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Abstract: In this paper, a self-optimization algorithm is developed to find both the optimal
operating point and the path from the current condition to the optimal point. Being a model-
based strategy, a generalized locally weighted probabilistic principal component regression
(PPCR) model that is robust to outliers and can handle missing data, is developed to model
the plant. To account for the model-plant mismatch, a penalty term in the form of a robust
Gaussian process regression is incorporated into the optimization process. A non-linearity index
is utilized to control the accuracy of the local model. Finally, the exploration in optimization
for diversity through the acquisition functions is studied. The performance of the proposed
algorithm is demonstrated on a simulation case study of a deethanizer column.
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1. INTRODUCTION

Increasing productivity, safety, and efficiency have always
been the main goals of industrial plants. The objective of
plant optimization is to reduce resource wastage and re-
move bottlenecks while accomplishing the objective of the
plant and meeting all plant constraints, including opera-
tional, economic, and safety constraints. Due to the reduc-
tion in the availability of the raw materials (Manhart et al.,
2019), the increase in the market demand for the products
because of escalation in the world’s population (Mehta
et al., 2020), and the environmental concerns like global
warming as a result of the emission of the greenhouse
gases (GHG) (Zhang et al., 2021), plant optimization has
gained more popularity. One of the approaches to do plant
optimization is based on the model.

A model is generally obtained through two different ap-
proaches, i) first principles and ii) data-driven (Wiebe
et al., 2018; Chen et al.,, 2013). In the first principle
model-based approach, the plant is modeled by deriving
the governing equations from the fundamental laws, which
needs an in-depth understanding of the plant (Pani and
Mohanta, 2011). On the other hand, in data-driven model-
based approach, a model is built based on the historical
data. The closer the developed model is to the plant,
the more accurate results can be obtained by solving the
optimization problem. However, due to the differences
between the model and plant (model-plant mismatch)
and the disturbances that may occur during the data
collection, the optimal point obtained by solving the opti-
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mization problem will be different from the true optimal
point (de Avila Ferreira et al., 2018).

To account for the model-plant mismatch in process opti-
mization, the scheme of modifier adaptation was proposed
in Oliveira-Silva et al. (2021). In this scheme, the error be-
tween the developed model and the plant is incorporated in
the objective function while performing the optimization
by using the information and measurements collected from
the plant. Marchetti et al. (2009) provided a theorem that
demonstrates the equivalence of KKT conditions between
the plant and the model with the inclusion of the modi-
fier adapters. They suggested the use of gradients of the
objective function and constraints calculated from plant
measurements as a functional form of modifier adapter.
Although the calculation of gradients from noisy plant
measurements can be challenging, it is demonstrated to be
a reasonably reliable and effective approach. To overcome
the challenges with the calculation of gradients, several
methods such as nested modifier adapters (Navia et al.,
2015), recursive modifier adapters (Marchetti et al., 2010),
and derivative-free modifier adapters (Gao et al., 2016)
are proposed. Recently, de Avila Ferreira et al. (2018)
proposed using Gaussian process regression (GPR) as a
modifier adapter. In this work, the historical data and
real measurements obtained from the plant are used to
train the GP; thereby a nonlinear model that accounts for
the model-plant mismatch is obtained. del Rio Chanona
et al. (2019) proposed a trust-region framework and the
Gaussian process modifier adapters to control the opti-
mization region and to avoid the possibility of violation of
constraints. However, the convergence to a local optimal is
still a problem in all the aforementioned methods. One of
the approaches to overcome this challenge is considering



uncertainty when solving the optimization problem (del
Rio Chanona et al., 2021).

With the development of reinforcement learning, self-
reflective objective is gaining popularity (Kiran et al.,
2021). In this approach, the accuracy and reliability of the
optimization are improved by consideration of uncertainty.
Although many studies have focused on increasing the
accuracy of the modifier adaptation, the potential of rein-
forcement learning has not been studied extensively in the
modifier adaptation and optimization problems in general.
One of the concepts that can help to increase the accuracy
of the optimization is acquisition functions that are used
in Bayesian optimization and provide the balance between
exploration(trying something new) and exploitation(keep
doing what has been done) (del Rio Chanona et al., 2021).
In all the aforementioned studies, the modifier adaptation
scheme is used along with the first principle models, which
essentially requires an in-depth understanding of the pro-
cess and hence, is not always feasible. In addition to finding
the optimal point, an efficient way to steer the process
to the optimal point is of paramount importance. Trust-
region-based real-time optimization (RTO) is one of the
solutions finding an efficient path to the optimal point (Liu
and Chen, 2004). However, the application of the data-
driven RTO has not been well studied (Powell et al., 2020).

In view of the aforementioned points, a novel self-
optimization algorithm is developed in this work that can
find both the plant optimal point and the efficient way to
shift the current operating condition to the optimal one.
The proposed algorithm considers a generalized weighted
PPCR model due to its ability to deal with missing and
outlier data in both input and output variables, (Memar-
ian et al., 2021; Yuan et al., 2017). Since weighted PPCR
is a linear model, and the plant is nonlinear in general, a
non-linearity index is used to help the local data-driven
model to determine its accuracy. The non-linearity in-
dex measures the mismatch between the locally weighted
PPCR model and the nonlinear GPR model. Then, this
non-linearity index is used to determine the trust range
of the generalized locally weighted PPCR model; thereby,
the accuracy measure of the model is obtained. In addition,
the GPR is used as a modifier adapter to account for the
model-plant mismatch. Finally, an acquisition function is
adopted to study the exploration during the optimization
process.

The remainder of this paper is organized as follows:
Section 2 provides the data-driven self-optimization in
the presence of model-plant mismatch and the study of
acquisition functions for exploration. The efficiency of
the algorithm is illustrated through a simulation on a
deethanizer column to demonstrate its applicability and
feasibility in section 3, and the conclusions are drawn in
section 4.

2. DATA-DRIVEN SELF-OPTIMIZATION OF
PROCESSES IN THE PRESENCE OF THE
MODEL-PLANT MISMATCH

In this section, the data-driven self-optimization of pro-
cesses in the presence of the model-plant mismatch is
presented. The proposed approach utilizes a generalized
locally weighted PPCR model that can handle the missing

data in both input and output variables along with out-
liers. Further, due to its weighted local model property, it
can efficiently handle the nonlinearity and/or multi-modal
nature of plants (Memarian et al., 2021; Yuan et al., 2017).
A robust Gaussian process regression model is used to de-
termine the model-plant mismatch between the weighted
PPCR model and the plant. To balance the exploitation
and exploration in the optimization, the lower confidence
bound, described in del Rio Chanona et al. (2021), is
used as an acquisition function both in the objective and
constraint functions. The details are provided in the rest
of this section.

2.1 Generalized weighted PPCR model formulation

One of the important steps while solving an optimization
problem is to build a suitable model that can describe the
plant with sufficient accuracy. Data-driven modeling is one
of the approaches that can help achieving this objective.
In the proposed self-optimization algorithm, a generalized
weighted PPCR model is used as a data-driven model to
describe the plant (Memarian et al., 2021; Yuan et al.,
2017). The generalized weighted PPCR model is one of
the simplest models in dealing with uncertainties in the
plant’s datasets.

The generative equation for the generalized locally weighted
PPCR model is presented in Eq. (1).
z,=Pti+e +p,, 1=12---.,n (1)
Y, :Ctj+fg+/'l’ya Jj=12,--m
where, &; € R™*! and y; € R"*! denote the input and
output data, respectively. P € R™*9 and C € R"*? are
the weighting matrices, and t; € R?7*! is a vector of latent
variables defined in Eq. (2). The variables e; € R™*!
and f; € R"*! denote the noise measurement in input
and output, respectively, which are assumed to follow a
mixture of two Gaussian distributions given in Eqs. (3)
and (4) to account for both outliers and regular noises.
The mean values of the input and output variables are
denoted as p, and p,, respectively. n is the total number
of observations where n; denotes the number of labeled
ones.

ei~ (1= 8,)N(0,020) + 5N (0,0 021)  (3)
Fi~(1=6,)N(0, 051) + 0,N (0, pglazI) (4)

Due to the nonlinear and/or multi-modal nature of the
plants, developing a single PPCR model to capture the
entire plant is not suitable. Thus, to improve the accuracy
in modeling, exponential weights are calculated based on
Euclidean distance to select the most relevant data points
for building the model. The weights are calculated based
on Eq. (5).
2
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where ¢ is a tuning parameter that defines how the weights
are spread across the neighborhood of the testing data to
develop the locally weighted PPCR model, and d; is the
Euclidean distance. Further details of the locally weighted
PPCR model can be found in Yuan et al. (2017). The
model is developed under the framework of expectation

w; = exp(



maximization (EM) algorithm. In the E — step, the ex-
pectation of the log-likelihood function, Q — function,
presented in Eq. (6) is derived.

Q= Ex, 7,0.,Q,1X0, Y, 0%
> wilogp(@iy, Yy ti, Qu, Qy | 0) + > wilogp(aiy . ti, Qr, Qy | 0)}

i€0 i€eM

(6)
where 0 = {P,C, p,, p,,04:,0y,0z,0y, p, p,} is the set
of model parameters which need to be estimated, defined
in Memarian et al. (2021). O and M are the set of observed
and missing data, respectively. The (Q— function presented
in Eq. (6) is calculated by incorporating Egs. (2)-(5) and
following the Bayes rule.

The parameters are estimated through the solution of
partial derivatives of the @ — function given in Eq.(6) in
the M-step of the algorithm. EM algorithm is an iterative
procedure that the F — step and M — step are iterated until
the convergence. In the rest of this paper, the generalized
locally weighted PPCR model is denoted as GFPER,

2.2 Data-driven self-optimization algorithm formulation

Since the plant conditions change over time, the historical
data that is used to build the model may not be able
to accurately describe the current condition of the plant.
Therefore, a model-plant mismatch exists between the
weighted PPCR model built from the historical data and
the current condition of the plant. To account for this
model-plant mismatch, de Avila Ferreira et al. (2018)
proposed to use the Gaussian process regression (GPR). In
our problem, the objective of this GPR model is to build a
model by considering the difference between the values of
the objective function that are calculated from the plant
data (real-time measurements) and the estimation from
the locally weighted PPCR model. A similar approach is
also used for the variables that have constraint, and the
resultant set of equations are shown in Eq. (7).

0G; = Gf - Gz}'DPCR ~ gP(/”’éGia G%Gi)? =0, J(Lg)

7
where ng is the total number of constraints, where, in
Eq. (7), the difference between the variable measurements
and their predictions from the locally weighted PPCR is
calculated and the mean error is determined through the

Gaussian process regression (GPR) model.

Hence, the following optimization problem should be
solved.

W € argmin [GEPON + pub ()
u

st [GPPOT - pfe J(uf) <0, =1, n,
(8)
where u’gGi is the estimated mean of the GP regression
that accounts for the term of model-plant mismatch in
iteration k. The mean values used in Eq. (8) are those
values that are estimated from Eq. (7) which models the
model-plant mismatch and correct the bias in both the
objective function and constraints in the optimization. u
is the manipulated variable that can be defined based on

the process.

As discussed in section 2.1, the effective amount of data
points relevant to the current operating condition is de-
termined by tuning the parameter ¢ i.e., by decreasing

¢, fewer data points will effectively contribute to the
model construction. If the current operating point is in
a highly nonlinear region, building the locally weighted
PPCR (linear) model for a given ¢ might not be valid.
Thus, by decreasing the parameter ¢, fewer data points
that are closer to the current data point will receive more
significant weights; hence, a generalized locally weighted
PPCR model in a smaller region will be built. On the
other hand, when the weighted PPCR model approximates
the nonlinear plant well, we can increase area and have
more data point receiving higher weight. Hence, a non-
linearity index is proposed to define the range of data to
be effectively used, and based on the index, the param-
eter ¢ can be tuned. The non-linearity index calculates
the performance ratio between the nonlinear model (GP
regression model) built from the historical data and the
linear locally weighted PPCR model, shown in Eq. (9).

Pl = GEP (ub) — GEP(uht1)
[GETE + 15, (ub) = [GETR + uig, | (uh )

(9)

After calculating the non-linearity index from Eq. (9),
similar to the concept of trust-region optimization (del
Rio Chanona et al., 2019), three different thresholds are
determined to tune ¢. These three thresholds are 0 <
m < m2 < n3 < 1. The shrinking and expansion actions
to change ¢ are 0 < t; < 1 < ty where t; and t, are
shrinking and expansion values, respectively. It has to
be noted that these parameters should be tuned before
starting the algorithm.

The effective region of the locally weighted PPCR, model
is updated based on the following steps:

(1) I G (uF*17) > 0 for some i = 1,--- ,n, or pF*1 <y
then ¢ :=1t; X ¢

(2) Else if p**1 > 3 then ¢ := min{ty x ¢, o™}

(3) Else ¢ := ¢

where ¢™%" is the maximum allowable value that ¢ can
take. Based on the value of p, the decision will be made
on whether to repeat the optimization, or the obtained
optimal point can be used for the next iteration. The
decision criterion is as following;:

(1) IfGlP(’UukH*) > (0 forsomei =1,---,n4 or pk+1 <m
then ukt! := u*

(2) Else uft! .= uf+1"

Based on the aforementioned procedure, the number of ef-
fective data points, which will be used for the optimization,
will be changed and adjusted based on the performance of
the previous iteration. The steps of the proposed algorithm
are provided in Algorithm 1.

However, one of the drawbacks of algorithm 1 is that the
solution obtained from the optimization can get into the
local optimum. To circumvent this problem and pursue
the optimization explore, the acquisition function from
reinforcement learning and Bayesian optimization is used.
del Rio Chanona et al. (2021) proposed using the acqui-
sition functions in the objective function. However, in our
proposed method, acquisition functions are used both in
objective and constraint functions. Therefore, the LCB



Algorithm 1 Data-driven self-optimization algorithm

Input: Historical data (input and output); initial
(query) point, &4; maximum value for ¢™** and an initial
value for ¢; non-linearity threshold parameters 0 < 77 <
79 < n3 < 1; expansion and shrinking parameters ¢; and
t2; objective and n, constraint functions of the optimiza-
tion problem

Repeat: for £k =0,1,---

1: Build the generalized weighted PPCR model for the
given x4 and the historical data

2: Train GP regression modifiers based on the weighted
PPCR estimates and
the real-time measurements of the plant

3: Solve the modified optimization problem provided in

Eq. (8) and obtain

ukJrl

4: Calculate the non-linearity index p*+t!

5: Update the value of ¢ based on the value of p

6: Based on the developed criterion decide to accept the
new operating point
or to repeat the optimization problem in step 3.

T Tg uFt! or Tq u” based on the previous step’s
result

k41

acquisition function is used (Srinivas et al., 2012) and the
modified optimization problem is given in Eq. (10):

uf = argmin 65T + pig, — Boie,](u)
st (GO + pie, — Boig,l(u) <0, i=1,--- n,
(10)

where the variances estimated from the GPR in Eq. (7) are
used to move the optimization search to a newer region
and may therefore escape the local optimum points by
relaxing the constraints. The negative sign before [ is
consistent with the optimization formulation as the goal
is to minimize the objective function. Introducing the
LCB acquisition function in the constraints helps to relax
these functions while solving the optimization problem.
However, if it is needed to tighten the constraints, the UCB
acquisition function can be used. With the introduction of
acquisition functions, the optimization problem provided
in Eq. (10) is solved in the step 3 of Algorithm 1, and the
rest of the steps remain the same.

3. CASE STUDY

In this section, the performance of the proposed algorithm
is demonstrated by a simulation of a deethanizer column
through the Aspen HYSYS V.9 (Belhocine et al., 2020).

3.1 Simulation Example: Deethanizer column

The deethanizer column is a continuous operating dis-
tillation column used for extracting ethane as a distil-
late from a mixed feed that contains light hydrocarbons.
Deethanizer column is one of the most important units in
refineries and is usually located ahead of other units in the
plant.

In Fig. 1, the typical deethanizer column is shown. The
objective of the deethanizer column in the refinery plants
is to separate C3+ components from the upstream feed.

Fig. 1. Schematic of the deethanizer plant (Belhocine et al.,
2020)

The main objective of optimization is to minimize the
operational cost of the unit, which depends on the en-
ergy consumption in the reboilers, the condensers and the
pumps. To minimize the energy consumption, the temper-
ature and the feed rate of the input stream need to be
regulated. Hence, the objective function is defined as:
mianm,l,,Ff“ed Qreb + Qcond + qump

f(Qrcb7 Qcond-, qumpy Fbottmru XEthanc,bott0m7 chcd7 ched) =0

S.T.:

chcd S [15,30}

F feeq € [8000,11000]

Fbottom <2x 105[kg/h]

Xcthane.bottom < 0.05

(11)

where Ffeeq and Fyorom are the flow rate of the feed
and bottom product, respectively. T'feeq is the feed tem-
perature, and Xcthane,bottom is the molar fraction of the
ethane in the bottom product. Qrep, Qcond, and Qpump
are the terms corresponding to the energy consumption of
the reboiler, condenser, and pump, respectively. f(.) = 0is
the PPCR model that relates input and output variables to
each other. The first two constraints i.e., T'feed, Ffeea Which
are defined in Eq. (11) are the operational constraints,
and the Fyorrom and Xethane,bottom are the planning con-
straints. In such a setting, 15% of the input and 35%
of the output data are missed, and 10% of the data is
replaced with outliers to represent the possible errors in
data collection through sensors.

By solving the optimization of Eq. (11) with the opti-
mization module of Aspen HYSYS, the minimum energy
consumption is found to be 1.082x 103[W] and the decision
variables are found to be Tfccq = 16.3 and Ffyeeq = 10485.
The operating region and the actual solution to the opti-
mization of Eq. (11) are presented in Fig. 2

To demonstrate the efficacy of the proposed method in
steering the plant to its optimal point, two different initial-
izations (current operating points, COPs) are considered.
In Fig. 3(a), the locations of these COPs are shown in
Fig. 3(b), where the path and the final solution obtained
by the proposed method for each COP are provided.

Based on the results demonstrated in Fig. 3, the proposed
algorithm is able to find the optimal path and solution,
and steer the plant to the desired point. It is well known
that signal to noise ratio (SNR) can affect the performance
of the modeling and optimization. To study the effect
of measurement noise on the proposed algorithm, eight



Fig. 2. Operating region and optimal point of the deetha-
nizer problem

(a) Locations of COP 1 and COP 2

(b) Optimal path and solution from the proposed algorithm

Fig. 3. Initial points and the solutions obtained by the
proposed data-driven self-optimization algorithm

different noise levels are considered for this study whose
optimal points are shown in Fig. 3. Two different initial
operating points are considered. As it can be seen from
Figure 4(a), solutions corresponding to noisier data (lower
SNR) are getting trapped in local optimum points. To
obtain a better solution through the discovery of the

(a) Data-driven self-optimization algorithm without exploration

(b) Data-driven self-optimization algorithm with exploration

Fig. 4. Study the effect of exploration in the optimization
problem. Solutions to the optimization problem with 8
different noise levels without exploration (Figure 4(a))
and with exploration (Figure 4(b))

new path by searching a wider optimization region, the
exploration as described in Eq. (10) is applied, and the
results are shown in Figure 4(b).

From the results of Figure 4, it can be seen that the
inclusion of exploration in the optimization as explained
in Eq. (10), helps in better convergence to the optimal
point, and avoid being trapped in the local optimum. In
Figure 4(b), more points with different noise levels are
getting closer to the plant minimum compared to the
points shown in Figure 4(a).

4. CONCLUSION

In this work, a data-driven self-optimization of the process
in the presence of model-plant mismatch is proposed to
find the plant optimum along with the path to reach
the optimum. The objective of the proposed algorithm is
to automate the procedure of finding optimal operating
points of a process. It models the plant with a generalized
locally weighted PPCR model and the Gaussian process
regression model is utilized to identify the model-plant
mismatch. A non-linearity index is proposed to adjust the
weighted PPCR model to ensure its accuracy at a sufficient



level. Finally, to make a balance between exploitation
and exploration, the acquisition function is used in the
optimization. The performance of the proposed algorithm
is demonstrated on the simulated deethanizer column.
Based on the results obtained from the case studies, it
can be concluded that the proposed algorithm is able to
move the plant towards the plant optimum.
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