
Visual Analytics: A New Paradigm for
Process Monitoring

Ibrahim Yousef ∗ Sirish L. Shah ∗∗ R. Bhushan Gopaluni ∗

∗Department of Chemical and Biological Engineering, University of
British Columbia, Vancouver, Canada (e-mail: iy641@mail.ubc.ca,

bhushan.gopaluni@ubc.ca).
∗∗Department of Chemical and Materials Engineering, University of

Alberta, Edmonton, Canada (e-mail: sirish.shah@ualberta.ca)

Abstract: As a result of recent breakthroughs in computer vision technologies, significant
research interest has emerged to encode process data into visual clues and treat process moni-
toring problems as computer vision tasks. Imaging time-series signals as a feature engineering
step forms a new branch of data analytics called ”visual analytics”. In the context of process
monitoring, we define visual analytics as the integration of visual representation of the data
combined with the use of computer vision tools and analytical reasoning to support decision-
making and knowledge extraction from the data. In this work, a novel end-to-end visual
analytics pipeline for industrial process fault detection using 1D and 2D convolution operations
is proposed. The proposed approach presents a visual representation of data that captures
temporal and local features from historical time-series signals. Next, the learned features in a 2D
format are visually recognized and classified using 2D convolution operations. Our experimental
results demonstrate that this approach achieves better performance on an industrial multivariate
dataset compared to other state-of-art signals imaging tools such as Gramian Angular Field
(GAF) and Recurrence Plots (RP).
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1. INTRODUCTION

Driven by the advances in computational hardware and
the availability of large volumes of industrial data, mod-
ern industry is witnessing a rapid transition from the
classical manufacturing industry to the smart manufac-
turing industry (Reis and Gins (2017)). With the new
drive towards Industry 4.0, process data analytics have
become increasingly vital to solve longstanding problems
involving process monitoring and control (Shang and You
(2019)). Despite all the success that classical data analytics
approaches (e.g. support vector machines, random forests,
etc.) have seen in process monitoring tasks in recent years,
there are still many practical limitations that need to be
further refined and improved especially when dealing with
complex industrial process data. First, most of the classical
process data analytics frameworks separate the feature
selection, extraction, and prediction steps which restricts
their performance and makes the asynchronous optimiza-
tion time-consuming (Jiao et al. (2019)). Furthermore,
traditional methods usually seek to learn global features
and ignore the temporal and local correlations that exist
in process data (Yuan et al. (2020)).

Recently, deep learning (DL) models have been able to
break into and improve various problem domains such
as computer vision (CV), natural language processing,
and facial and voice recognition. Unlike traditional data
analytics techniques, DL models have a robust capability

of learning high-level representations of the data and non-
linear patterns, assuming enough training data is available.
Hence, significant research interest has been devoted to
developing DL-based solutions for a variety of longstand-
ing problems in many scientific and engineering disciplines.
One of the most methodologically mature DL architectures
used in CV is the 2D convolutional neural network (2D-
CNN). Ever since winning the annual ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) in 2012,
2D-CNN has become the dominant approach used in var-
ious CV tasks including image classification and object
detection, mainly due to its ability to automatically learn
local features from the raw input data. In addition, 2D-
CNN consists of locally connected layers where only a
subset of the input data is connected to each neuron.
making them computationally efficient. Motivated by its
astounding results in image recognition and its attractive
attributes, the use of 2D-CNN for process systems engi-
neering (PSE) applications is now a highly active research
area.

Chemical manufacturing industries routinely generate a
large volume of data, mostly in the form of time-series
signals. A time-series signal Xi = {xi1, xi2, ..., xiN} is
a sequence of N chronologically ordered observations
with their accompanying timestamps T = {t1, t2, .., tN}.
When there are d different co-existing time-series signals
recorded simultaneously by a set of d sensors, the data
is referred to as a multi-variate time-series signal (MTS)



M = (T,X1, X2, ..., Xd) with Xi ∈ RN . Note that we
drop the time index from the MTS definition as T is
unified across X1, X2, .., Xd. The difference in the intrinsic
attributes between MTS data and image data, the typical
2D-CNN input data type, explains why 2D-CNN has not
been adopted for time-series analysis until recently. For
example, images are often described by their spatial in-
formation whilst MTS data are characterized by features
related to time (autocorrelation) and observed variables
(cross-correlations). Moreover, images are 3D tensors (i.e.,
height × width × channels) whereas MTS data are a
collection of d 1D vectors (i.e., d column vectors of size
length × 1). Recently, many research studies have been
dedicated to applying 2D-CNN on MTS data to solve
process monitoring tasks. For example, 2D-CNN can be
applied on raw MTS by directly re-arranging d column
vectors of size N into a N × d dimensional matrix, where
d represents the number of variables and N corresponds
to the sample time length (Xia et al. (2018); Wu and
Zhao (2018)). Additionally, Zheng et al. (2014) proposed
a multi-channel CNN that extracts features from each
univariate time-series separately using different CNNs,
then the learned feature maps are concatenated and fed
into a new CNN workflow. Hoang and Kang converted
raw 1D vibration signals into gray-scale images called
vibration images, then a 2D-CNN model with two hidden
layers was constructed on the vibrated images for rolling
bearing fault classification (Hoang and Kang (2019)). The
latter approach is perhaps the most similar approach to
the paradigm of visual analysis. Visual analytics was first
defined as the science of analytical reasoning facilitated by
an interactive visual interface (Cook and Thomas (2005)).
However, in the context of process monitoring, we define
visual analytics as the integration of visual representation
of process data, the application of computer vision tools,
and analytical reasoning to support decision-making and
knowledge extraction from data as shown in Fig. 1
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Fig. 1. The process of visual analytics

In this work, we propose a novel end-to-end visual analyt-
ics pipeline for industrial process fault detection using 1D
and 2D convolution operations. The proposed approach
obtains a visual representation of the data that captures
the temporal and local features from historical MTS that
would otherwise be spread over time. Next, the learned fea-
tures in a 2D format are visually recognized and classified
using a 2D-CNN. This work is a small step in the direction
of migrating the techniques from computer vision, deep
learning, and visual analytics to process industries. In
addition, this work presents a promising opportunity to
initiate the field of visual analytics for process monitoring
problems. The main contributions of this paper include:

• The development of an end-to-end visual analytics
pipeline that extracts discriminative features related
to time and process variables in series.

• The introduction of a new visual representation learn-
ing method to encode MTS data into 2D images for
manual image analysis.

• A comprehensive comparison between the proposed
approach and other state-of-the-art CNN-based MTS
classifiers on large-scale process data.

The remainder of this paper is organized as follows: In
Section 2, we highlight the benefits of visual analytics
as a process monitoring paradigm; Section 3 provides a
theoretical background and presents related surveys and
techniques; Section 4 describes our novel proposed visual
analytics framework for fault detection tasks; the proposed
methodology with other existing imaging tools are applied
to an industrial case study introduced in Section 5; Section
6 outlines the experimental results followed by concluding
remarks and prospects in Section 7.

2. WHY VISUAL ANALYTICS?

The recent advent of the Internet of Things (IoTs) has
allowed the chemical manufacturing industries to routinely
capture and access large data streams. This ever-increasing
amount of data has triggered a major challenge towards
extracting knowledge and discovering hidden opportuni-
ties contained therein. Indeed, this has led to the so-
called ”data deluge” problem. To address this data deluge,
new technologies and frameworks have been developed to
extract valuable and reliable information from unexplored
process data.

To deal with information overload, chemical process op-
erators often rely on the graphical representation of data
”coordinates-based” for detecting anomalies and uncover-
ing patterns. Process data visualization focuses on creating
visual views and valuable renderings of process data. This
approach is challenging in complex chemical processes
where the state of the process is typically represented by
a large number of variables. In such cases, dimensional-
ity reduction tools such as principal component analysis
(PCA) and partial least squares (PLS) could be useful
to transform the high dimensional process data into 2D
or 3D data that can be visualized easier. However, such
tools are not often implemented in practice because the la-
tent variables obtained don’t provide any physical insights
concerning the process conditions (i.e., have no physical
meaning). Also, most of the current visualization methods
are inadequate to handle industrial-scale process data.

On the other hand, visual analytics provide visual repre-
sentations ”pixel-based” of data that could offer valuable
information and hints about process conditions. The im-
ages obtained using visual analytics tools allow process
operators to manually analyze the patterns and texture
contained therein which is easier to interpret and iden-
tify compared to analyzing time-series signals in the time
domain. In addition, process operators could use visual
analytics to develop intuition in relating different patterns
in the images to different process operating modes. For
instance, certain observations in the images (e.g., vertical
lines, horizontal lines, single dots, etc.) could have dif-
ferent qualitative interpretations about the process con-
dition (e.g., smooth or faulty operation) and behavior
(e.g., periodic, stationary, etc.). Developing a good level of
correlations or relations of the patterns in the visual rep-



resentation of the data to the process operating conditions
could support model predictions (i.e., enhance the model
interpretability). Another advantage of the visual analytics
paradigm is that it produces 2D images that preserve the
temporal dependency in MTS data for subsequent image
analysis using CV tools such as 2D-CNN. However, it is
worth noting that the obtained 2D images don’t always
capture all process-related information, and they exhibit
some patterns that are not easily interpretable.

3. BACKGROUND & RELATED WORK

In this section, we first introduce a theoretical background
on 1D and 2D convolution operations for ease of under-
standing. Then, we present related techniques and works.

3.1 1D convolution operations

1D convolution is the key operation used in 1D-CNNs
which have recently become the dominant model for var-
ious signal processing applications (e.g., anomaly detec-
tion, structural health monitoring, etc.). In the context of
1D-CNN, a 1D convolution is a discrete linear operation
performed between a p-channel vector of length Lin which
can be defined as Xi ∈ RLin , i ∈ {1, .., p} and a collection
of q 1D kernels of length LW per input channel, expressed
as W(i,j) ∈ RLW with i ∈ {1, .., p}andj ∈ {1, .., q}, yielding
a new output vector of length Lout with as many channels
as the number of kernels; Zj ∈ RLout for j ∈ {1, .., q}.
Mathematically speaking, 1D convolution operation can
be expressed as:

Zj =

p∑
i=1

Conv1D(Xi,W(i,j))

Zj [k] =

p∑
i=1

LW∑
l=1

Xi[k + l − 1]W(i,j)[l]

(1)

We see that in 1D convolution, we slide a unique 1D kernel
over an input channel, and multiply the overlapping values
of the kernel and the input channel together for all l ∈ LW

and i ∈ p. Note that the number of elements traversed per
slide is defined by the stride s. The stride s affects both
the computational complexity of the convolution operation
and the size of the output vector Lout. In other words,
the greater the s is, the less number of computational
operations involved, and the smaller Lout will be. Hence,
it is viewed as a hyper-parameter that balances the trade-
off between memory usage and the loss of information.
Fig. 2a and Fig. 2b illustrate the difference between 1D
convolution with s = 1 and s = 2.

As shown in Fig. 2a and Fig. 2b, Lout < Lin and that
is because the convolution operation is undefined close
to the input boundaries (i.e., the kernel lies outside the
length of the input). This type of convolution is called valid
convolution. Next, same convolution is the other type of
convolution where the input vector is artificially ”padded”
by zero elements; producing an output of the same size as
the input (i.e., Lin = Lout. Fig. 2c demonstrates the same
convolution operation. The size of the output vector of 1D
convolution can be computed using Equation 2 :

Lout =
Lin + 2P − LW

s
+ 1 (2)
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Fig. 2. An illustration of 1D convolution with : a) stride
= 1 and no padding; b) stride = 2 and no padding; c)
stride = 1 and padding.

P is defined as the padding. When valid convolution
is performed, P = 0. On the other hand, in same 1D

convolution, Lout = Lin (i.e., P = Lin(s−1)+LW−s
2 ).

3.2 2D convolution operations

Convolution operations in 2D are analogous to 1D convo-
lution operations, and concepts introduced in the previous
subsection (e.g., padding, stride, output size, etc.) still
hold in 2D. The main difference between 1D and 2D
convolution is that in 2D convolution, matrices substitute
vectors for kernels and input data. In 2D convolution,
we convolve a p-channel matrix of height Hin and width
Lin Xi ∈ RHin×Lin for i ∈ {1, .., p} with a collection
of q 2D kernels per input channel W(i,j) ∈ Rm×m, i ∈
{1, .., p}andj ∈ {1, .., q}. This results in a new matrix
Zj ∈ RHoutLout for j ∈ {1, ..., q}. Note, we assume that
the kernels are square matrices with size (m × m). The
valid 2D convolution operation can be defined as follows:

Zj =

p∑
i=1

Conv2D(Xi,W(i,j))

Zj [k, d] =

p∑
i=1

m∑
l2=1

m∑
l1=1

Xi[k + l1 − 1, d+ l2 − 1]W(i,j)[l1, l2]

(3)

The computational complexity of 2D convolution between
a filter W ∈ Rm×m and an input matrix X ∈ RHin×Lin

is ∼ (m2HinLin); consequently, 2D convolution becomes
computationally expensive when the size of both the kernel
W and the input matrix X are big; therefore, W is often of
low dimension (i.e., m << Lin, Hin). Next, one can think
of 2D convolution as a template matching task as shown
in Fig. 3.

3.3 Imaging time-series signals

Time-series features are not always evident in the time
domain. Hence, representing the temporal features of time-
series signals as visual clues to expose hidden patterns and
structures in the data has attracted much research interest
in areas like signal processing and computer science. En-
coding 1D time-series signals into 2D images enables sub-
sequent analysis using 2D-CNN. In this study, we consider
two of the most prominent time-series imaging tools which
are: i) Gramian Angular Field (GAF) and ii) Recurrence
Plot (RP).
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Fig. 3. An illustration of 2D convolution. When the input
patch matches the kernel, the convolution outputs a
large activation.

Time-series signal Step 1:Polar encoding Step 2:GAF

Fig. 4. The two-steps instructions for constructing a 2D
GAF image from a raw 1D time-series signal.

A GAF image is a visual representation of a 1D time-series,
introduced by Wang and Oates, that depicts information
about the static behavior of the raw 1D time-series (Wang
and Oates (2015)). In GAF images, 1D time-series signals
are represented in polar coordinates (radius × angle)
rather than the typical space coordinate system (time ×
magnitude). The process of encoding univariate time-series
into 2D GAF images consists of two steps. First, the time-
series is transformed from the space to polar coordinates
by encoding the time step ti as the radius r and the scaled
time-series value x as the angular cosine θ, i.e.:

ri =
ti
L

; i ∈ N
θi = cos−1(xi); xi ∈ [−1, 1]

(4)

where L is a scaling constant and N is the total number of
samples. Note that GAF is applied on scaled time-series
(i.e., all time-series values fall in the interval [-1, 1]) to
ensure a unique result in the polar coordinate system.
This bijective property (i.e., one-to-one correspondence)
is due to the monotonic nature of cos−1(x) when x ∈
[−1, 1]. Once the scaled time-series signals are transformed
into the polar coordinate system, the GAF matrix is
constructed. In the GAF matrix, each entry denotes the
cosine of the summation of angles, i.e.:

GAF[i, j] = cos(θi + θj); i, j = 1, 2, ..., N (5)

Each pixel in the GAF image denotes the summation of
the directions of two time-steps. The temporal dependency
in the time-series is preserved in GAF images as time
increases as the position goes from top-left to bottom-
right. Fig. 4 illustrates the step-by-step instructions for
generating GAF images from univariate time-series sig-
nals. The left side of Fig. 4 is a simple example of a scaled
1D time-series x = (x1, x2, ..., x20) with N = 20 time steps.
Then, x is transformed into a polar coordinate system
using (4). Finally, the GAF image, a square matrix of size
20×20, is constructed using (5).

Dynamic non-linear processes often can be characterized
by their recurrent behavior (e.g., periodicities, oscillations,

Time-series signal Step 1: 2D phase space trajectory Step 2: RP

Fig. 5. An illustration of the encoding map from a raw 1D
time-series signal to a 2D RP image.

irregular cyclicities) that are often not easy to visual-
ize in the time domain. To tackle this challenge, Eck-
mann et al. introduced RP, a 2D visual representation
of higher dimensional phase space trajectories (Eckmann
et al. (1987)). RP is a square matrix that reveals at
which points, the m-dimensional phase space trajectory
revisits a previously visited state. In this work, we consider
the non-binarized version of RP, as proposed by (Souza
et al. (2014)), to avoid information loss when the ma-
trix is binarized. In practice, one performs two steps to
obtain an RP image from a univariate time-series. First,
an embedding dimension m is chosen. The m-dimensional
phase space state −→s is constructed from the time-series
x = (x1, x2, ...., xN ) using the time-series embedding (i.e.,−→si = (xi, xi+1, ..., xi+m−1). Next, the RP matrix is calcu-
lated as follows:

RP[i, j] = ‖−→si −−→sj‖ ; i, j = 1, 2, ...,K (6)

where K is the total number of considered states −→s (K =
N − m + 1) and ‖.‖ is the Euclidean norm. Each pixel
in RP denotes the Euclidean distance of two states in
the m-dimensional phase space. RP exhibits texture (i.e.,
local patterns) and typology (i.e., global patterns) that
offer information about the recurrent behavior of the 1D
time-series. For instance, a periodic pattern in RP means
that the process is cyclic. Moreover, fading to the top-
left and bottom-right corners in RP indicates a non-
stationary process. The full pipeline for calculating RP
images from 1D time-series signal is shown in Fig. 5.
The m-dimensional phase space trajectory is constructed
from 1D signal x using the time delay embedding. In this
examples, m is chosen as 2; hence, the states, represented
in red dots, −→si = (xi, xi+1). Next, the RP image, 19 × 19
matrix, is computed using (6). The colors in the RP image
indicate the closeness of the states in the 2D phase space
according to the corresponding color bar.

Recent studies have demonstrated that encoding raw 1D
time-series signals as 2D images that are amenable to
further 2D-CNN analytics provides competitive results
(Garcia et al. (2021)). Hatami et al. converted raw 1D
times-series into 2D texture RP images, then a deep 2D-
CNN was constructed for time-series classification (Hatami
et al. (2017)). The experimental results have shown that
using RP images with 2D- CNN produces better results
than other traditional time-series classifiers.

The main difference between the previous works and
our work is that they applied some pre-defined rules
or fixed functions on raw 1D time-series to display the
visual representation of the data. While our proposed
framework is more task-oriented, it learns the best visual
representation of the raw time-series that minimizes the
classification error of the network. Our results demonstrate
that the joint learning of visual representation, visual



feature maps, and classifier parameters offered by the
proposed framework could provide competitive results for
fault detection on industrial operating data.

4. PROPOSED APPROACH

This section introduces a novel visual analytics pipeline
for solving fault detection tasks. The proposed framework
fuses data visual representation, visual feature extraction,
and feature classification processes into a single learning
problem. This network can effectively learn both the pro-
cess dynamics and the various local correlations between
different process variables during the training phase di-
rectly from the raw MTS signals. The overall architecture
of the proposed visual analytics framework is shown in Fig.
6. This model consists of four main components: visual
representation learning module, image formation module,
visual feature extraction module, and a classification mod-
ule. The four modules are introduced in the following sub-
sections.

4.1 Visual representation learning module

The visual representation learning module takes in MTS
signals. of any size, represented as p-channel vectors Xi ∈
RLin , i ∈ {1, .., p} where p is the number of input variables
and Lin is the size/ length of the input signals (we assume
that all input signals have the same length). The main
objective of the module is to extract key information
relative to time from the input MTS signals. This module
is modeled by 1D convolutional layers, batch normalization
layers, and non-linear activation functions.

In each 1D convolutional layer, 1D convolution operations
are carried out between the input 1D data and q 1D kernels
W . The size and the number of 1D kernels are hyper-
parameters that are tuned to specify the ”interesting”
time interval size and the number of abstractions to be
extracted from the input data, respectively. Each 1D
convolutional layer produces a 1D feature map (i.e., output
vector) per kernel. Disparate 1D kernels have different
frequency content; thus, extracting different features from
the input data. One can interpret a 1D feature map as
the response of the input signal to the corresponding
1D kernel. Note that pooling layers in this work are
discarded in favor of tuning strides s and padding P hyper-
parameters in the convolution layers. Replacing pooling
layers with convolution layers with larger strides has been
found helpful in training generative models and it results in
no degradation in model performance (Springenberg et al.
(2015)).

Next, batch normalization layers ensure that the inputs to
the hidden layers follow the same distribution (i.e., have
normalized mean and variance) which enables a higher
convergence rate of the network. Then, the non-linear
activation function induces non-linearity in the network
and allow the stacking of multiple layers required to
learn complex patterns from the input data. This module
produces a set of 1D feature maps to be fed and processed
by the next module in the pipeline.

4.2 Image formation module

In this module, a 2D matrix is formed by vertically
stacking the set of 1D feature maps extracted from the last
layer L1 of the previous module. The 2D matrix represents
a collection of optimal 1D feature maps that best explains
the temporal features of the input MTS signals. Since it
comprises the feature that best map the input MTS data
to the output labels, visualizing the 2D matrix as an image
could offer hints or visual clues about the raw MTS data.
In a one-channel image, the color intensity of each pixel
is proportional to the corresponding entry’s value in the
associated matrix. One can think of the formed image as
the visual representation of the input MTS signals. The
2D image obtained can be expressed as follows:

hL1+1 = [hL1
1 , hL1

2 , ....., hL1

K ]T (7)

where K is the total number of 1D feature maps at layer
L1. The dimension of the generated 2D image is K × L′.
Assuming valid convolution (i.e., P = 0) is performed,
then L′ is computed as follows, assuming s and LW are
constants:

L′ =

Lin − LW +
L1−1∑
i=1

si(1− LW )

sL1
(8)

4.3 Visual feature extraction module

Unlike the visual representation learning component of the
network, the input of the visual feature extraction module
is an image (i.e., a 2D matrix) that corresponds to the
visual representation of the raw MTS data. In this module,
the one-channel image obtained from the previous module
is visually recognized, and visual features and patterns are
learned via 2D convolution operations. This component of
the network is analogous to the first module; except that
the 1D convolutions are replaced by 2D convolutions. The
2D convolution operations enable the network to capture
the interactions and co-movements between the different
time-series signals. We also highlight that each layer in
this module creates abstractions based on the informa-
tion propagated through previous layers; for example, the
first layers usually extract low-level information while the
deeper layers find more complex patterns. This module
results in a set of 2D feature maps, each of which is formed
by applying the 2D convolution operation on different
receptive fields of the input 2D matrix. Note that different
2D kernels extract and detect different structures and
patterns of the input visual data representation. In this
way, different local correlations at different locations of
the input image can be learned.

4.4 Classification module

This module is represented by a multi-layer perceptron
(ML) network that takes in a flattened output from
the previous module as input and maps it to a scalar.
Flattening concatenates the 2D feature maps to form a
flat structure that can be fed into an MLP network. The
MLP network is a network in which the neurons from each
layer are connected to all neurons in the next and previous
layers. In the context of binary classification, the output
layer of the MLP network consists of a single output
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Fig. 6. A sample of the proposed network configuration. Abbreviations: BN - batch normalization and AF - activation
function.

neuron ŷ that indicates the class score (i.e., probability of a
faulty event P (y = 1)) of the input MTS signals which can
be described as the weighted sum of the hidden values from
the last hidden layer, followed by a sigmoid function. Note
that although we consider a binary classification problem
in this work, the network can be extended for multi-class
classification problems. For multi-class classification tasks,
the number of output neurons of the network is equal to
the number of classes and the output activation function
is softmax function.

For classification tasks, the loss function represents the
divergence of the predicted class score ŷ (i.e., probability)
from the actual class label y. Since this work deals with
classification problems that have two output classes, a
binary cross-entropy loss is used to measure the network
performance and it can be expressed as:

L(W, b) = − 1

Ns

Ns∑
i=1

yilog(ŷi) + (1− yi)log(1− ŷi) (9)

where Ns represents the total number of input MTS sig-
nals, yi is the true label for the ith input MTS signal, and
ŷi is the predicted class probability. Next, the proposed
network is trained by minimizing the loss function using an
optimization algorithm. The optimization algorithm and
its arguments are hyper-parameters to be specified before
the training process.

5. INDUSTRIAL CASE STUDY

In this section, a case study of an industrial direct current
electric arc furnace (DC EAF), a crucial part of the
steelmaking process, is presented to further investigate the
effectiveness of the proposed visual analytics framework for
fault detection.

5.1 Process Description

DC EAF, as illustrated in Fig. 7, is widely used for
steelmaking. Typical mining and metallurgical processes
consist of three primary stages; the first is the ore ex-
traction stage in which the ore is extracted from open pit
mines using trucks and hydraulic shovels; the second is
the ore preparation and feeding stage where the extracted
ore undergoes several upstream processing (e.g., screening,
crushing, drying, calcining, etc.) to provide a fine particu-
late DC EAF feed that is dried, reduced, and heated; the
final stage is the smelting stage, whose role is to smelt and
refine the processed ore into base metals using the DC
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Fig. 7. An illustration of a direct current electric arc
furnace (Rippon et al. (2021)).

EAF unit. More details about the process and the data
pre-processing can be found in (Rippon et al. (2021)).

The overall DC EAF process can be summarized as
follows: pulverized, processed ore is fed into the twin
electrode DC EAF unit, a refractory-lined vessel with
two tapping launders, for smelting under high-temperature
conditions. In DC EAF, the electrical energy is converted
into thermal energy mainly by the arcs that span from the
top graphite electrode tips to the surface of the molten
scrap metal (i.e., slag). The feed enters the furnace from
multiple ports along the roof, whereas the slag and alloy
are tapped intermittently from the launders.

To maximize production efficiency, decrease the variability
in the final product, and increase profitability, the DC
EAF operation needs to be stable. An unexpected loss
of the plasma arc is a recurring and unresolved fault that
significantly impacts the production rate and the electrical
efficiency of the furnace. Electrical disturbances from the
DC power supply, feed disturbances from the upstream
metallurgical processes, and the operation of the EAF are
three main probable causes of an arc loss.

5.2 Data description

The DC EAF process is a multivariate system with strong
non-linearity and correlations between process variables.
In this case study, an entire year of operation data is



collected from multiple upstream units, the DC EAF unit,
and the power supply system. The sampling frequency of
the measured variables is 3 seconds. The dataset is highly
imbalanced with > 99% of the instances belonging to the
no arc loss class (i.e., smooth operation, Y = 0) while
only < 1% of the samples are labeled as ac loss (i.e.,
faulty operation, Y = 1). To address the class imbalance
challenge, the majority class is randomly under-sampled.
Hence, the final data consists of 3052 MTS signals with
a balanced class ratio of 50:50. Each sample corresponds
to 55 consecutive minutes worth of 96 different process
variable measurements taken either during a smooth or
faulty operating period. The objective is to develop a soft
sensor to predict if a given MTS signal (i.e., 96 1D signals)
of size 1100 (=55 operating minutes) belongs to a smooth
operation or a faulty operation (i.e., arc loss event).

6. EXPERIMENTAL RESULTS & DISCUSSION

The experiments in this work mainly consist of training,
validating, and testing five different models to predict the
arc loss events in the DC EAF unit. The five models con-
sidered for this work are the following: i) 1D-CNN, ii) 2D-
CNN on raw features (i.e., actual process measurements),
iii) RP followed by 2D-CNN, iv) GAF followed by 2D-
CNN, and v) our proposed model. The input data for the
1D-CNN model is a 96-channel 1D vector in which each
channel corresponds to a different process variable. Next,
the 96 1D signals are fused into a 2D matrix and used as
an input for the 2D-CNN model. Our experimental set-up
has two key objectives: i) investigating and validating the
benefits of visual representation of MTS signals in solving
fault detection tasks (i.e., MTS classification tasks) and
ii) comparing the performance of the proposed method
with respect to other state-of-art signal imaging tools (e.g.,
GAF and RP) on multivariate industrial operating data.

A hold-out strategy is employed for model evaluation
which implies that the entire dataset is taken and split,
chronologically rather than randomly, into three subsets:
i) 70% training set (50:50), ii) 15% validation set (50:50),
and iii) 15% testing set (50:50). Next, a random search over
a manually predefined search space is performed to find a
well-performing model configuration for each model. The
number of trials used in the random search is manually
chosen depending on the size of the search space, the
size of the data, and the available computational power.
Finally, models with the hyper-parameters configuration
that achieved the best performance on the validation set
during the random search are tested on the testing set,
and the results presented in this section are reported on
the final testing set.

The experimental results are summarized in Table 1. Five
different evaluation metrics are used to evaluate each
model’s performance. Accuracy is simply defined as the
sum of true predictions over the total number of testing
samples. Moreover, the percentage of true predicted alarms
over total alarms is defined as precision while TPR (i.e.
recall) is defined as the number of times arc loss is correctly
predicted divided by the total number of arc loss events.
Next, FPR is defined as the number of false alarms per
the total number of no arc loss events, and the F1 score
represents the harmonic mean of precision and recall. The

most precise experimental configuration is with a 2D-CNN
on raw features whereas our proposed approach has the
highest score in four out of five key performance metrics.

Although 1D-CNN has a simple configuration and low-cost
implementation since it consists of a series of 1D convolu-
tion operations, it fails to sufficiently capture the various
local correlations among different process variables; as
supported by the results. Moreover, directly re-arranging
MTS signals into a 2D matrix of size (1100 ) as a 2D-
CNN input has a major drawback which is that the various
local correlations between process variables that are not
within the same local receptive field are partially captured
by the traditional CNN (i.e., the model performance is a
strong function of the order at which the variables are
listed in the fused 2D matrix). For imaging tools (e.g.,
RP and GAF), the computational complexity is directly
proportional to a power law of the input size Lin. Hence,
the raw MTS signals, of size 1100, are reduced to a fixed
length of 110 using Piece-wise Aggregate Approximation
(PAA) smoothing. Then, GAF and RP images are built
on the smooth MTS signals (of size 110). The significant
reduction in the signal size results in a loss of temporal
information in the input MTS data; thus, RP and GAF are
not able to capture the auto-correlations in the raw MTS
data sufficiently. This explains the poor performance of
the GAF-CNN and RP-CNN models. Next, our approach
exploits the best characteristics of both 1D-CNN and 2D-
CNN. It is capable of taking 1D signals of any size without
the need to use PAA smoothing due to the simple config-
uration and low computational complexity of 1D-CNN. In
addition, the 2D-CNN component helps the network to
capture and recognize the temporal and local correlations
in the input MTS signals.

For process monitoring applications, the adoption of ML
models can’t be assessed solely on their predictive power,
they have to be able to provide a reasonable explanation
for their decisions/ predictions. Process experts should
be enabled to verify and examine the relatedness of the
model’s prediction to the actual process. We believe that
the visual data representation could help lift the veil of
deep learning algorithms (i.e., the so-called ”black box”
problem) by providing visual hints about the process con-
ditions and incorporating process knowledge in the anal-
ysis process. Note that imaging tools like RP and GAF
produce a 1-channel image for each univariate time-series
signal; therefore, the visual representation of MTS data is
a multi-channel image in which the number of channels
is equivalent to the number of variables (i.e., the number
of univariate time-series). Since normal computer moni-
tors can’t render images with more than three channels,
one has to search for the set of three channels that best
discriminate between the normal and faulty MTS signals
which could be challenging for high dimensional systems.
Fig. 8 shows only 3 channels of the RP and GAF images, of
size 110× 110, as RGB images constructed from the DC-
EAF data during two different operating modes (I and
II). RP and GAF adapt differently to different types of
signals; therefore, one can visually differentiate between
images corresponding to normal signals (Y = 0) and faulty
signals (Y = 1) as shown in Fig. 8. Note that for multi-
modal processes, RP and GAF will also produce differ-
ent visual representations for signals taken from different
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Fig. 8. An illustration of: a) GAF encoding examples and
b) RP images as RGB images obtained from DC EAF
data for smooth signals Y = 0 and faulty signals
Y = 1 at two different operating modes (I and II).
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Fig. 9. An illustration of the visual representation of DC
EAF data obtained using the proposed approach for
smooth signals (Y = 0) and faulty signals (Y = 1).

operating modes. Moreover, Fig. 9 illustrates the visual
representation extracted from the image formation module
of the proposed network which is a one-channel image of
size 1100 × 256 (L′ = Lin = 1100 and K = 256). Since
the size of the visual representation obtained in the image
formation module is larger than GAF and RP images, the
overall texture and typology are not as clear as in RP
and GAF images. Finally, since our proposed approach
yielded competitive results in detecting arc loss events
in the DC EAF unit, it means that the visual analytics
paradigm is capable of producing images from MTS signals
that contain information needed to discriminate between
healthy and faulty signals.

Table 1. Results summary

1D-CNN 2D-CNN GAF RP proposed

Accuracy 69.87% 71.18% 63.97% 65.72% 75.76%
Precision 62.28% 72.00% 66.15% 63.89% 71.97%
TPR 73.20% 70.13% 79.18% 70.93% 79.63%
FPR 32.58% 27.75% 57.67% 39.39% 27.69%
F1 67.30% 71.05% 72.08% 67.22% 75.60%

7. CONCLUSION AND PROSPECTS

In this paper, we evaluated the application of two state-
of-the-art time-series imaging approaches on a large in-
dustrial dataset in a supervised fault detection set-up.
In addition, we introduced an end-to-end visual analytics
workflow using 1D and 2D convolution operations. Exist-
ing and new methods are tested on a real industrial dataset
to explore how MTS data can be encoded into pixelated

images to reveal normal versus abnormal process opera-
tions. In other words, the problem of fault detection is
configured as a visual analytics problem. Visual analytics
is a promising research area that can offer significant bene-
fits to the process industry. In future work, the application
of visual analytics in data pre-processing and cleaning will
be investigated.
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