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Abstract: This paper presents an original design of low-rank linear predictors of nonlinear process
state variables based on nonnegative matrix decomposition (NMD). Therefore, this predictor is data-
driven and does not require an accurate model description of the process. In addition, measurement
errors are considered, conferring maximum likelihood (ML) properties to the estimator and resulting in
a maximum likelihood nonnegative matrix decomposition (MLNMD) formulation. The latter is validated
in simulation with a model developed by the authors, describing monoclonal antibody (MAb) production
from sequential batch hybridoma cell cultures that are further validated with real-life experimental data.
To this end, two available experimental data sets are used for direct and cross-validation, highlighting
the good predictive properties of the method.
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1. INTRODUCTION

The nonnegative matrix decomposition (NMD) (also called
nonnegative matrix factorization and positive matrix factoriza-
tion) is a recent methodology that decomposes a nonnegative
matrix (i.e. matrix composed by zeros and positive values)
into two low-rank nonnegative matrices: one called the basis
matrix and the other the mixing matrix. One of the first ap-
plications of NMD in the field of engineering was achieved
by Lee and Seung (1999) in image processing. The NMD is
able to extract patterns or unmix signals involved in a data
set (Cichocki et al., 2009) and has been successfully applied
to processes that present the intrinsic property to produce non-
negative data. Typical examples of NMD are the unsupervised
setting in image and natural language processing (Donoho and
Stodden, 2003; Mysore, 2012), music instrument recognition
(Smaragdis et al., May 2014), text database classification (Lu-
ong and Nayak, 2019) and recommender system (Koren et al.,
2009) to mention a few. It has also been successfully exploited
in a variety of applications in computational biology (Devara-
jan, 2008), which includes endogenous metabolite discovery
(Bartel et al., 2013), cellular identity (Gao and Welch, 2020),
genes and clustering samples (Liu et al., 2018) and multi-omics
biological data (Wang et al., 2018).

To be suitable for all these applications, several different NMD
algorithms have been proposed. One of the first mathemati-
cal descriptions of the nonnegative factor model with optimal
utilization of the error estimates of data values was presented
by Paatero and Tapper (1994). Thereafter, several extensions
and simplifications have been proposed as the multiplicative
update algorithms, proposed in Lee and Seung (2001), semi-
NMD, which removes the non-negative constraints on the data,
sparse-NMD that is used to reduce the non-uniqueness of solu-

tions and enhance interpretability of the NMD results, kernel-
NMD where the optimization of the model is dimension-free,
orthogonal-NMD that imposes the orthogonality constraint to
enhance sparsity and weighted-NMD for data sets with missing
elements, see Cichocki et al. (2009) and Berry et al. (2007) as
well as references therein.

Although there are other applications of NMD, such as dimen-
sionality reduction and preprocessing, this paper will consider
the approach from a modeling perspective. Differently from
maximum likelihood principle component analysis (MLPCA)
(Bernard and Bastin, 2005; Mailier et al., 2012; Dewasme
et al., 2017), which extracts from the measurement data sets
the number of biochemical reactions and a stoichiometric basis,
the NMD derives, in an unstructured way, the fundamental
compounds involved in these reactions. This can be seen as a
complementary and easy-to-use tool to be combined with the
MLPCA when a priori knowledge on the components involved
in the reaction rates is not available.

The resulting maximum likelihood NMD (MLNMD) formula-
tion is assessed when applied to the hybridoma cell batch cul-
ture process, producing monoclonal antibodies (MAbs). This
process complexity, the limited amount of data, and measure-
ment noise levels hamper the process of modeling for monitor-
ing, prediction, and control. Also, the measurements of some of
the compounds involved in the production of MAbs are costly
and time-consuming, requiring great effort for data acquisition.
A basic approach in modeling for monitoring and control is
to represent the bioprocess as a macroscopic model (Bastin
and Dochain, 1990), as proposed in the literature for the MAb
production process (Nolan and Lee, 2011; Amribt et al., 2014;
Dewasme et al., 2017; Yilmaz et al., 2020).



This paper proposes an original maximum likelihood nonneg-
ative matrix decomposition (MLNMD) algorithm which ac-
counts for the measurement noise in the estimation of the de-
composed matrices. To validate the MLNMD, first, we select
the model proposed by Dewasme et al. (2017) to generate noisy
data. Furthermore, based on the analysis of the decomposi-
tion, two experimental data sets are used to validate and cross-
validate the proposed low-rank linear predictor.

This paper is organized as follows. Section 2 revisits the macro-
scopic hybridoma cell model, which is used to analyze the
decomposition results and validate the MLNMD. Section 3
presents one of the well-established algorithms of NMD - the
alternating least-squares (ALS) -, and introduces the MLNMD
algorithm. The analysis and the validation of MLNMD using
simulation data sets from hybridoma cell batch cultures are
presented in Section 4. In Section 5, the experimental data is de-
composed by the MLNMD algorithm and the linear predictor is
designed, while a second experimental data set cross-validates
the proposed method. Section 6 points to open problems and
concludes the paper.

2. DYNAMIC MODEL OF HYBRIDOMA CELL
CULTURES

The reaction scheme presented in Dewasme et al. (2017),
macroscopically describing hybridoma cell catabolism through
three metabolic mechanisms (substrate oxidation and overflow,
and biomass decay), reads:

(a) Substrate oxidation:

k31G+ k41Gn
ϕ1−→ Xv + k61MAb. (1)

(b) Substrate overflow:

k32G+ k42Gn
ϕ2−→ Xv + k52L. (2)

(c) Biomass death

Xv
ϕ3−→ Xd + k63MAb. (3)

where Xv, Xd , G, Gn, L and MAb are the concentration of
the viable biomass, dead biomass, glucose, glutamine, lactate
and monoclonal antibodies (MAb), respectively, ϕ j are reaction
rates and ki are the stoichiometric parameters of the process.

From the reaction scheme, the corresponding mass balance
equations can be written as follows:

dXv

dt
= ϕ1 +ϕ2−ϕ3, (4a)

dXd

dt
= ϕ3, (4b)

dG
dt

=−k31ϕ1− k32ϕ2, (4c)

dGn
dt

=−k41ϕ1− k42ϕ2, (4d)

dL
dt

= k52ϕ2, (4e)

dMAb
dt

= k61ϕ1 + k63ϕ3, (4f)

where the reaction rates are discontinuous functions of the
form:

ϕ1 = min(µG,µGmax), (5a)
ϕ2 = max(0,(µG−µGmax)), (5b)

ϕ3 = µdmax
KGd

KGd +G
KGnd

KGnd +Gn
Xv, (5c)

where

µG = µmax1
Gn

KGn +Gn
Xv, µGmax = µmax2Xv. (6)

This model will be considered as a reference in the following
result analyses.

3. NONNEGATIVE MATRIX DECOMPOSTION (NMD)
METHODS

3.1 NMD

The NMD methods can be split into two main branches: (i)
Exact NMD and (ii) Approximate NMD. Exact NMD is an
essential tool for linear algebra, and it is closely related to the
smallest r such that X admits an Exact NMF size r. On the
other hand, Approximate NMD, the subject of this paper, takes
into account the statistical properties of the measurement errors
and is more suitable for practical applications where an Exact
NMD is unlikely (see discussion about Exact and Approximate
NMD in Gillis (2020)). For simplicity, the Approximate NMD
is referred to as NMD in the text.

One widely used algorithm to obtain the NMD models is the
alternating least squares (Berry et al., 2007), which can be
considered as a maximum likelihood method if all measurement
error standard deviations have the same normal distribution (i.e.
independently and identically distributed (i.i.d)).

The NMD decomposes a nonnegative matrix X ∈ Rm×n
+ in

two matrices W ∈ Rm×r
+ (basis matrix) and H ∈ Rr×n

+ (mixing
matrix), where r, selected by the user, is the basis dimension of
the decomposition represented as follows:

Xm×n =Wm×r ·Hr×n, (7)
where m is the number of collected samples (observations), n
is the number of the process compounds, which, in this study,
are the number of extracellular measurement components (i.e.
biomass, metabolites, and substrate concentrations).

The W and H matrices are chosen to minimize the objective
function that is defined as in Berry et al. (2007):

J =
‖X−W ·H‖F√

n ·m
, (8)

where ‖ · ‖F is the Frobenius norm. The decomposition is
obtained by the solution of a bilinear problem as there are two
matrices to be determined. In the NMD, the minimization of
the bilinear problem uses the alternating least squares (ALS)
algorithm, which can be represented by the following steps.

1. Given an m×n data matrix X0, subtract the offset of each
column vector of the measurements, in way that each set
of data starts or ends in zero (X = X0−min(X0));

2. Initialize W randomly or by using a specific deterministic
strategy;

3. Estimate H from the matrix equation W TWH = W T X by
solving

min
H

J =
‖X−W ·H‖F√

n ·m
, fixed W ; (9)

4. Set all the negative elements of H to zero;
5. Estimate W from the matrix equation HHTW T = HXT by

solving

min
W

J =
‖XT −HT ·W T‖F√

n ·m
, fixed H; (10)

6. Set all negative elements of W to zero;



7. Test X −W ·H < tolValue or if the maximum iteration
number maxIter, set by the user, is exceeded, terminate.
Otherwise return to Step 3.

8. Add the offset values from Step 1 to W ·H.

In this paper the nonnegative matrix decomposition is called by
the function [W,H] = nnmd(X ,r) (as embedded in MatLab
(Berry et al., 2007)), where r is the decomposition dimension.

3.2 MLNMD

As aforementioned, the maximum likelihood nonnegative ma-
trix decomposition (MLNMD) is a modeling method account-
ing for the measurement errors during NMD pattern extraction.
This is usually achieved by minimizing the weighted residual of
the sum of distances of the data with some r-dimension model,
corresponding to :

S2 =
m

∑
i=1

n

∑
j=1

(xi j− x̂i j)
2

σ2
i j

, (11)

where x̂ is the estimate value of the measurement and σ2
i j are

the measurement variances. A straightforward implementation
of the MLNMD algorithm, inspired from the combined works
of Wentzell et al. (1997) and Mailier et al. (2012) is presented
in Algorithm 1.

Algorithm 1. MLNMD
—
1. Given an m× n data matrix X0, subtract the offset of each
column vector of the measurements, in way that each set of
data starts or ends in zero (X = X0−min(X0)).
2. Given an m× n data matrix X with no offset and a corre-
sponding m× n matrix Q of measurement error variances, use
NMD to obtain the initial approximation to the MLNMD. The
NMD is truncated to rank r.

[W,H] = nnmd(X ,r). (12)
3. Transpose X and Q and compute the maximum likelihood
estimates using H.

X = XT , Q = QT , Σi = diag(qi), (13)

x̃i = H(HT
Σ
−1
i H)−1HT

Σ
−1
i xi, (14)

where xi is a column vector of the transposed matrix X , and the
cost function is computed as

S2
1 =

m

∑
i=1

(xi− x̃i)
T

Σ
−1
i (xi− x̃i) =

m

∑
i=1

n

∑
j=1

(x ji− x̃ ji)
2

σ2
ji

. (15)

4. Compute the NMD of X̃ from step 3 and obtain new H
[W,H] = nnmd(X̃ ,r). (16)

5. Repeat step 3 to estimate the MLNMD in the origin space.

X = XT , Q = QT , Φ j = diag(q j), (17)

x̃ j = H(HT
Φ
−1
j H)−1HT

Φ
−1
j x j, (18)

S2
2 =

n

∑
j=1

(x j− x̃ j)
T

Φ
−1
j (x j− x̃ j) =

m

∑
i=1

n

∑
j=1

(x ji− x̃ ji)
2

σ2
ji

. (19)

6. Compute the NMD of X̃ to obtain a new estimate of the
MLNMD solution in the original space.

[W,H] = nnmd(X̃ ,r). (20)
7. Compute the convergence parameter λ or maximum prede-
fined iteration value.

λ = (S2
1−S2

2)/S2
2. (21)

If λ is less than the convergence limit or if the maximum iter-
ation number maxIter, set by the user, is exceeded, terminate.
Otherwise return to Step 3.
8. Add the offset obtained in the Step 1 to final X̃ .
—

4. SIMULATION RESULTS AND DECOMPOSITION
ANALYSIS

Model (4) is used to generate an 8-day simulated experiment
with a sampling period of 0.1 days. The corresponding param-
eters are presented in Table 1. Also, for each measurement is
added an uncorrelated white-noise with 5% of relative standard
deviation. Thus, the generated data is nonnegative with m = 81
samples from n = 6 different component concentrations, i.e
viable biomass Xv, dead biomass Xd , glucose G, glutamine Gn,
lactate L and monoclonal antibodies MAb.

4.1 Selection of the r-dimension

In order to select the r-dimension, the latter is increased until
the rank of H is reached. In the current case, the maximum
admissible r-dimension is 4. Figure 1 presents the fitting root-
mean-square errors of NMD for increasing values of r.
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Fig. 1. NMD r-dimensions ans its root-mean-square errors.

Analyzing the basis matrix W we find out that from r = 1 to
r = 3, there is a direct link between the basis signals, contained
in basis matrix W , and the measured compounds from the
process - this will be clear in the next section. Despite the root-
mean-square error being the smallest with r = 4, the obtained
basis signals do not contain dynamic relations to the gathered
process measurements. Hence, to keep the relation between the
basis matrix W and the bioprocess measurements, the select
decomposition dimension is r = 3.

4.2 Numerical analysis: NMD vs. MLNMD

Analyzing Figure 2a, with the selected basis dimension r = 3,
the reconstruction of the measurements by the decomposition
X̂ =W ·H badly fits, especially for viable and dead biomasses,
despite a quite accurate fitting regarding the other compound
concentrations. This insufficient behavior of the NMD moti-
vates the inclusion of a maximum likelihood criterion to im-
prove the quality of the estimates.
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(a) NMD validation of the macroscopic hybridoma cells data set.
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(b) MLNMD validation of the macroscopic hybridoma cells data set.

Fig. 2. Validations of the simulation data. (a) NMD and (b) MLNMD results. Continuous gray lines are the measurements from
the data set (X) and dashed black lines are the decomposition validation (X̂).

Table 1. Simulation parameters, obtained from Dewasme et al.
(2017).

Parameters Values Parameters Values
µmax1 0.484 d−1 k31 3.12
µmax2 0.319 d−1 k32 15.2
KGn 0.0089 g/L k41 0.624
KGd 1.58 g/L k42 1.22
KGnd 1.33 g/L k52 23.9
µdmax 0.866 d−1 k61 43.5
KG 0.100 g/L k63 14.2

Xv(0) 0.100 cells/ml Xd(0) 0.0151 cells/ml
G(0) 5.99 g/L Gn(0) 0.303 g/L
L(0) 0.360 g/L MAb(0) 6.53 µg/ml

The same data set generated from model (4) simulation is used
to obtain the maximum likelihood decomposition [W̃ , H̃] =
mlnnd(X0,Q,r), where Q is the matrix of measurement error
variances and (̃·) denotes the maximum likelihood solution.
Figure 2b shows the validation of the MLNMD in dashed
black lines. The maximum likelihood solution for the bilinear
problem is expressed by the following linear relation:

X̃v

X̃d

G̃
G̃n
L̃

M̃Ab


︸ ︷︷ ︸

X̃

=


0 0.0313 0

0.0209 0.0026 0.0006
0.0000 0 0.9915
0.0001 0.0011 0.1303
0.1206 0.2597 0.0003
0.9925 0.9652 0


︸ ︷︷ ︸

H̃

·

[w̃1
w̃2
w̃3

]
︸ ︷︷ ︸

W̃

+Φo f f set , (22)

where Φo f f set = [min(Xv) min(Xd)min(G) min(Gn) min(L)
min(MAb)]T , which can be obtained directly from the data
set and, for the sake of clarity, the values of matrix W̃ are
represented in Figure 3. Originally X̃ , H̃ and W̃ should be
expressed by its transpose, but we suppressed the transpose
symbol for notation simplification.

Evaluating the decomposition results represented in (22) and
Figure 3, it can be easily seen one of the fundamental proper-
ties of the nonnegative matrix decomposition: the addition of
sparsity in the decomposed matrices (Cichocki et al., 2009).
To significantly highlight this characteristic in (22), the most
significant values of each row in H̃ are represented in bold. Note
that some values are extremely small and not zeros due to noise
and mainly the selected value of r-dimension. Nonetheless,
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Fig. 3. MLNMD W̃ base signals, r = 3.

analyzing this matrix, it is clear that the measurements of viable
biomass Xv can be approximated by the element in row 1 and
column 2, multiplied by all the elements of the second row of
W̃ , i.e. Xv ≈ X̃v = h̃12 · w̃2.

Likewise, it is straightforward to conclude that the dynamical
behavior of w̃2, represented by the light gray line in Figure 3, is
very close to the dynamical behavior of the Xv measurements,
presented in Figure 2b. In the same way, the dead biomass
measurements can be approximated by (Xd ≈ X̃d = h̃21 · w̃1) and
both glucose and glutamine can be approximated by only using
the dynamics of their respective element located in column 3 of
H̃ multiplied by w̃3.

As previously mentioned, the analysis of the matrix H̃ is
corroborated by the comparison of the dynamical behavior
of W̃ (Figure 3) and the dynamical behavior of Xv → w̃2,
Xd → w̃1 and both G,Gn → w̃3 (Figure 2b). Furthermore,
taking into account the remaining compounds, the Lactate L
and monoclonal antibodies MAbs can be reconstructed by the
linear combinations of w̃1 and w̃2.

Moreover, the analysis of the sparsity of H̃ revealed the linear
interconnections between the pairs (Xv,Xd)→ (L,MAb) and the
mutual relation of G↔Gn. The NMD exposed the fundamental
compounds involved in reactions (1), (2) and (3). This also dis-
closes the fundamental measurements required to reconstruct
all the other process compounds. This is the subject of the next
section, where an experimental data set (HB1) is used for the
design of the linear predictor, cross-validated with a second
experimental data set (HB2).



Remark 1. As previously mentioned, NMD derives, in an un-
structured way, the fundamental compounds involved in the
process reactions. Therefore, this can be seen as a complemen-
tary and easy-to-use tool to be combined with the MLPCA, for
instance, when a priori knowledge of the components involved
in the reaction rates is not available.

5. MLNMD: EXPERIMENTAL DATA AND LINEAR
PREDICTOR DESIGN

5.1 MLNMD: Experimental Data Validation

Two batch cultures of a hybridoma strain (called, HB1 and
HB2) were performed in 200 mL T-flasks. At the initial time of
each batch, biomass is kept in the reactor, while the metabolites
(lactate, ammonia, and monoclonal antibodies) are withdrawn
and the substrate concentrations (glucose and glutamine) are
set to prescribed values (respectively ranging between 6 and 7
g/L, and 0.3 and 0.4 g/L). The culture time is approximately
7 days for HB1 and 9 days for HB2. Measurements are taken
once every day, for more information about culture medium and
protocol of measurements, see Dewasme et al. (2017).

In Figure 4a, the experimental data from HB1 and the corre-
sponding confidence intervals, obtained from Dewasme et al.
(2017), are represented by the error bars. The sample time, as
mention before, is 1 day and the batch durations are 7 and 9
days for HB1 and HB2, respectively. Thus, it generates a data
set with m = 7 (HB1) and m = 9 (HB2) samples, both with six
component concentrations (n = 6).

The HB1 data set is applied to the MLNMD Algorithm 1,
with the decomposition basis dimension of three, r = 3. The
MLNMD of HB1 data is presented in (23) and Figure 4b, and
its validation is presented in Figure 4a in black dashed lines.

X̄v
X̄d
Ḡ

Ḡn
L̄
¯MAb


︸ ︷︷ ︸

X̄(HB1)

=


0.0033 0.0257 0
0.0182 0.0003 0

0 0.0557 0.9915
0 0.0018 0.1304

0.1547 0.1310 0
0.9878 0.9895 0


︸ ︷︷ ︸

H(HB1)

·

w(HB1),1
w(HB1),2
w(HB1),3


︸ ︷︷ ︸

W(HB1)

+Φo f f set ,

(23)
where the elements with ·̄ are the MLNMD of the ex-
perimental data set HB1 and Φo f f set = [min(Xv) min(Xd)

min(G) min(Gn) min(L) min(MAb)]T are provided by the
original data set.

Similarly to the results of Section 4, the sparsity of matrix
H(HB1) reveals the linear relations between the pairs (Xv,Xd)→
(L,MAb) and the mutual relation of G↔ Gn. Also, (23) and
Figure 4b shows that the dynamical behavior of w(HB1),1,
w(HB1),2 and w(HB1),3 are linked to the dynamic behavior of
X̄d , X̄v and both Ḡ and Ḡn, respectively. These results initiate
the design of a linear low-rank predictor for the hybridoma cell
cultures.

5.2 Linear Predictor Design

First, consider a linear predictor in the form
Y = KΞ, (24)

where Y ∈Rn×m
+ is composed by the predicted compounds (i.e.

Y =
[
X̆v X̆d Ğ Ğn L̆ ˘MAb

]T ), K ∈Rn×r
+ and Ξ ∈Rr×m

+ . Based

on the sparsity of the matrix H(HB1) presented in equation (23),
the structure of K and Ξ are straightforward as

K =

[H(HB1),1

h(HB1),21

H(HB1),2

h(HB1),12

H(HB1),3

h(HB1),43

]
, (25)

and

Ξ =

Xd (HB2)
Xv (HB2)
Gn(HB2)

 , (26)

where H(HB1),1/h(HB1),21 means that the first column of H(HB1)
is divided by the element of row 2, column 1, of H(HB1) and the
values of Ξ are inferred from assumed available measurements
of the hybridoma cell culture database (i.e. reported in the
HB2 data set). The outputs of the linear predictor (24) are
presented in Figure 5, where the experimental data from HB2
and the related confidence intervals, obtained from Dewasme
et al. (2017), are represented by the error bars.

Figure 5 shows a good predictive property of the linear predic-
tor as the HB2 data set presents different dynamics and larger
culture time (9 days) than HB1. Moreover, the MLNMD low-
rank linear predictor has the advantage of being designed based
on the data-driven approach only, without proceeding to the
dynamic modeling of the process metabolites. It must also be
highlighted that the provided predictions depend exclusively
on the measurements of the viable biomass, dead biomass, and
glutamine concentrations.

6. CONCLUSION

This paper presents a data-driven linear predictor for batch
cultures of hybridoma cells. The design is obtained based
on the nonnegative matrix decomposition considering possible
normally distributed measurement errors, conferring a decom-
position that is optimal in a maximum likelihood sense. The
resulting straightforward MLNMD algorithm is proposed and
validated with the help of two experimental data sets from
hybridoma cell batch cultures. The approach validations present
satisfactory predictions. Interesting perspectives concern the
connections of this unstructured approach with dynamic model
identifiability and observability frameworks.
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