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Abstract: Realtime reconstruction of flow fields is a prerequisite to precise condition monitoring
of hydraulic plant components. Because models based on Navier-Stokes equations are usually too
complex for a realtime use, reduced order models (ROMs) are a viable alternative. Specifically,
ROMs based on proper orthogonal decomposition and Galerkin projection are attractive,
because they result in small models comprising a few (in the order of ten) ordinary differential
equations. However, ROMs of this type often turn out not to be stable even for stable points
of operation of the real system and the original partial differential equation model. Stability
properties can sometimes be improved by fitting the ROM to the original data obtained
from finite-volume or similar simulations for the partial differential equation model. This is
unsatisfactory because a ROM is first derived in a systematic manner and then altered a
posteriori in an ad hoc fashion. We propose to use a Petrov-Galerkin projection instead, i.e., we
retain the optimal truncated basis to span the simulation data space but optimize the basis used
in the projection separately. We demonstrate this improves the stability properties of the ROM
considerably for a centrifugal pump, which is modeled with the Reynolds averaged Navier-Stokes
equations.

Keywords: reduced order model, Galerkin projection, Petrov-Galerkin projection, proper
orthogonal decomposition, radial pump, incompressible Navier-Stokes equation

1. INTRODUCTION

CFD simulations are established tools for the analysis
and optimization of hydraulic components such as pumps.
CFD is too computationally intensive, however, for real-
time applications such as condition monitoring. On the
other hand, results obtained from CFD simulations can be
used to derive reduced order models (ROMs), which can
close the gap between high accuracy and fast evaluation.
We apply projection-based model order reduction to data
of flow fields computed with CFD. Specifically, we ap-
ply the method of snapshots in combination with proper
orthogonal decomposition (POD) introduced by Sirovich
(1987). Reductions of this type require two steps: The
velocity field is represented as a linear combination of POD
modes, and the dynamics governed by the incompress-
ible Navier-Stokes equation are projected onto a finite-
dimensional space. This results in a set of ordinary differ-
ential equations. We refer to the resulting ROM as POD-
Galerkin-ROM.
POD-Galerkin-ROMs have been successfully derived both
for reference problems, e.g., the Karman Vortex Street,
and practical problems like airflow analysis (Deane et al.,
1991; Bergmann and Cordier, 2008; John et al., 2010;
Pyta and Abel, 2015). Some of these studies even con-
sidered parameter-dependent ROMs (Deane et al., 1991).
Amsallem and Farhat (2008) proposed a manifold-based

adaption to variations in the free-stream Mach numbers
for a reduced order model.
POD-Galerkin-ROMs after Sirovich (1987) have been re-
ported not to work well for some problems modeled with
the Navier-Stokes equations. As a remedy, these models
are sometimes fitted to the original CFD simulation data
by adjusting the coefficients in the ODE of the ROM.
This has resulted in useful ROMs for complex problems
including combustion and in combination with extended
Kalman filters (Couplet et al., 2005; Pyta and Abel, 2015;
Gunder et al., 2018).
We consider the velocity field in a fully resolved radial
pump, which is shown in Figure 1. Note that the com-
putational domain has a more complex shape than refer-
ence problems with Navier-Stokes equations such as the
Karman Vortex Street. It is the purpose of the paper to
compare the POD-Galerkin-ROMs, both before and after
the ad hoc optimization described above, and a ROM that
results from a more systematic optimization. We apply a
manifold-based optimization approach to ROM that, in
contrast to ad hoc optimizations, preserves the optimal
basis for the expansion of the simulation data, and obtains
an optimal basis for the projection step.
We briefly describe the CFD simulation and the model
reduction steps in sections 2 and 3, respectively, as needed
here. Subsection 3.3 states the alternative optimization
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Fig. 1. Top: 3D Model of the pump (left) and the respective
2D axial section (right). The pressure pipe is hidden
in this figure. Bottom: Velocity magnitude from CFD
simulation with interpolated values inside the blades.

method. Results for the radial pump model from section 2
are given in section 4. Conclusions are stated in section 5.

2. MODEL SYSTEM

We consider a radial pump with a low specific speed (ns =
12 1/min). We summarize the system and the numerical
setup as needed here (for details, see Limbach and Skoda,
2017). The computational domain consists of an impeller
with seven blades, a spiral volute, side chambers, and
the suction and pressure pipe as shown in Figure 1. It is
resolved with a body fitted, block-structured hexahedral
grid with in total 1.8 million cells for the CFD simulation.
This simulation combines the sliding grid approach with
the conventional form of the Reynolds averaged Navier-
Stokes equations

du

dt
=− (u · ∇)u+ (ν + νt)∆u−∇p, (1a)

∇ · u = 0, (1b)

where u, ν, νt and p denote the velocity, viscosity, eddy vis-
cocity and pressure, respectively. We use the open-source
computational mechanics software OPENFOAM (Weller
et al., 1998) which proved reliable in similar studies (see
Casimir et al., 2020 and citations therein). A Dirichlet inlet
boundary condition is set for velocity (u = 2.12ms−1)
together with a Neumann (zero-gradient) condition for
static pressure. At the outlet, Neumann boundary con-
ditions are set for velocity (zero gradient) and a Dirichlet
condition for static pressure. The impeller rotates at the
nominal operation point such that the angular velocity is
ω = 151.84s−1.
We compute a 3D CFD solution for the described pump
model and extract a 2D axial section of the flow field
at the nominal operating point of the pump (see Figure
1). The flow field solution from the time-variant grids
is interpolated onto a fixed, uniform cartesian grid. The
moving impeller solid domain is treated as a fluid by

interpolating values from the surrounding blade-wall adja-
cent flow fields (see Garcia, 2010; Wang et al., 2012). The
simulated flow and pressure fields are recorded at M = 52
equidistant time points. We refer to a field at a fixed
point in time as snapshot. The sampling time between
snapshots corresponds to a rotation of the impeller by
1◦. The resulting 52◦ degrees captured with the snapshots
correspond to a seventh of the full rotation of the impeller,
which suffices to establish a periodic sequence of snapshots
because the impeller has seven blades.

3. CONSTRUCTION OF ROM

3.1 Basic Techniques

We summarize two essential steps, proper orthogonal de-
composition and the ROM construction by projection, as
needed for the paper. Note that the singular value decom-
position can be carried out efficiently with the method of
snapshots (see, e.g., Volkwein, 2007).
Proper orthogonal decomposition The simulations de-
scribed in section 2 yield the spatially and temporally
resolved velocity u : Ω × R → Rd for every discrete time
tm, m = 1, . . . ,M and gridpoint xn ∈ Rd, n = 1, . . . , Ngrid,
where Ω ⊂ Rd is the spatial domain approximated by the
gridpoints xn.
We split velocities into a time-invariant mean ū(xn) and
the time-variant part ũ(xn, tm)

u(xn, tm) = ū(xn) + ũ(xn, tm).

and combine, for every tm, velocities at all spatial grid
points into column vectors(

ũ(x1, tm)T , . . . , ũ(xn, tm)T
)T
. (2)

Collecting these column vectors in the order m = 1, . . . ,M
results in U ∈ RN×M , which we refer to as the snapshot
matrix. Note that N = dNgrid = 2Ngrid, since all velocity
fields are two-dimensional throughout the paper.
Applying a singular value decomposition to U yields U =
ΦsvdΣV T , where the columns of Φsvd are an orthonormal
basis of the column space of U . We denote the i-th column
of Φsvd by Φsvd

i and refer to it as the i-th mode.
It is the central idea of proper orthogonal decomposition to
select the R�M columns with the largest singular values
in Σ as an approximate basis for the simulation data, i.e.,
for the column space of U . Assuming R̄ singular values
σi > 0 exist and are ordered such that σ2

1 ≥ σ2
2 ≥ . . . , the

number Eu(R) defined by

Eu(R) =
∑R

i=1
σ2
i /
∑R̄

i=1
σ2
i (3)

is a measure for the approximation quality of the truncated
basis. This implies any velocity vector (2) in U , or any
linear combination of the columns (2), can be approxi-
mated with the columns Φsvd

i , i = 1, . . . , R, to an error
controllable with E(R). We can split Φsvd

i into components

Φsvd
i =

(
φsvd
i (x1)T , . . . , φsvd

i (xn)T
)T ∈ RN (4)

that belong to the same spatial grid points as those in (2).
Just as the Φsvd

i form a truncated basis for the column
space of U , the φsvd

i (xn) defined by (4) can be used to
expand any ũ(xn, tm). This implies there exist, for any
ũ(xn, tm), coefficients a(tm) such that

ũ(xn, tm) ≈
∑R

i=1
ai(tm)φsvd

i (xn). (5)



The coefficients ai(tm) can be constructed with the meth-
ods described in the second part of this section and in
Section 3. Note that adding the time-invariant mean yields

u(xn, tm) ≈ ū(xn) +
∑R

i=1
φsvd
i (xn) · ai(tm). (6)

Examples of a mode Φsvd
i and coefficients ai are shown in

Figs. 3 and 5, respectively.

ROM construction by projection The second step, the
construction of the reduced order model (ROM), can be
split into two substeps again. First, u is approximated in
the Navier-Stokes equations by substituting (6) into (1).
The resulting approximate equations are then projected
onto the basis vectors (4), or basis vectors optimized for
this purpose described below. We denote the basis vectors
used in the second step by

Ψi =
(
ψi(x1)T , . . . , ψi(xn)T

)T ∈ RN , (7)

i = 1, . . . , R, and collect them in Ψ ∈ RN×R to permit this
generalization. The projection requires the scalar product

〈f, g〉 =
∑N

n=1
f(xn) · g(xn), (8)

for any f, g : Ω → Rd. The two substeps result in a set of
R ordinary differential equations∑R

i=1
Wki

dai(t)

dt
=
∑R

i=1

∑R

l=1
ai(t)al(t)Qkil

+
∑R

i=1
ai(t)Lki + Ck =: fk(a(t))

(9a)

k = 1, . . . , R, where fk(a) is used as an abbreviation and

Wki = + 〈ψk, φsvd
i 〉, Qkil = −〈ψk, (φsvd

i · ∇)φsvd
l 〉,

Lki = + 〈ψk, ν∆φsvd
i 〉 − 〈ψk, (ū · ∇)φsvd

i 〉)
− 〈ψk, (φsvd

i · ∇)ū〉,
Ck =− 〈ψk, (ū · ∇)ū〉+ 〈ψk, ν∆ū〉,

(9b)

i, l = 1, . . . , R. The differential operators in (9b) are used
to avoid a too cumbersome notation here. They need to be
replaced by discrete approximations (see, e.g., John et al.,
2010). The pressure term is usually neglected (see, e.g.,
John et al., 2010). As the zero divergence of the velocity is
already guaranteed in the CFD simulation, the continuity
equation (1b) also holds for (6) within the approximation
controlled with E(R) (see, e.g., Deane et al., 1991; John
et al., 2010).
The simplest choice for the modes Ψk are the modes
Φsvd
k . The projection is often referred to as Galerkin-

projection in this case. Because the Φsvd
k are orthogonal

and normalized by construction, they yield a particularly
simple mass matrix

Wki = 〈φsvd
k , φsvd

i 〉 = δki (10)

with Kronecker’s δki. This results in ODEs (9a) with
particularly simple left-hand sides

dak(t)

dt
= fk(a(t)), k = 1, . . . R. (11)

Because the projection with the particular choice Φk =
Φsvd
k is usually called Galerkin projection, we refer to

the ROM (11) as POD-Galerkin-ROM. The flow field
u(xn, tm) can be reconstructed by solving (9a) with the
initial condition ak(0) = 〈ũ(·, 0), φk〉, k = 1, . . . , R and by
evaluating (6).

3.2 Optimization of ROM by Simulation Data Fitting

It is common practise to postprocess the reduced order
model (11) by optimizing its coefficients (9b) such that a(t)
fit the original simulation data as good as possible (see,
e.g., Pyta and Abel, 2015; Couplet et al., 2005). This
approach is described below because it is needed for the
purpose of comparison. Section 3.3 then introduces an al-
ternative optimization method that exploits the nonlinear
geometric structure of the problem at hand. We claim the
approach described in section 3.3 to be superior and show
this claim holds for the example treated here in section 4.
The standard optimization approach can be carried out as
follows. Calculating the scalar product with φsvd

k on both
sides of (5) yields

〈Φsvd
k , ũ(·, tm)〉 ≈ ak(tm), (12)

for all k andm, where the right-hand side results with (10).
The left-hand side of (12), which we abbreviate by
asvd
k (tm), is the best approximation that can be obtained

with the truncated basis. It is therefore obvious to solve
the optimization problem

min
Qkil,LkiCk

R∑
k=1

M∑
m=1

(asvd
k (tm)− ak(tm))2 subj. to (11) (13)

to determine the values for the coefficients Qkil, Lki, Ck
for the ROM (9a) that result in the best approximation of
asvd
k (tm) by (9a). We denote the resulting values by Qfit

kil,
Lfit
kil and Cfit

k and the coefficients that result with these
parameters by afit(t).

3.3 Optimization of ROM on Grassmann manifold

The optimization (13) essentially fits the reduced model to
the original simulation data. Arguably, it is unsatisfactory
to first derive a reduced model systematically, and then
to adjust its coefficients in an ad hoc fashion. In this
section, we show that the basis vectors (7) and their use
in (9) provide the degrees of freedom for a systematic
optimization. Replacing the fit (13) by this systematic
optimization results in a reduced model with superior
stability properties in section 4.
The reduced order model from section 3 uses the POD-
modes Φsvd

i introduced in (4) twice,

(i) as a basis for the flow fields (see (5), (6)), and
(ii) in the projections (9b) that yield the coefficients of

the reduced order model (9a).

While the modes Φsvd
i are known to be optimal for (i)

(see, e.g., Volkwein, 2007, theorem 2.1), they are not in
general optimal for (ii). Methods that use the modes Φsvd

i
for both expansion and projection, i.e., for both (i) and (ii),
are collectively called Galerkin methods. Methods that use
the modes Φsvd

i only for (i) but permit Ψi introduced in (7)
to differ from Φsvd are often called Petrov-Galerkin meth-
ods (see, e.g., Fletcher, 1984, sec. 7.2). Petrov-Galerkin
methods like balanced truncation are established for linear
systems (Benner et al., 2015, sec. 2.2). Their application to
non-linear systems is subject to ongoing research (see, e.g.,
Berner and Mönnigmann, 2021).
We explain how to determine the optimal Ψi for (ii) in the
remainder of the section. Let Ψ ∈ RN×R be the matrix
with columns Ψi introduced in (7). Let Φ ∈ RN×R be the
matrix that contains the first R columns of Φsvd ∈ RN×N



Fig. 2. Illustration of the Grassmann manifold G(N,R).

introduced below (2). Recall these first R columns contain
the information used for the expansion of the flow field (6).
Furthermore, recall the functions ai(t) that solve the re-
duced order model (9) for a given initial condition depend
on Ψ, because the ψi appear in (9b). We write ai(t; Ψ) to
make this dependence clear throughout this section.
Finding the optimal matrix Ψ ∈ RN×R provides N × R
degrees of freedom to the optimization at first sight. This
number can be reduced by exploiting the properties of the
set of Ψ as follows. Finding the optimal Ψ ∈ RN×R is
equivalent to finding a specific R-dimensional subspace
of RN spanned by the columns Ψi. The set of all R-
dimensional subspaces of RN is itself not a linear space,
but a manifold, which we denote G(N,R) and which is a
Grassmann manifold. From a theoretical point of view, any
element P of G(N,R) is an equivalence class of orthogonal
matrices in RN×R, where two matrices are equivalent if
their columns span the same R-dimensional subspace. This
implies dimG(N,R) = R(N−R) (see, e.g., Edelman et al.,
1998), thus only R(N − R) degrees of freedom exist in
the optimization over all Ψ ∈ G(N,R). We represent an
element of G(N,R) by an arbitrary orthonormal matrix
from the equivalence class in the numerical optimization.

Having introduced G(N,R), the optimization problem can
be stated. It reads

min
Ψ

R∑
k=1

M∑
m=1

(asvd
k (tm)− ak(tm; Ψ))2

subject to range Ψ ∈ G(N,R) and (9)

(14)

Let the optimal solution be denoted by ΨGCG, the coeffi-
cients (9b) that result with ΨGCG by QGCG

kil etc., and the
coefficients that result with the ROM (9a) with these coef-
ficients by aGCG(t). The label GCG is short for Grassmann
conjugate gradient.
We summarize the most important aspects of solving (14)
in the remainder of this section. In order to restrict the
optimization to the R(N−R) degrees of freedom explained
above, we have to restrict it to Ψ that span subspaces in
the manifold G(N,R). This is sketched in Fig. 2, where S =
range Ψ and S ′ = range Ψ′. Instead of linear combinations
of Ψ and Ψ′ (dashed red line in Fig. 2), which are not in
general elements of G(N,R), we need to consider geodesics
(solid red line). Geodesics originating from S ∈ G(N,R)
can be parametrized with a single real parameter with
the exponential map ExpS(·), which can be introduced
as follows (Edelman et al., 1998, sec. 2.5). A geodesic
emanating at S is uniquely defined by its tangent H at
S. Given a matrix representation H ∈ RN×R for H, the
exponential map can be defined by

ExpS(sH) = ΨV̂ cos(Σ̂s)V̂ T + Û sin(Σ̂s)V̂ (15)

Data: Given Ψ(0) = Φ such that Ψ(0)T Ψ(0) = I, εopt
Result: Orthogonal basis Ψ(j) representing a test space minimizing F

compute initial gradient G(0) = ∂F
∂P according to (16)

set j = 0 and initial search direction to H(j) = −G(0)

while F (Ψ(j))/
∑M

l=R+1
σ2
l > εopt do

Minimize F (Ψ(j)(s)) via a line search along the geodesic, using the

exponential map in (15) with direction H(j)

set Ψ(j+1) according to (A.1)

compute new gradient G(j+1) according to (16)

calculate parallel transportations H(j)‖ acc. to (A.2) and G(j)‖

accordingly

determine conjugacy factor γj according to (A.3)

compute the new search direction

H(j+1) = −G(j+1) + γ(j)H(j)‖

reset H(j+1) = −G(j+1) if j + 1 ≡ 0 modR(N − R)

set H(j) = H(j+1), G(j) = G(j+1), Ψ(j) = Ψ(j+1) and j = j + 1
end

Algorithm 1. Conjugate gradient method on Grassmann manifold
following Edelman et al. (1998, sec. 3.3).

(a) (b)

Fig. 3. Magnitude of mode φ5(xn) from POD (a) and of
mode ψ5(xn) from of the solution to (14) (b).

where H = Û Σ̂V̂ T is a thin singular value decomposition
and s ∈ [0, 1] is a scalar parameter. Note that for s = 0
the exponential map ExpS(0) yields S.
The parametrization (15) is needed to carry out line
searches in the optimization along geodesics. The second
important ingredient to the optimization algorithm are
derivatives for determining descent directions. Let F refer
to the cost functional in (14). Then the derivative with
respect to a subspace S can be determined with

∂F

∂S
=
∂F

∂Ψ
−ΨΨT ∂F

∂Ψ
(16)

where ∂F
∂Ψ denotes the componentwise partial derivative of

F with respect to its basis representation Ψ. The deriva-
tive (16) is a tangent to the manifold G(N,R) at S, hence,
the parametrization (15) is used to map the derivative
onto the manifold G(N,R), i.e., the parametrization (15)
allows for moving in the descent direction on the manifold
G(N,R).
The combination of a line search in (15) with the deriva-
tives (16) then permits solving (14) with a conjugate-
gradient method following Edelman et al. (1998, sec. 3.3).
This results in Algorithm 1. The conjugacy factor γj is
computed with the method of Pollak-Ribiere (Edelman
et al., 1998, sec. 2.6). Since this method originally applies
to linear spaces, it needs to be extended for use with
G(N,R). A brief summary of the required steps is given in
appendix A.



(a) (b)

Fig. 4. Velocity fields at t = t0 + T/2: (a) magnitude, (b)
magnitude recovered from coefficients aGCG(t). Both
fields are scaled to the tangential speed of the impeller
outer radius. Solid black lines are streamlines.

Table 1. Parameters for reduction and optimization

Quantity value

number of snapshots M 52
number of cells Ngrid 36179

number of modes R 16
dimension of velocity d 2

dimension of modes N 72385
approx. quality Eu 0.9884

Grassmann manifold G(N,R) G(72358, 16)
dimensionless conv. crit. εopt 0.0025

4. RESULTS FOR THE EXAMPLE

We apply the optimization methods introduced in sec-
tions 3.2 and 3.3 to the 2D velocity field in an axial section
of a radial pump introduced in section 2 and analyze the
numerical stability of the resulting reduced order models
with numerical experiments. The axial section of the pump
is modeled with Ngrid = 36179 uniform cells with d = 2
velocity components in each cell. The POD modes are
generated from M = 52 velocity snapshots describing a
period T , and we truncate the system to R = 16 modes
which results in Eu(R) ≈ 99%. The resulting time coeffi-
cients asvd(tm), m = 1, . . . ,M are used in the optimization
problems (13) and (15). Since N = Ngridd = 72358, the
relevant Grassmann manifold is G(72358, 16). Obviously,
great care must be taken for the implementation of the
manifold-based algorithms due to their large size. Both
optimization algorithms are terminated when the stopping
criterion εopt = 0.0025 is reached. The parameters are
summarized in table 1.
We evaluate the two reduced order models that result with
the optimization methods for three time periods T and
compare time coefficients to asvd in Fig. 5. A good agree-
ment of aGCG(t) and asvd(t) is evident from the figure.
In contrast, the time coefficients afit(t) obtained with the
fitting algorithm from subsection 3.2 differ increasingly in
the second period and are not useful anymore in the third
period.
We note that the model that results with the method
introduced in section 3.3 results in a better approximation
even though the changes made to the modes Φi to obtain
the optimal Ψi in (15) are subtle. This is illustrated in
Fig. 3.

Figure 4 shows the a velocity snapshot and the ve-
locity field reconstructed from the coefficients aGCG(t).

As expected of the reconstruction û(xn, t) = ū(xn) +∑R
i=1 φi(xn)·aCGC

i (t), the difference between both velocity
fields is small on average, i.e., it is below 1% in root mean
square error, despite some isolated larger errors around
the blade tips. The difference of the velocity fields mostly
originates from the truncation in (3). The optimization
method in section 3.3 enforces the additional error of the
ROM to be εopt = 0.0025, i.e., an error that is three orders
of magnitudes smaller than the error from the truncation.
It is an obvious question to ask how the reduced order
models perform for longer time spans. The ROM obtained
by least-squares fitting prohibits evaluations for longer
time periods and is very sensitive to even small pertur-
bation in the initial conditions. In contrast, the reduced
order model obtained in section 3.3 converges to a stable
limit cycle (see Fig. 6), and this limit cycle is close to the
limit cycle that results for the original simulation data,
i.e., for asvd(t). Our numerical experiments indicate that
the reduced order model from section 3.3 tolerates per-
turbations in the initial conditions of 10%. The system is
attracted to the same limit cycle after such perturbations.
However, a further decrease of εopt, e.g., εopt = 0.0005,
yields an eventually unstable POD-Petrov-Galerkin-ROM.
The resulting ROM shows still far better long-term be-
havior than the POD-Galerkin-ROM in that it results in
bounded coefficients for approximately 250T , but misses a
stable limit cycle.

5. CONCLUSION AND OUTLOOK

We demonstrated that long-term stable reduced order
models can be obtained for hydraulic systems governed
by the Reynolds averaged Navier-Stokes equations. Es-
tablished methods do not result in stable reduced order
models for the example treated here. We propose to replace
a popular a posteriori fit of the reduced order model
with a more systematic optimization. In contrast to the
a posteriori fit, the proposed method leaves the truncated
basis, which results from a proper orthogonal decomposi-
tion, unaltered, and optimizes the projection basis used for
generating the ODE. In contrast to both the ROM with
and without a posteriori fitting, the new ROM is long-term
stable.
Furthermore, the proposed method is compatible with
parameter-dependent reductions such as proposed by Am-
sallem and Farhat (2008). Future work will address the
combination of the method proposed here with parameter-
dependent reductions. Moreover, future work will address
the extension to the full 3d pump model.
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Appendix A. CALCULATION OF γ(j)

Let the upper index j count iterations as in Alg. 1. Assume there
exists a local minimum of F (Ψ(j)(s)) at s = smin on the geodesic
given by the search direction H(j). Let

Ψ(j+1) = Exprange Ψ(j)

(
sminH

(j)
)
. (A.1)

Any matrix representation, such as G(j), of a tangent vector given
in the tangent space at range Ψ(j) can be parallel transported along
the geodesic to the local minimum spanned by Ψ(j+1). This results
in G(j)‖ =

G(j) −
(

Ψ(j)V̂ sin(Σ̂smin) + Û
(
I − cos(Σ̂smin)

))
ÛTG(j) (A.2)

where ÛΣ̂V̂ T is as in section 3.3. The conjugacy factor γj after
Pollak-Ribiere then reads

γ(j) =
〈G(j+1) −G(j)‖, G(j+1)〉e

〈G(j), G(j)〉e
(A.3)

where 〈·, ·〉e denotes the Frobenius inner product. We refer to (Edel-
man et al., 1998, sec. 2.5) for parallel transport and to (Nocedal and
Wright, 1999, sec. 5.2) for the conjugate gradient method.


