the arterial segment considered, where a stenosis
is located, as described in Section 2.3. Using (11), the right
boundary condition is expressed in Riemann variables as

0 = G(u(D, t),v(D, t)) (23)

G(u,v) = ρ (u− v)2− 32β√
A0
−d1 (u− v)4 (u+ v)

−4Ksρ (u+ v)2
(

d2 (u− v)4−1
)2

(24)

d1 =

(
RT +

8πµLs

A2
s

)
ρ2A2

0
β 243 , d2=

ρ2A2
0

45β 2As
. (25)

2) In the dynamic bottleneck case, the right boundary condi-
tion is expressed in Riemann variables using (13), (17) as

v(D, t) = 2X(t)−u(D, t) (26)

Ẋ(t) =
1

32ρLs
G(u(D, t),2X(t)−u(D, t)) . (27)

Well-posedness of the 2× 2 hyperbolic PDE system (18)–
(22) with the dynamic boundary condition (26), (27) (with
(24)), or the static boundary condition (23) (with (24)) may
be guaranteed utilizing, for example, the results in Bastin &
Coron (2016), Li (1994). To be able to employ such results,
certain assumptions are required to be imposed on regularity,
size, and compatibility (with boundary conditions) of initial
conditions, on size and regularity of flow Qin at the inlet, and
on the values of parameters β , A0, Ks, ρ , Ls, µ , RT, As. Well-
posedness of the hyperbolic system considered, for realistic
values of the various parameters involved, is also consistent
with the dynamic behavior of the actual, physical system (see,
for example, Canic & Kim (2003), Quarteroni & Formaggia
(2004)). Although important, we do not belabor this issue as it
is beyond the present paper’s primary scope.

3.2 Properties of the model from a traffic flow perspective

1) The first correspondence with second-order traffic flow
models originates in speed equation (2). Such relation (for Kr =
0) may be compared to speed dynamics of Payne-Whitham
traffic flow model (see, e.g., Treiber & Kesting (2013)) with
pressure given by (4). Equation (1), which expresses conser-
vation of blood volume entering and exiting an artery segment
considered, corresponds to conservation of the number of vehi-
cles entering and exiting a given highway segment.

2) The correspondence of model (1), (2) to traffic flow
models of Payne-Whitham (and Aw-Rascle-Zhang, see, e.g.,
Fan et al. (2014), Lebacque et al. (2007), Treiber & Kesting
(2013)) type could be also viewed via a fundamental diagram
definition, considering the pressure function (4), which could
be explained as follows. Adopting the procedure in Zhang
(2002) for derivation of a fundamental diagram relation from
the speed equation (2), we define V = F(A) and substitute this
relation into (2) in order to obtain only one, conservation law
equation of the form (1), i.e., of the form At +(F(A)A)x = 0,
where F is to be determined. With Kr = 0 we get that

F ′(A)
(

At +F(A)Ax +
β

2ρA0
√

AF ′(A)
Ax

)
= 0. (28)

Imposing the reasonable requirement that F ′(A) < 0, for all
A > 0, relation (28) holds if the following equation is satisfied

At +F(A)Ax +
β

2ρA0
√

AF ′(A)
Ax = 0. (29)

Therefore, in order for equation (29) to reduce to the conser-
vation law equation (1), imposing V = F(A), for any A, the
following should hold

F ′(A)2 =
β

2ρA0
A−

3
2 . (30)

Therefore, since F ′(A)< 0, for any A > 0, we get that

F(A) = F(0)−2

√
2β

ρA0
A

1
4 . (31)

The constant F(0) may be viewed as the speed at a limiting case
in which the section area tends to zero. Thus, in practice, it may
be defined, for example, through considering a maximum possi-
ble, blood transport speed, which could be obtained empirically.
Relation (31) defines a fundamental diagram (see, e.g., Treiber
& Kesting (2013)), satisfying the required conditions. In par-

ticular, function Q̄(A) = AF(A) = A
(

F(0)−2
√

2β

ρA0
A

1
4

)
, for

A ∈ [0,A1], where A1 =
F(0)4ρ2A2

0
β 243 , satisfies Q̄(0) = Q̄(A1) = 0,

while being strictly concave.

We note here that the limiting case in which V = F(A), con-
stitutes a considerable simplification, which may appear, at first
sight, as not realistic for cardiovascular systems. However, such
a reduction may be useful in, for example, studying the dynamic
effect of a bottleneck in blood flow, at a vicinity upstream of the
stenosis, employing only the respective conservation equation.

3) The two different bottleneck descriptions also bear a re-
semblance to traffic flow bottleneck descriptions. For example,
boundary bottlenecks may appear due to lane-drops or, in gen-



eral, due to the presence of locations of reduced capacity, at the
end of a controlled area of interest, such as, for example, where
a tunnel or an area of high curvature begins (see, e.g., Wang et
al. (2014)). A boundary bottleneck could be described through
properly modeling the traffic capacity drop at the bottleneck
location (potentially also employing different fundamental dia-
gram relations for the traffic speed immediately before and after
the bottleneck location; see, e.g., Treiber & Kesting (2013),
Yu et al. (2021b)); corresponding to the static equation (7) (or
(10)), which describes the pressure drop at the area of the steno-
sis (that may also be viewed as defining a pressure fundamental
diagram at the stenosis, depending on the pressure immediately

before, as Ps (A,V ) = P(A)−V 2 Ksρ

2

(
A
As
−1
)2

, which becomes
a function of only A when V = F(A)).

In the case of a dynamic bottleneck description, speed (or flow)
dynamics at the area of the stenosis are described by an ODE (as
in (13), (27); see also, e.g., Stergiopoulos et al. (1992), Young &
Tsai (1973b)), dictated by the pressure difference between the
areas at the inlet and outlet of the stenosis. This may be viewed
as corresponding to the case of dynamic description of traffic
density at a bottleneck area through an ODE, dictated by the
flow difference between the flow arriving and exiting the bot-
tleneck area (see, e.g., Bekiaris-Liberis & Krstic (2018), Wang
et al. (2014)). In both cases the resulting dynamic description
consists of a nonlinear, hyperbolic PDE-ODE coupled system.

4) For cardiovascular flow, subcritical regime is character-
ized by the sign of λ̄2 in (15). Analogously, traffic congestion
may be characterized by negative sign of a respective eigen-
value that corresponds to the Reimann invariant transporting
opposite to traffic flow (see, e.g., Belletti et al. (2015)). One dif-
ference lies in that physiological conditions for cardiovascular
flow correspond to subcritical (congested) regime (where λ̄2 <
0; see, e.g., Formaggia et al. (2003), Quarteroni & Formaggia
(2004)), whereas for traffic flow, physiological conditions may
be considered as corresponding to the free-flow (supercritical)
regime (where λ̄2 > 0; see also, e.g., Belletti et al. (2015)).

4. FUTURE PERSPECTIVES

The arterial stenosis models presented and the correspondence
with vehicular traffic flow bottleneck models, may constitute
the starting point for PDE-based, control-theoretic develop-
ments for cardiovascular flow stenosis analysis, estimation, and
control, inspired by respective traffic flow techniques.

A first research direction, of practical and theoretical signifi-
cance, would be to develop algorithms for real-time identifi-
cation of potential stenosis location and characteristics (such
as, e.g., length and thickness). Towards this end, a possible
approach would be to design adaptive observers, utilizing the
2× 2 hyperbolic system (18), (19), (22) with either (23) or
(26), (27), aiming at simultaneous state estimation and pa-
rameters identification, employing the derived model and the
available boundary measurements. Related methods for traffic
flow models and general hyperbolic systems could be found, for
example, in Anfinsen & Aamo (2019), Bin & Di Meglio (2017),
Seo et al. (2017), Wang & Krstic (2021), Yu et al. (2021a).

Another potential research direction would be to consider the
feedback control problem of blood flow at areas with steno-
sis. Towards this end, perhaps a crucial issue would be to
specify how, in practice, the required actuation could be per-

formed. One possibility would be to consider boundary actu-
ation, manipulating the inflow in (22) through certain micro-
electromechanical systems (for example, smart stent devices,
actuated wirelessly; see, e.g., Chazali et al. (2020), Yi et al.
(2020)), thus resulting in a boundary control problem for sys-
tem (18), (19), (22) with either (23) or (26), (27). An alternative
possibility would be to consider in-domain actuation enabled
through automated drug delivery systems (see, e.g., Chazali et
al. (2020), Kulkarni et al. (2020)). Such an approach could build
upon an extension of the presented model to incorporate in-
domain actuation, in correspondence with automated vehicles-
based actuation incorporation in vehicular traffic (see, for ex-
ample, Bekiaris-Liberis & Delis (2021), Darbha & Rajagopal
(1999), Karafyllis et al. (2021), Piacentini et al. (2020), Yi &
Horowitz (2006)).
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