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Abstract: This paper focuses on evaluating the performances of various approaches to solve
a day-ahead energy scheduling Mixed Integer Linear Programming (MILP) cost minimization
problem, with hybrid energy generation system consisting of solar photo voltaic (PV), waste
to energy (WTE) and main grid. The system under consideration is a highly energy-intensive
industrial facility that can be generalized to any industrial process regardless of the domain.
Out of the three case studies considered in this paper, the first case study deals with adopting
unsupervised machine learning approach to generate a reduced number of probabilistic scenarios
of the uncertain parameters and implements the Here & Now and Wait & See algorithms to
solve the resulting stochastic optimization problem. While the second case study directly collects
and assumes a finite set of historical data of the uncertain parameters as scenarios, the third
case study uses an evolutionary algorithm called Limited Evaluation Evolutionary Algorithm
(LEEA) to solve the energy scheduling problem with associated constraints. Various performance
metrics such as mean absolute error (MAE) and root mean square error (RMSE) are utilized to
compare the performances of the various approaches presented through case studies. The values
of these evaluation metrics showcased the enhanced performance of evolutionary algorithm based
approach compared to the other two approaches.
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1. INTRODUCTION

The traditional strategy followed in any energy-intensive
industry is to prepare a schedule of operation based on the
energy demand and the energy-supply cost. However, the
main technological challenge for energy-intensive indus-
trial processes solely depending on the electricity grid lies
in the (1) high uncertainty in future electricity prices and
(2) non-eco-friendly use of conventional fossil fuel based
power generation mechanisms. These drawbacks can be
averted by the penetration of renewable energy sources
(RES) into the energy market. Although the inclusion
of RES leads to economic cost savings and reduced en-
vironmental effects, the main challenge with these non-
conventional energy sources (especially solar PV and wind
energy) lies in the intermittency in availability. For in-
stance, the energy generation from these sources can vary
based on the time of the day and seasonal variations.
Scheduling decisions made without adequate consideration
of these uncertainties can often lead to uneconomical plant
operation and demand unfulfillment. The aforementioned
drawbacks of these energy resources can be mitigated
by incorporating several complementary solutions such as
flexible generation, use of energy storage technologies (e.g.

batteries), enforcing demand response, and the use of a
hybrid combination of several energy resources.

The research area of optimization in production scheduling
has been a subject of great interest both in the operations
research community and the process systems engineering
community (Zhang and Grossmann (2016), Pravin et al.
(2020)). Several studies examined production scheduling of
industrial operations particularly concentrating on energy
intensive chemical processes. While Zhang et al. (2015)
focused on the optimal scheduling of air separation unit
taking electric energy and reserve market into account,
Cao et al. (2016) considered varying market conditions
to study the optimal dynamic operation of air separation
plants. Several other studies have focused on the design of
industrial operations with time-varying electricity prices.
While Miller et al. (2008) analyzed the intermittent op-
eration of an industrial facility using the process model
and three electricity price tiers, the optimized design of an
industrial facility subject to constant product demand was
studied by Pattison and Baldea (2014) with two electricity
price tiers. Mitra et al. (2014) developed optimization
problems for energy-intensive industrial processes and ap-
plied it for an air separation unit. They formulated a set
of two optimization problems including a classical problem



with a deterministic product demand and a stochastic
optimization problem with uncertain product demands.

Generally, the traditional fashion in production scheduling
assumes a constant future electricity price profile and
at often times neglect the effect of uncertainty (Misra
et al. (2021)). However, the magnitude and shape of the
future electricity prices generally fluctuates based on the
energy market conditions. On a similar note, while consid-
ering the highly intermittent renewable energy sources, the
uncertainty associated with the energy generation based
on the seasonal variations need to be considered in the
scheduling phase. For handling the aforementioned uncer-
tainties, stochastic optimization is traditionally adopted
which is designed based on the past historical trends
of these uncertain parameters, generally referred to as
scenarios. The scenario data sets are generated for each
uncertain parameters and can easily make the stochastic
optimization problem computationally complex. Scenario
reduction techniques are generally adopted that reduces
the big dataset to a reduced number of data, eventually
reducing the computational burden and memory usage.

In this work, as a case study, we consider the optimal
energy scheduling of a highly energy-intensive industrial
facility that can be generalized to any industrial processes
irrespective of the domain. We consider three energy re-
sources viz. solar PV, waste to energy (WTE) that utilizes
the waste generated within the industry to generate en-
ergy, and main grid that generally uses a combination of
several energy generation mechanisms, in a hybrid fashion
that optimally supplies energy to the industrial facility
based on the electricity prices and availability of each
sources. While the future solar PV energy generation
depends on the highly intermittent solar irradiance, the
main grid electricity price in the future depends on several
factors like the fluctuations in the electricity market as well
as pull and push of the demand and supply. Stochastic op-
timization is formulated for the resulting energy scheduling
problem to generate an optimal day-ahead schedule of the
energy mix among the available energy sources.

The aims of this work are (1) to utilize the historical
data of the uncertain parameters to generate scenarios
and implement unsupervised learning algorithm (K-means
clustering in this study) to reduce the scenarios to a
smaller dataset with associated probabilities to perform
the stochastic optimization, (2) to implement the classical
Here & Now and Wait & See approaches to solve the
resultant stochastic MILP based energy scheduling prob-
lem, (3) to solve the same problem using the immediate
past finite dataset of the considered uncertain parameters
with equal probabilities, (4) to implement and analyze the
capability of evolutionary algorithms (Limited Evaluation
Evolutionary Algorithm (LEEA) in this study) that com-
pletely avoids the scenario reduction method and work on
a limited number of data samples for each generation to
solve the scheduling problem, and finally (5) to compare
the performances of the above discussed approaches using
various performance metric analysis such as MAE and
RMSE.

The remainder of this paper is organized as follows: A
brief description of the system under consideration is
presented in Section 2 followed by a discussion on the
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Fig. 1. Block diagram showing the hybrid power system
with associated power sources

various classical stochastic optimization approaches and
the problem formulation in Section 3. Section 4 elaborates
on the the various case studies considered in this work
with the results and discussion in Section 5. This paper
ends with concluding remarks in Section 6.

2. SYSTEM DESCRIPTION

The system under consideration is a generalized energy-
intensive industrial facility designed with a hybrid combi-
nation of various energy resources. A combination of three
different energy sources namely the solar PV, waste to
energy (WTE) and main grid are equipped in order to
ensure undisrupted delivery of energy to the industrial
facility. As the energy system parameters such as the
main grid energy price and the solar PV irradiance/energy
are stochastic in nature, the historical data for these
parameters (referred to as scenarios) are collected from
various sources. For demonstration purpose, all associated
data and parameter values considered in this study are
collected from authorized weather and electricity websites
of Singapore. For instance, past solar irradiance data and
main grid electricity price data were collected from the
meteoblue website (Meteoblue (2020)) and the Energy
Market Authority (EMA) website (EMA (2020)) of the
Singapore government respectively. As illustrated in Fig-
ure 1, the stochastic optimizer in the scheduling layer uses
the reduced scenario sets of these uncertain parameters to-
gether with the deterministic parameter values to generate
an optimal day-ahead schedule of the individual energy
contribution of the available energy sources.

3. STOCHASTIC OPTIMIZATION

Stochastic optimization or stochastic programming is an
approach of solving optimization problems that involve
uncertainty. In the case of uncertainty in the input data
to the optimization problem, a set of discrete scenarios
s € S with associated probabilities p, for the uncertain
parameters gets generated using the scenario reduction
method, resulting in a probability distribution of future
realizations of the uncertain parameters. We implement



two classical solution approaches: the Here & Now and
Wait & See approaches to the formulated stochastic op-
timization problem. A brief discussion on these two ap-
proaches together with their mathematical formulation is
presented in the upcoming subsections followed by the
energy scheduling optimization problem formulation for
the proposed industrial facility.

3.1 Here € Now approach

In the Here & Now approach, with several possible out-
comes s € S of the uncertain parameters, a decision has
to be made now before knowing which of the possible
outcomes s realizes. The general formulation of the op-
timization problem for the Here & Now approach is as
follows:

zuN = mingEses f(z,s) (1)

st. x € C =NgesCly
where, f(z,s) denotes the objective function with decision
variable x which has to be feasible for all possible scenarios
s, and Cj is the feasible region given by the constraints in
scenario s. The expected value operand in Equation 1 can
be formulated as the sum of probabilities of the scenarios
as shown in Equation 2.

Eesf(w,s) = 3 pof(2,5) (2)
ses
Hence, in this approach, the optimal decision variables
z* minimizes the expected value of the objective function
zg N assuming that all scenarios in set S can occur.

3.2 Wait & See approach

The Wait & See approach generally assumes that we can
wait to design our system until uncertainty occurs. In
essence, this approach assumes perfect knowledge of the fu-
ture uncertainties which is generally not implementable in
practice, but provide appropriate bounds on the solution.
This approach optimizes each scenario s in the reduced
scenario set separately as follows:

zs = ming f(z,s) (3)
st. xzed,

For each scenario s, an optimal solution z; with corre-
sponding decision variables s is obtained, resulting in a
set of S optimal solutions. Finally, the expected value of
the optimal cost is calculated as follows:

zws = Eseszs = ZPSZS (4)
seS

3.8 Problem formulation

A stochastic optimization problem is formulated to mini-
mize the overall cost of energy contributed by the hybrid
energy sources with associated constraints. Altogether,
two uncertain parameters are considered in this case viz.
solar irradiance/energy and the main grid energy price.
These uncertain parameters are represented by the super-
script s in the objective function J of the optimization
problem as follows.

NT
J =miny (PSES" + PlyrpElyre + Py EYy) ()
t=1

It need to be ensured that the energy delivered by the
hybrid combination of energy sources always meets the
demanded load energy by the industrial facility at all
times. This constraint is formulated as follows:

E
ED'< Y E! (6)

The problem also makes sure that the power delivered
by each energy sources should be always between the
lower and upper bounds of the designed capacity of each
energy sources. The upper and lower bounds are decided
by taking the stochastic nature of the solar PV generation
into account in order to ensure that the inequality holds.
This constraint is formulated as follows:

t t,s t
ES,?rLin < ES < ES,maw (7)
t t t
Ewremin < Ewre < Ewremas (8)
t 13 13
EJW,min < E]\/I < EM,ma.r (9)

where, NT is the total number of time slots in the horizon,
t is the time period, s denotes stochastic parameters, e € £
denotes energy sources, P! is the price of energy from e*?
energy source at time period ¢, E? is the energy available
from e energy source at time period ¢, ED? is the energy

demanded by the load at time period ¢, E! is the

e,min
lower bound/capacity of the e energy source at time
period ¢ and Eé’mam is the upper bound/capacity of the
e!" energy source at time period t. The average energy
prices of solar PV, WTE and main grid used for solving
the energy scheduling problem are 0.065, 0.088 and 0.097

SGD/kWh respectively.

4. CASE STUDIES

Three case studies are considered for demonstrating the
stochastic energy scheduling problem for the energy-
intensive industrial facility. The first case study adopts
scenario reduction using machine learning technique (K-
means clustering) to reduce the big dataset (1 year data
of both solar irradiance and main grid energy price) to a re-
duced number of scenarios to perform stochastic optimiza-
tion using the Here & Now and Wait & See approaches.
The second case study uses the immediate past 10 days
data of the uncertain parameters with equal probabilities
to perform the stochastic optimization. In the third case
study, the concept of scenario reduction is avoided and
the stochastic optimization problem is solved using the
Limited Evaluation Evolutionary Algorithm that works on
a limited number of data samples from the big dataset
for each generation. Finally, a thorough performance eval-
uation of the three approaches is carried out by com-
paring the day-ahead schedules of these approaches with
the actual day profile with the help of evaluation metrics
like Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE). For demonstration purpose, the day of
interest (for which the day-ahead schedule is generated)
is taken as 31°¢ of Dec 2020 and the associated data and
the parameter values used for the simulation are that of
Singapore. Also, it is assumed that the industrial facility
under consideration is operational only for a duration of
10 hours starting from 8 am and ending at 5 pm Singapore
time. The simulations for all the case studies are performed
on a Windows IntelCore i7 (1.80 GHz) processor.



4.1 Case study 1

In this case study, as part of the scenario generation for
stochastic optimization, past 1 year data (1% Jan 2020
to 30" Dec 2020) of the solar irradiance and main grid
electricity price is collected from appropriate sources in
Singapore. As discussed, K-means clustering algorithm
is applied to this data to reduce the big dataset to a
reduced number of scenarios. K-means clustering is a type
of unsupervised machine learning algorithm that generally
finds groups (known as clusters) within the big data that
have not been explicitly labeled. In K-means clustering,
the number of centroids (i.e. value of K) we wish to
divide our data points into, has to be pre-determined
by the user. A centroid is basically an imaginary or real
location representing the center of the cluster. For this
study, we have chosen the value of K as 10 meaning
that the past 1 year dataset for the uncertain parameters
are reduced to 10 scenarios with associated probabilities.
Figure 2 and Figure 3 shows the reduced scenarios for
the solar irradiance and main grid electricity price using
K-means clustering with their corresponding probabilities
respectively.
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Fig. 2. Reduced scenarios of solar irradiance
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Fig. 3. Reduced scenarios of main grid electricity price

Both Here & Now and Wait & See approaches are per-
formed to solve the stochastic optimization problem to

generate the optimal energy mix among the available
sources. The Here & Now approach involves a single opti-
mization run over all the scenarios, where expected value
is a part of the objective function of the optimization prob-
lem. The Here & Now approach for the cost minimization
problem is observed to give an objective function value
of 8.8290 Singapore Dollars (SGD) which indicates the
total cost incurred to meet the energy demand for the
day. It is important to note that the Wait & See approach
is not implementable in practice, as it assumes perfect
knowledge of the uncertainties in the future. However, the
Wait & See approach rather provides an upper bound on
the solution of the optimization problem. The Wait & See
approach for the cost minimization problem is observed
to give an objective function value of 10.9517 SGD which
indicates the upper bound for the solution. The profile
showing the energy demanded by the industrial facility and
the individual contribution of energy among the available
energy sources to meet the requested demand is shown in
Figure 4. For demonstration purpose, we restrict our focus
to show the results only for the Here & Now approach as
this approach shows better affinity to reality as compared
to the Wait & See approach, which is not practically im-
plementable. However, from the objective function values
of these two approaches, it is to be noted that there isn’t
much difference in the solutions. The cost minimization
objective function with the associated constraints is solved
using the CPLEX solver available in General Algebraic
Modeling Language (GAMS), with a computational time
of 15.75 seconds.
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4.2 Case study 2

In this case study, in order to ensure an effective compari-
son with the previous case study, immediate past 10 days
data (21°¢ Dec 2020 to 30" Dec 2020) of the stochastic
parameters are collected from the appropriate sources in
Singapore, which eventually acts as the 10 scenarios with
equal probabilities (0.1 in this case) for performing the
stochastic optimization energy scheduling problem. Figure
5 and Figure 6 shows the scenarios from the past 10 days
for the solar irradiance and main grid electricity price.
By adopting this data as the scenarios with equal prob-
abilities, stochastic optimization is performed using the



Here & Now approach to generate the day-ahead energy
schedule for the industrial facility. The individual energy
contribution by the various energy sources together with
the energy demanded by the load is shown in Figure 7.
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The objective function value resulted from solving the
scheduling problem in this case study is seen to be 8.8117

SGD which shows a slight variation from the value ob-
tained in case study 1. This is expected due to the pres-
ence of stochasticity in the parameters in both the case
studies. The clear differences will be evident from the final
comparison of the day-ahead schedule with the actual day
profile (i.e. 315" Dec 2020) which will be dealt with in the
upcoming discussions. This algorithm is also solved using
the CPLEX solver available in General Algebraic Modeling
Language (GAMS), with a computational time of 13.08
seconds.

4.8 Case study 3

Limited Evaluation Evolutionary Algorithms (LEEA) are
a special class of evolutionary algorithms specifically de-
signed for problems with exogenous stochasticity. This
algorithm is capable of handling mixed integer programs
comprising of both continuous and binary variables. One
of the key advantages of stochastic gradient descent is
that the gradient does not have to be calculated for the
complete training dataset (Prellberg and Kramer (2018)).
In essence, the gradient gets calculated for a single or a
small number of training examples at a time that sig-
nificantly reduces the computational effort compared to
working with the entire training set. This in effect, also
helps in reducing the chance of solution getting stuck in
local optima. LEEA is one such algorithm that evaluates
the population against a limited number of datasets for
each generation (Yaman et al. (2018)). This lean approach
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of evaluation greatly relieves the computational load, par-
ticularly on large training sets. Hence, this algorithm does
not confide in scenario reduction strategies compared to
other traditional stochastic optimization algorithms and
works on a small number of dataset within the big dataset
(15t Jan 2020 to 30" Dec 2020). The main design pa-
rameters for the LEEA algorithm are the population size
and the generation size of the problem under consideration
which is generally user specific. For this case study, we
used a population size of 40 and a generation size of 100
and the optimization problem is solved using the Python
IDE: PyCharm resulting in an objective function value of
10.7231 SGD with a computational time of 23.83 seconds.
The day-ahead energy schedule obtained from the LEEA
algorithm is shown in Figure 8.



5. RESULTS & DISCUSSION

In order to compare the performance of algorithms in the
above discussed case studies, the actual day profiles for
the solar irradiance (or solar energy) and the main grid
electricity price for the 315 of Dec 2020 is collected from
appropriate sources in Singapore. It is interesting to note
that due to the deterministic nature of the WTE source
in terms of both availability and energy cost, the energy
contribution from WTE source is seen to be exactly similar
for all the three case studies irrespective of the algorithm
adopted, as can be observed from Figures 4, 7 and 8.
Figure 9 shows the comparison of the actual profiles of
the hourly energy delivered from solar PV and main grid
energy sources with the forecasted profiles in all the three
case studies. For effective comparison of the profiles in the
case studies with the actual day profile, evaluation metrics
such as the mean absolute error (MAE) and root mean
square error (RMSE) are calculated from the data points
in Figure 9. Table 1 shows the MAE and RMSE values of

Table 1. Evaluation metric values for Solar PV
and Main grid

Metric CS1 CS2 CS3
MAE (kWh) 0.423 0.460 0.385
RMSE (kWh) 0.545 0.563 0.523

the two uncertain energy sources for the three case studies.
It can be observed that the MAE and RMSE values are
smaller for the case study 3 with LEEA algorithm implying
that the energy schedule generated in case study 3 better
matches with the real day profile as compared to the other
two case studies. The increasing order of magnitude of the
MAE and RMSE values for the three discussed case studies
are observed to be CS3 < CS1 < CS2.
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Fig. 9. Comparison of day-ahead schedules of three case

studies with the actual day profile

6. CONCLUSION

A day-ahead energy scheduling problem with hybrid en-
ergy generation system combining solar PV, WTE and
main grid to meet the demanded energy for a generic
industrial facility has been considered in this paper. Three
case studies are mainly dealt with to solve the energy

scheduling MILP optimization problem using various ap-
proaches. The first case study uses K-means clustering for
scenario reduction of the training dataset to reduce the big
data to a reduced set of scenarios with associated prob-
abilities. A finite number of immediate past days data is
utilized in the second case study to represent the scenarios
for the stochastic optimization problem. The third case
study avoids the scenario reduction of the training data
and uses an evolutionary algorithm (LEEA) to solve the
energy scheduling problem. It can be observed from the
results that although the LEEA in case study 3 possess
slightly larger computation time compared to the other
two cases, it is seen to outperform the other 2 case studies
in terms of lesser MAE and RMSE values.
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