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Abstract: In addition to often reported control of the specific growth rate we show in this
contribution a novel method to control the biomass specific substrate uptake as well as the
protein production rate during the production phase of microbial fed-batch cultures. The control
laws base on a calibrated process model including experimental data sets with different constant
glycerol feed rates. The model includes changing growth and production behaviour in function
of the induced metabolic stress. Based on the method of non-linear feedback linearization, the
control laws were derived from the model, using the glycerol feed rate as the manipulable
variable.
Considering comparable setpoints at three different levels the effectiveness of the controller as
well as their potential to improve the production phase was assessed by simulations. The direct
control of product formation rates enables to ensure constant production performance and
therefore to reach highest product levels in short time. As a drawback, the controller needs high
feed adaption towards the end to counteract the advancing decay of the attainable production
rates. This, to a lesser extend, also applies for the growth rate. A constant substrate uptake rate
resulted in a valuable alternative to a uncontrolled, constant feed rate during the production
phase of recombinant protein production processes.

Keywords: Bioprocess control, feedback linearization, generic model control, fed-batch,
advanced control.

1. INTRODUCTION

Fed-batch processes using genetically modified E. coli
organisms are widely used for the production of high value
recombinant proteins (Selas Castiñeiras et al., 2018). State
of the art processes are divided into three main phases
(Yee and Blanch, 1992). The batch phase, followed by
an exponential feeding phase to ensure high amounts of
metabolically active cells, which in the induction phase
catalyze the transcription and translation of the target
proteins.

The cell behavior during the growth phase is well under-
stood and optimized to reach high biomass concentrations
within short times (Lee, 1996), while avoiding the for-
mation of unwanted side products (Abadli et al., 2021).
Due to the metabolic load of the forced production of the
target protein, cell metabolism changes in course of the
induction phase (Neubauer et al., 2003). Therefore, control
of the induction phase is a challenging task and often
characterized by sub optimal, static parameters including
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constant feed rates (Wechselberger et al., 2012), leading to
unfavorable changes during the production phase, without
any possibility to intervene.

To improve these unfavorable operation, predetermined
dynamic feed profiles or feedback control can be applied as
reported by Mears et al. (2017). To predetermine optimal
profiles as well as to enable effective feedback control
mathematical models to describe the occurring non-linear
process dynamics are required (Almquist et al., 2014) as
normal PID control can fail without knowing the underly-
ing dynamics (Kager et al., 2020; Zotică et al., 2020). In
addition to that biological processes are very sensitive to
deviations, so that little over shots can have irreversible ef-
fects. Therefore, different advanced and predictive control
structures were developed and proposed for biotechnolog-
ical processes (Mears et al., 2017). From these proposed
structures especially generic model based control (Abadli
et al., 2021) and model predictive control (Kager et al.,
2020; Dewasme et al., 2015) gained special attention, as
they can be based on simple and interpretable mechanistic
models (Almquist et al., 2014). Abadli et al. (2021) for ex-
ample derived a robust model based controller for optimal
microbial growth, while at the same time controlling the



formation of unwanted acetate concentration. Kager et al.
(2020) verified a model predictive controller to foresee
and therefore avoid unwanted byproduct formation in a
penicillin production process. Model predictive control was
also adopted to very sensitive mammalian cell cultivations
to recursively optimize susbtrate addition while at the
same avoiding to activate unwanted metabolic pathways
(Dewasme et al., 2015).

Although adaptive and predictive model based control
concepts were already introduced in biotechnological pro-
cesses their application is often limited to describe the
growth or the consumption of different substrates or by
product formation. There are only a few works including
product formation which are either simple products from
primary metabolism or simple relations to other control
variables (Mears et al., 2017).

Within this work we concentrate on the product formation
phase of an E. coli fed-batch process and introduce and
analyze the potential control of specific rates including
the often discussed growth rate as well as the biomass
substrate uptake rate and the novel and direct control of
the biomass specific production rate during the production
phase. After the description of the non-linear process
model including the calibration on three experimental data
sets, the establishment of the control laws by the method of
non-linear feedback linearization is given. Besides showing
the real and modelled process dynamics of the three
experiments, simulation results of the derived control laws
on comparable setpoints are given in the results section
before concluding with potential usage of the control
laws to improve the production phase of biotechnological
processes.

2. MODEL AND CONTROL LAW ESTABLISHMENT

2.1 Fed-batch model including metabolic load and product
formation dynamics

The system differential equations for the ideally stirred
tank reactor in fed-batch mode are:

dVR
dt

= Fin

dcX
dt

= µ cX − Fin

VR
cX

dcS
dt

= − qS cX +
Fin

VR
(cS,in − cS)

dcP
dt

= qP cX − Fin

VR
cP

dSmet

dt
= qS

(1)

describing the concentration changes over time
(
dx
dt

)
of the

four macroscopic components: biomass cX , glycerol cS ,
product cP , metabolized substrate Smet and the reactor
volume VR. Glycerol is added to the system by the sub-
strate inflow Fin with a concentration cS,in. The biological
conversion rates, namely the growth rate µ, the substrate
consumption rate qS and the product formation rate qP
are described by the following reaction kinetics:

The substrate uptake rate qS described by a Monod kinetic
with qS,max being the maximum uptake rate in function
of the glycerol concentration cS and the half saturation
constant KS .

qS = qS,max
cS

cS +KS
(2)

Biomass growth µ is derived from consumed substrate
qS by substrate conversion yield YX/S reduced by the
substrate needed for cell maintenance mS . Whereas YX/S

is reduced by an asymptotic decay (KYX/S
) in function of

the metabolized substrate (Smet).

µ = YX/S (qS −mS)

YX/S = YX/S,max exp(−SmetKYX/S
)

(3)

The product formation qP is composed by a Monod term
describing the dependency of qP,max on qS with the half
saturation constant KSqS and a Haldane term to describe
the underlying start up and decline phase with Smet as
trigger, KSqP as the delay coefficient, KIqP as the decay
coefficient and k as the Haldane exponent determining the
shape of the decay.

qP = qP,max
qS

qS +KSqS

Smet

Sk
met

KIqP
+ Smet +KSqP

(4)

The model was fitted to three experimental data sets, with
three different constant feed rates, displayed in figure 1.
The model parameters are given in table 1. As fitting
criterion the weighted sum of squared errors between mea-
surements of biomass, product and sugar concentrations
and respective model simulations of all three experiments
was minimized by a local optimizer (Fmincon:MATLAB).

Table 1. Model Parameter

Parameter Value Unit Description

cS,in 850 gL−1 feed concentration
qS,max* 1.0 gg−1h−1 max. substrate uptake
KS* 0.0050 gL−1 half saturation constant
mS 0.02 h−1 maintenance constant

YX/S,max* 0.47 gg−1 max. growth yield

KYX/S
0.34 gg−1 growth yield decay

qP,max 0.0066 gg−1h−1 max. production rate
KSqS 0.082 gg−1h−1 qP affinity to qS
k 4.6 − Haldane exponent

KIqP 3.8 (gg−1)k−1 product decay
KSqP 0.096 gg−1 product formation delay

2.2 Experimental data

A modified K12 E. coli strain with a rhamnose-inducible
expression system (rhaBAD promoter), producing a single
chain antibody fragment with a transporter sequence to be
transported into the periplasm was used. Fermentations
were conducted in a DASGIP multibioreactor system
(Eppendorf, Germany). Composition of the used minimal
media was based on Wilms et al. (2001). Temperature was
kept at 35◦C, stirrer speed at 1400 rpm and aeration at 1.4
vvm for the whole process. The pH was controlled at 7.0
with addition of 12.5 % NH4OH solution. The dissolved



oxygen (DO2) was kept over 25% by supplementing pure
oxygen to the air. A volume of 2.5 % of the 1.0 L batch
volume equivalent of an overnight pre-culture (30◦C and
170 rpm) was used to initiate the batch phase of the
reactors with 20 gL−1 glycerol and a duration of approx. 12
h. For the pre-induction phase an exponential feed ramp
with a µ of 0.14 according to the equation given in Lee
(1996)) was used to reach high biomass concentrations of
45 gL−1. Recombinant protein production was induced by
a one point addition of sterile filtrated rhamnose solution
(1.5 g L-rhamnose) and the glycerol feed rate was set to
different constant values (high= 14.5 mLh−1; medium =
8.5 mLh−1; low = 2.2 mLh−1).

Periodical offline measurements were taken and analyzed.
Biomass dry content was determined by centrifugation
at 4500 g, 10 min, 4◦C including one washing step be-
fore drying at 105◦C for min. 72h. For intra- and extra-
cellular product content (homogenized and gel filtrated
(PD MiniTrap g-25) cellsupension and supernatant) was
applied on a protein G affinity column (HiTrap ProtG
(GE Healthcare; USA) with a flow rate of 2 mlmin−1

(20 mM phosphate buffer) at 25◦C and elution with a
change of the pH from 7.4 to 2.5). Acetate and glyc-
erol concentrations were quantified from the supernatant
by enzymatic, photometric principle in a robotic system
(BioHT, Roche, Germany) and were under the detection
limit during induction. Measured reaction rates µ, qS and
qP , displayed in figure 1, were calculated based on the local
difference between the measurement points.

2.3 Non-linear control by feedback linearization

To derive different control laws to keep the reaction rates
constant, feedback linearization was applied in order to
include the non-linearities into a standard feedback control
law as described by Abadli et al. (2021), which defined
the procedure as generic model based control. The system
of differential equations given in Eq. 1 represents a non-
linear, input-affine system

dx

dt
=f(x) + g(x)u

y =h(x)
(5)

with the non-linear vector fields f and g of the state
vector x, the manipulable variable u (Fin) and the output
variable y as function h(x). By finding a suitable non-
linear feedback control law the non-linearity of the plant
can be compensated exactly. The derivative of y becomes:

ẏ =
dh(x)

dt
=
∂h(x)

∂x
ẋ =

∂h(x)

∂x
f(x) +

∂h(x)

∂x
g(x)u (6)

The resulting partial derivatives from the time derivative
of y can be defined as Lie derivatives Lfh(x) or respec-
tively Lgh(x) resulting in:

ẏ = Lfh(x) + Lgh(x)u (7)

with ẏ being a linear function of the manipulated input u.
The transformed system can than be expressed as a simple
proportional control law

ẏ = α(y∗ − y) (8)

with the time constant 1/α to track a setpoint y∗, which
yields

u =
α(y∗ − y)− Lfh(x)

Lgh(x)
. (9)

Deviations of the output variable y from the desired
setpoint y∗ are accounted for by the driving term
α(y∗ − y)/Lgh(x). Changes of the system due to non-
linear dynamics are considered by the maintenance term
Lfh(x)/Lgh(x). The method of feedback linearisation,
briefly described here with an extended description in
Cheng et al. (1984), was applied to obtain control laws
for the system described in Eq. 1 by choosing the output
y as the specific rates (µ , qS & qP ) and the input u as
feed rate (Fin). It is noted that for all specific rates the
relative degree was one as Lgh(x) 6= 0 and the internal
dynamics therefore resulted in the order of four. The
resulting proportional control laws for µ , qS and qP are:

Growth rate µ

Ḟin =
VR

cS,in − cS
α(µ∗ − µ) + qS

(
KYX/S

µ+ YX/ScXb1
)

YX/Sb1
(10)

Substrate uptake qS

Ḟin =
VR

cS,in − cS
α(q∗S − qS) + cXqSb1

b1
(11)

Productivity qP

Ḟin =
VR

cS,in − cS
α(q∗P − qP ) + qSqP (b2cX + b3)

b2qP
(12)

with b1, b2 and b3

b1 =
qS,max − qS
KS + cS

(13)

b2 =
1

KS + cS

(
KS

cS
− qS,max − qS

KSqS + qS

)
, (14)

b3 =

(k−1)Sk
met

KIqP
−KSqP

Smet

(
KSqP + Smet +

Sk
met

KIqP

) (15)

where α is the proportional factor and µ∗ , q∗S and q∗P the
aimed setpoints.

3. PROCESS DYNAMICS AND SETPOINT
DEFINITION

In figure 1 the measured and modelled rate dynamics of
the three experiments are given. As already discussed in
the introduction the constant feed rates lead to highly
dynamic and potentially unfavorable changing reaction
rates throughout the production phase. No matter if high
or low feed rates are applied reaction rates strongly change
over time. Especially the qP trajectory seems to be highly
influenced by the feed level with higher maximum values at
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Fig. 1. Model identification experiments with three (low, mid, high) constant glycerol feedrates Fin and corresponding
specific rates (µ, qS & qP ) obtained from measurements (light colors) and calibrated model (dark colors)

high feeds but due to the lower metabolic stress prolonged
productivities at low feed rates.

Within table 2 the root mean square errors normalized by
the overall observed range (NRMSE) are displayed. Over-
all the identified kinetics of the process models with errors
< 15 % describe well the rate trajectories of the three
experiments with slightly higher errors for the mid and
high feed rates. Therefore, the model can be regarded as
suitable and trustworthy predictive within the calibrated
region.

Table 2. normalized root mean square error
(NRMSE) between modelled and measured
rates (µ, qS & qP ) of different constant feeding

levels

level µ qS qP Unit

low 2.7 3.2 5.5 %
mid 11.8 14.8 10.4 %
high 9.8 12.0 13.5 %

To deduce controller setpoints, which are comparable to
the experiments with high, mid and low feedrates the
average measured rates were calculated from the three
experiments. The resulting, average rates are displayed in
table 3. It can be seen, that with constant feeds, different
average rate levels were achieved. Additionally, it can be
seen that every specific rate is effected to another extent
by the feed level. For example a low feed rate leads to a ten
fold reduction of overall growth compared to a high feed

rate but only a reduction of factor of four for the average
product formation rates. This indicates that, although
maximum production rates can be increased by higher feed
rates, lower feed rates can lead to a more stable production
at lower levels. The average rates, given in table 3 were
used as setpoints for the subsequent controller simulation
study.

Table 3. Average measured rates of µ, qS & qP
based on different constant feeding levels with

corresponding feed rate Fin

feeding Fin µ qS qP
level mLh−1 h−1 gg−1h−1 gg−1h−1

low 2.2 0.0059 -0.0294 0.00063
mid 8.5 0.0230 -0.1191 0.00126
high 14.5 0.0675 -0.2580 0.00204

4. CONTROLLER SIMULATION RESULTS

Based on the defined and comparable setpoints, controller
simulations to keep either the growth rate µ, the substrate
uptake rate qS or the specific production rate qP were per-
formed. For each controller three different setpoint levels
were simulated as displayed in table 3. All simulations run
with a proportional factor of α = 1000 without any model-
plant-mismatch or other additional disturbances. Based
on the feedback linearized control laws, perfect control
behaviours can be therefore expected. The resulting feed
rates Fin and reaction rates are displayed in figure 2.
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Fig. 2. Simulation results of developed control laws to control: a) the growth rate µ, b) the substrate uptake rate qS
as well as c) the biomass specific productivity qP during the production phase of the analyzed E. coli fed-batch
process at three different setpoints (low, mid, high)

As the productivity is of central interest during the pro-
duction phase it is shown for every controller simulation.
Overall, all three control laws worked for the three selected
setpoint levels and resulted in constant µ (figure 2 a),
constant qS (figure 2 b) as well as constant qP (figure 2 c).

The manipulable variable Fin was hereby adapted in func-
tion of the feed-back linearized control laws, with the
general form given in 9. Both the control of µ as well
as qP needed strong feed adaptions especially at higher
setpoints. This is due to the observed and modelled de-
crease of growth and production capacities in function
of the metabolic load. To counteract this the controller
needs higher feed amounts over time resulting in a over-
exponential trajectory of the manipulated variable. Es-
pecially towards the end of the qP controlled processes
this effect is strongly pronounced and high feed rates are
reached. Although, simulations didn’t show any substrate

accumulation in this region, this can be problematic in a
real process.

The controller output of the substrate uptake behaves
differently. Due to highly reduced growth at a low setpoint
only little adaption is necessary to keep biomass specific
substrate uptake constant. For mid and high setpoints
strong adaptions are needed at the beginning, whereas
towards the end, adaption is flattened in function of the
decreasing growth capacity. As growth and production
efficiency decreases over time overall substrate demand
stagnates, which is visible in the resulting, more linearly
increasing feed profiles of the qS controller.

The trajectories of the productivity reveal that a control of
µ or qS yield in similar output behaviour, which is similar
to the resulting qP trajectory of constant feed rates as
displayed in figure 1. Also the yielding maximum product



concentrations summarized in table 4 reach very similar
levels. In all cases, with lowest setpoints highest product
concentrations can be reached with highest overall values
for qS and µ controlled simulations. The simulation of a
controlled qP at a low level show that, although reaching
a slightly lower maximum, it is reached 10 h earlier than
the others.

Although, being of central interest in pre-production
phases, the control of the specific growth rate µ does not
show any clear advantages compared to constant feed rates
but bears the risk of overfeeding due to strong feed rate
adaptions to counteract the decreasing growth capacity.
The simulations revealed, that the biomass specific uptake
rate is unaffected by this decrease as feed rate adaption
stagnates in course of time. This control concept could be
adopted to real processes with the potential to stabilize
production by keeping the substrate availability constant.
Also, from a measurement point of view the specific sub-
strate uptake rate is easier accessible in real-time as the
growth or the production rate. An interesting but still very
challenging concept from a measurement point of view,
would be the direct control of the cell specific productiv-
ity. In addition to reach maximum product concentration
faster in time a constant product formation rate could also
have beneficial effects in product quality as subsequent
steps of protein refolding and/or secretion can occur at a
constant and optimal rate.

Table 4. Maximum overall product concentra-
tion and needed time for the three experi-
ments with constant feeds (Fin) and the corre-
sponding controller simulations with constant
growth (µ), substrate uptake (qS) and produc-

tion rate (qP ).

level constant Fin constant µ constant qS constant qP
- gL−1 (h) gL−1 (h) gL−1 (h) gL−1 (h)

low 2.73 (101) 2.83 (100) 2.83 (100) 2.67 (90)
mid 2.37 (44) 2.20 (34) 2.29 (33) 2.28 (36)
high 1.21 (21) 1.49 (16) 1.45 (12) 1.75 (17)

5. CONCLUSION

Within this contribution novel possibilities to control the
production phase of biotechnological fed-batch processes
are shown. Based on a rather simple kinetic model func-
tional control laws could be deduced by using the method
of non-linear feedback linearization. Realistic model pa-
rameters and setpoints could be deduced from three dif-
ferent experiments. The controller simulations, revealed
that due to the changing growth and production dynamics
along the process different controller actions are needed. In
the analyzed process a low constant feed and low growth,
substrate uptake and production rate (qP ) setpoints lead
to highest product concentration. Although the results
does not indicate an increase in product under the usage
of constant rates, such as qP but it revealed the potential
to shorten the needed time as well as the insurance of a
constant reaction rate could lead to a better time space
yield while ensuring a constant product quality. Besides
future experimental verification of the presented findings
in future work optimal setpoint trajectories could reveal
potential to increase product amounts and to ensure prod-
uct quality by the presented control approach.
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