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Abstract: This paper presents an approach for controlling offshore hybrid power systems
consisting of gas turbines, offshore wind, and batteries for satisfying an exogenous power
demand. A hierarchical controller is developed comprising a high-level economic nonlinear model
predictive controller that distributes the power demand according to some economic objective,
a low-level nonlinear tracking model predictive controller that actuates on the hybrid power
system, and a nonlinear moving horizon estimator to estimate the system state. Simulation
results and concluding remarks reveal the advantage of such a hierarchical approach for a simple
simulation study.
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1. INTRODUCTION

The offshore greenhouse gas (GHG) emissions account
for a quarter of the total GHG emissions in Norway.
To reduce GHG emissions, a reduction in offshore gas
turbines as the primary power source is essential, as
gas turbines account for most of the emissions offshore.
One way of reducing the use of gas turbines is with the
integration of renewable wind energy with batteries, see
Fig. 1. (Norwegian Petroleum Directorate, 2019)

Fig. 1. Illustration of an offshore hybrid power system with
wind energy and batteries, courtesy of SINTEF.

These offshore hybrid power systems (OHPSs) do not
yet exist but can, in the future, offer the means to de-
carbonise the Norwegian Continental Shelf (NCS) energy
infrastructure. They can, for example, be used as gen-
eral offshore energy hubs (OEHs) for maritime transport,
aquaculture, or green hydrogen production (Mikkola et al.,
2018, Gea Bermúdez et al., 2021).

⋆ The Research Council of Norway funds this research through
PETROSENTER LowEmission (project code 296207).

A suitable control methodology for constrained control of
the resulting hybrid power system can be found in model
predictive control (MPC). The MPC approach offers the
advantage of considering the optimal inputs at the current
time while also accounting for future optimal control
inputs. Additionally, MPC can be extended for nonlinear
systems like OHPSs (Rawlings et al., 2017).

Notably, economic model predictive control (EMPC) has
shown success in similar applications as it can control and
distribute power between different power systems accord-
ing to some economic objective functions, see Hovgaard
et al. (2010), Morstyn et al. (2018), or Kong et al. (2019).
EMPC expands on the nominal MPC scheme with an
economic control objective (Rawlings et al., 2012).

However, a notable disadvantage of an economic nonlinear
model predictive control (ENMPC) scheme is the high
computational cost associated with nonlinear systems and
the long prediction horizons needed for taking advantage
of future information. An example specific to the OHPS
is future wind or exogenous power demand predictions.
Computational delay may affect the control performance
and stability of systems with strong nonlinearities and fast
dynamics, see Findeisen and Allgöwer (2004).

To address the computational cost, process systems com-
monly employ a real-time optimiser (RTO) as a high-
level controller (HLC), which computes optimal references
in a hierarchical control structure with a fast low-level
controller (LLC) for tracking and disturbance rejection,
see Marlin and Hrymak (1997). An RTO can, however,
only capture steady-state dynamics. Thus, extensions of
an RTO that capture transient dynamics have been devel-
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Fig. 2. An illustration of the hierarchical control strategy.

oped, for example, Würth et al. (2011), where the opti-
miser is a nonlinear model predictive controller (NMPC).

This paper investigates a hierarchical approach for plantwide
optimisation and control of OHPSs consisting of offshore
wind, gas turbines, and batteries. The approach uses an
HLC-ENMPC to distribute the power load from arbitrarily
power consumers, an LLC-NMPC for tracking the HLC
references, and a moving horizon estimator (Kühl et al.,
2011) to estimate the system states, see Fig. 2.

The main novelty of this study is the application of hierar-
chical ENMPC for coordinating the constrained power sys-
tems in an OHPS. Given future exogenous power demand
and wind forecast knowledge, the focus lies on the efficient
power split. Computational delay due to the long predic-
tion horizon is avoided by only recomputing the HLC at
specific time steps. In contrast, the LLC is recomputed at
every time step for disturbance rejection as it has a lower
computational cost.

The paper is structured as follows: Section 2 describes the
assumptions and models used for the system dynamics.
Section 3 presents the hierarchical control strategy. A
simulation study demonstrating the method and the ap-
plication follows in Section 4. Finally, concluding remarks
and further works are given in sections 5 and 6.

2. OFFSHORE HYBRID POWER SYSTEM

The offshore hybrid power system considered in this paper
consists of three subsystems: a gas turbine generator
system (Subsection 2.1), a wind turbine generator
system (Subsection 2.2), and a battery system (Sub-
section 2.3). These subsystems are only briefly covered
with their references and essential simplifications. Readers
are advised to refer to the references for the complete
mathematical models of each subsystem.

2.1 Gas Turbine Generator Model

The gas turbine generator (GTG) is based on the GAST
model (Nagpal et al., 2001) with two simplifications:

• The temperature limit given by load is neglected.
• Friction loss is assumed to be zero.

2.2 Wind Turbine Generator Model

Grunnet et al. (2010) is used for modelling the wind
turbine generator (WTG). The WTG model is further
simplified by assuming the following (Solberg, 2021):

• The aerodynamics of the wind turbine are approxi-
mated with a polynomial.

• Generator torque reference is approximated as a sig-
moid function.

• The wind blows perpendicular to the wind turbines.
• The drive train is rigid and without friction.
• The generator torque control is neglected.
• The resulting wind farm is assumed lumped.

2.3 Battery Model

A simple nickel-metal hydride (NiMH) battery model
based on Shepherd’s model is employed, see Shepherd
(1965) and Tremblay et al. (2007). No major assumptions
or modifications are made from the references.

2.4 Offshore Hybrid Power System Overview

The resulting OHPS model with noise can be summarised
by the system dynamics f : Rnx×Rnu×Rnp×Rnw →Rnx

and measurement function h : Rnx× Rnu× Rnp →Rny :

xk+1 = f (xk,uk,pk,wk)

yk = h (xk,uk,pk) + vk
(1)

which can be described by the system state vector x =
[Vgtg, Pgtg, ωwtg,Mwtg,gen,SOCbat]

T ∈Rnx , the system in-
put vector u = [Tgtg, βwtg, Ibat]

T∈Rnu , the system param-
eter vector p = [vwind]

T ∈Rnp , the system output vector
y = [Pgtg, Pwtg,SOCbat, ωwtg]

T∈Rny , process noise vector
w∈Rnx , and additive measurement noise vector v∈Rny .

Moreover, Vgtg [pu] and Pgtg [kW] represent the GTG fuel
flow and power output, ωwtg [rad s−1] and Mwtg,gen [Nm]
are the rotational speed of the wind turbine and the WTG
generator torque, SOCbat [%] is the battery state of charge
(SOC), Tgtg [pu] is the GTG throttle, βwtg [deg] is the
WTG blade pitch, Ibat [A] is the battery current, vwind

[m s−1] is the average WTG rotor wind speed, and Pwtg

[kW] is the WTG power output.

3. HIERARCHICAL CONTROL STRATEGY

The hierarchical strategy consists of two controllers and
one observer: an HLC-ENMPC (Subsection 3.1), an LLC-
NMPC (Subsection 3.2), and an MHE (Subsection 3.3).
Both controllers and the observer formulations are struc-
tured according to the standard nonlinear program (NLP)
formulation constrained by the system dynamics:

min
x,u

J (xk(t),uk(t),pk(t))

subject to xk+1(t) = f (xk(t),uk(t),pk(t),wk(t))

hineq (xk(t),uk(t),pk(t)) ≤ 0

geq (xk(t),uk(t),pk(t)) = 0
(2)



where J(·) is the objective function, xk+1(t) = f (xk(t), · · · )
is a vector of equality constraints used to enforce system
dynamics for prediction, hineq(·) is a vector of inequality
constraints (not to be confused with the measurement
function h from (1)), geq(·) is a vector of equality con-
straints, t is current simulation time, and k ∈ {0, N − 1}
is the prediction horizon.

Remark 1. The HLC-ENMPC, the LLC-NMPC, and the
MHE differ in the objective function J(·), and the fact
that the MPC has to initialise the first decision variable
x0 for continuity as an equality constraint. At the same
time, an MHE is not bound to x0. Additionally, an MHE
treats the inputs u and the outputs y as parameters to the
NLP and optimises the NLP with respect to the system
states x and the process noise w. An MPC optimises for
the non-disturbed case where w = 0.

3.1 High-Level Control Formulation

The HLC in this hierarchical control approach consists
of an ENMPC. An HLC-ENMPC simplifies the tradeoff
between optimal performance and computational cost, as
the HLC is only recomputed at specific time steps instead
of at every time step to keep the prediction horizon long.
The computational cost of the HLC is thus not directly
constrained by the system time dynamics as it is not
applied at every time step.

To fulfil the total power demand Pdemand from arbitrarily
power consumers while minimising the GHG emissions,
the HLC-ENMPC is defined to satisfy the following goal
(in decreasing order):

(1) Satisfy the total power demand
(2) Maximise WTG power given the current wind
(3) Minimise GTG power to reduce GHG emissions
(4) Maximise the battery SOC for system flexibility
(5) Minimise actuator effort and additional slack

The high-level objective function Jhlc that satisfies these
objectives is defined as:

Jhlc = Khlc,gtgPgtg +Khlc,wtg (Pwtg − Pwtg,max) −
Khlc,batSOCbat + uTKhlc,uu+ shlc

TKhlc,sshlc

where Khlc,gtg∈ R, Khlc,wtg ∈ R, KHLC,bat ∈ R, Khlc,u ∈
Rnu × Rnu , and Khlc,s ∈ Rnx+1 × Rnx+1 are posi-
tive scalars/diagonal-matrices. Pgtg, Pwtg, Pwtg,max, and
SOCbat are the GTG power, WTG power, WTG max
power, and battery state of charge, while u are the inputs.

The slack variable shlc ∈ Rnx+1 consists of two parts, one
slack variable shlc,g ∈ R for the power flow constraint and
shlc,x ∈ Rnx for converting the constraints on the system
states x into soft constraints. shlc,g is used in the power
flow constraint:

ghlc = Pgtg + Pwtg + Pbat − Pdemand + shlc,g (3)

which focuses on satisfying the total power demand
Pdemand from the power consumers. A slack variable shlc,g
is necessary for infeasibility handling as the OHPS may
not satisfy Pdemand under low average wind conditions and
low battery SOCbat, as the GTG power output Pgtg is
constrained.

In addition to the equality constraint, constraints on
the system states x (formulated as soft constraints for
infeasibility handling with shlc,x to handle process noise
w), inputs u, the system outputs y, and the slack variables
shlc are enforced using inequality constraints to keep the
different power systems inside of their nominal operating
region as to avoid degradation, see:

hhlc,ineq =



xmin ≤ x+ shlc,x ≤ inf

−inf ≤ x− shlc,x ≤ xmax

umin ≤ u ≤ umax

ymin ≤ y ≤ ymax

0 ≤ shlc ≤ inf

(4)

The resulting NLP for the HLC-ENMPC can be defined
as (this form also holds for the LLC):

min
x,u

Jhlc (xk(t),uk(t),pk(t))

subject to xk+1(t) = f (xk(t),uk(t),pk(t),wk(t))

hineq (xk(t),uk(t),pk(t)) ≤ 0

geq (xk(t),uk(t),pk(t)) = 0
(5)

where wk(t) = 0 (Remark 1 ).

3.2 Low-Level Control Formulation

The LLC in this control strategy consists of a conventional
tracking NMPC which follows the references computed
from the HLC-ENMPC in a receding manner. As opposed
to the HLC, the main control objective of the LLC is to
(in decreasing order):

(1) Minimise tracking error
(2) Minimise actuator effort and additional slack
(3) Satisfy the total power demand

A tracking NMPC uses a quadratic cost function to track
the HLC references. The quadratic low-level cost function
Jllc that fulfils the aforementioned low-level control objec-
tive is defined as:

Jllc = ex
TKllc,xex + uTKllc,uu+ sllc

TKllc,ssllc

where Kllc,x ∈ Rnx × Rnx , Kllc,u ∈ Rnu × Rnu , and
Kllc,s ∈ Rnx+1 × Rnx+1 are positive diagonal matrices.
ex = (x− xref) ∈ Rnx is the error between the system
states x and the HLC system states references xref∈Rnx ,
u are the inputs, and sllc ∈Rnx+1 are slack variables (sllc
consists similar to shlc of two parts, one variable sllc,g∈R
for the power flow constraint and sllc,x∈Rnx for converting
the constraints on x into soft constraints).

Like the HLC, the LLC makes sure that the total power
demand Pdemand is satisfied using (3) with a slack variable
sllc,g in the event of the arguments in subsection 3.1 and
unknown local disturbances, which are not captured in the
HLC. Additionally, (3) may be needed due to modelling
error if simplifications are made in the HLC.

Remark 2. (3) introduces an implicit constraint in the
LLC on the actuator’s slew rate to match the power
increase and decrease. Without (3), fast systems such as
the battery would deliver power faster than, for example,



the WTG, resulting in an under-or overshoot in total
delivered power.

Finally, for consistency between the HLC and the LLC:
system states x (formulated as soft constraints using sllc,x),
inputs u, the system outputs y, and the slack variables sllc
are constrained in the LLC according to (4) to keep the
different power systems inside of their standard operating
region as to avoid degradation. The resulting NLP for the
LLC-NMPC follows (5).

3.3 Observer Formulation

An MHE estimates the system states using past measure-
ments. The main objective of the MHE is to minimise out-
put tracking error and process noise by using a quadratic
cost function for estimation.

The quadratic MHE cost function Jmhe that can estimate
optimal system states x as a balance between the output
error and the process noise w is defined as:

Jmhe = (y − h(x,u,p))
T
Ky(y − h(x,u,p))+wTKww

where Ky ∈ Rny × Rny and Kw ∈ Rnx × Rnx are positive
diagonal matrices, x are the system states, u are the
system inputs, p is the system parameter, y are the system
outputs, w are the process noise, and h : Rnx × Rnu ×
Rnp → Rny is the measurement function from (1).

Remark 3. In this case study, the arrival cost is omitted
as the estimation performance was satisfactory.

Parameters to the MHE NLP are vectors of past system in-
puts u, system parameter p, and outputs y for a predefined
window into the past. Thus, the inequality constraints
used in the MHE differ from the controllers since u, p,
and y are parameters to the NLP. Additionally, the MHE
uses hard constraints for the system states x, and includes
the process noise w in the inequality constraint vector
hineq,mhe as it appears as a decision variable in the NLP.

hineq,mhe =

{
xmin ≤ x ≤ xmax

−inf ≤ w ≤ inf
(6)

Another difference between the controllers and the MHE
is the lack of (3) as an equality constraint. The resulting
NLP for the MHE can be defined as:

min
x,w

Jmhe (xk(t),uk(t),pk(t),wk(t))

subject to xk+1(t) = f (xk(t),uk(t),pk(t),wk(t))

hineq,mhe (xk(t),uk(t),pk(t)) ≤ 0
(7)

3.4 Hierarchical Control Strategy Overview

The strategy can be summarised by Algorithm 1, which is
initialised with initial states x0 and estimates x̂:

To incorporate feedback into the HLC-ENMPC, the HLC
is recomputed at a rate of thlc,sampling, where thlc,sampling <
thlc,prediction. ENMPChlc(·) computes system states refer-
ences xref given a system states estimates x̂ and system pa-
rameter p. The HLC references xref are used in NMPCllc(·)
together with x̂ and p to compute optimal local control

Algorithm 1: Hierarchical Control Algorithm

// Initialisation

x = x0;
x̂ = x̂0;
// Simulation

for (int i = 0; i < n, i++) do
if (i%thlc,sampling == 0) then
xref = ENMPChlc(x̂,p);
u = NMPCllc(x̂,p,xref);
// Apply u to get next states x given w

// Measure outputs y from x given v

x̂ = MHE(u,p,y);
end

inputs applied to the OHPS plant, which is disturbed by
the process noise w. The if condition for the LLC-NMPC,
which is computed at a rate of tllc,sampling is omitted as it
is assumed that tllc,sampling is equal to the plant sampling
time, and NMPCllc(·) is thus applied at every time step.

Similarly, MHE(·) is applied at every time step and com-
putes the system estimates x̂ given the LLC control in-
puts u, system parameter p, and noisy measurement y
disturbed by the measurement noise v.

4. SIMULATION AND VALIDATION

This section seeks to validate the performance of the
hierarchical control strategy of an OHPS in a simple
case study with one power consumer. The simulations are
carried out using the simulation environment in Subsection
4.1. Power references from the power consumer for which
the controller must satisfy, including the wind dynamics,
are briefly covered in Subsection 4.2, while the main results
are presented in Subsection 4.3. Lastly, a comparison is
made in Subsection 4.4 to illustrate the computational
constraints associated with long prediction horizons and
why a hierarchical control is required.

4.1 Simulation Environment

The control strategy is simulated on a computer with an
Intel(R) Core(TM) i7-9850H CPU @ 2.60 GHz. CasADI
(Andersson et al., 2019) is used with multiple shooting
(Bock and Plitt, 1984) to formulate the optimal control
problems. The optimal control problems are optimised
with IPOPT (Wächter and Biegler, 2006) using ma27
(HSL) as the linear solver. The plant model and control
model are in this case study identical with the excep-
tions of process noise (w ∼ 0) and normally distributed
measurement noise (v ∼ N (0, [45, 45, 0.001, 0.001])), with
model parameters adapted from Tremblay et al. (2007)
and Solberg (2021). At time i = 0, Algorithm 1 is ini-
tialised with initial values for the system state x0 and
system estimate x̂0. These are set equal for simplicity with
an value of [0.001, 0.001, 0.9, 0.001, 0.001].

The proposed controller and the plant model are simulated
together for 43200 s (12 hours) with a time step of 1 s,
corresponding to 43200 iterations. The HLC is recomputed
at a rate of thlc,sampling = 3500 s with a prediction
horizon of 7000 s, while the LLC is recomputed at a rate
of tllc,sampling = 1 s with a prediction horizon of 10 s.
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Fig. 3. Time profiles of the closed-loop power response P and battery state of charge SOCbat from applying the
hierarchical controller given current wind speed vwind.

Similarly, MHE is recomputed at a rate of tllc,sampling = 1
s with an estimation horizon of 5 s. It is assumed that the
control horizon equals the prediction/estimation horizon.
Lastly, tuning constants Ki in the cost function from
Subsections 3.1, 3.2, and 3.3 are tuned by hand from
simulations according to their importance as defined in
their respective Subsections.

4.2 Simulation Variables

In this case study, the wind dynamics are assumed known
to illustrate the hierarchical approach’s advantage. For
simplicity, the wind dynamics is approximated as a noisy
sine curve:

vwind = Avwind
sin

(
1

fvwind

t

)
+Kvwind

+wvwind

where t is current simulation time, fvwind
is the frequency

of the sine curve, Avwind
is the amplitude, Kvwind

is the
offset, and wvwind

is white noise that changes values every
Ts,wvwind

s.

Likewise, the total power demand from the power con-
sumer is in this case study modelled using additive noise:

Pdemand = wP1 +wP2 (8)

where wP1 is modelled as a uniform variate random
variable that changes values every Ts,wP1

s, and wP2 is
additional white noise that changes values every Ts,wP2

s.
Similar to the wind dynamics, the power demand for the
whole simulation is assumed known.

The numerical parameters for wind and exogenous power
demand forecasts can be found in Table 1.

Table 1. Wind and Exogenous Power Demand
Parameters

Symbol Value Symbol Value

wvwind N (0, 2) wP1
U(2000, 6000)

Kvwind 7 wP2
N (0, 500)

Avwind , fvwind 2,8500 Ts,wP1
2000

Ts,wvwind
375 Ts,wP2

1000

4.3 Simulation Results

The results from applying the hierarchical controller can
be found in Fig. 3. For simplicity, only the power responses
P for the GTG, the WTG, and the battery are shown
(where Ptotal = Pgtg + Pwtg + Pbat) along with the
average WTG rotor wind speed vwind and the battery
state of charge SOCbat. These trajectories are computed
using the resulting system states x, system inputs u,
and system parameter p from the OHPS plant or the
references computed by the HLC-ENMPC. In Fig. 3, the
plant response is shown as blue lines, the HLC-ENMPC
references are shown as gray lines, and the power demand
from the power consumer is shown as stipulated red lines.

Fig. 3 shows that the hierarchical controller distributes and
controls the power demand so that the total power demand
is always satisfied with the use of the GTG, the WTG, and
the battery. The control strategy satisfies total power de-
mand by preemptively charging the battery with the GTG
in anticipation of an increase in total power demand and a
decrease in vwind. Time of particular interest can be found
at t = 40000 s. This time of particular interest is challeng-
ing due to Pgtg,max+Pwtg,t=40000 ≤ Pdemand,t=40000. Since



Table 2. Comparison results from decreasing the prediction horizons in the HLC-ENMPC.

Prediction Horizon [s] Average Computational Time [s] SOCbat,t= 40000 s [%]

7000 19.1 70.4
5000 18.3 55.1
3000 11.4 43.2
500 1 22.4

Pgtg,max + Pwtg,t=40000 ≤ Pdemand,t=40000, preemptively
charging the battery is important such that Pgtg,max +
Pwtg,t=40000 + Pbat = Pdemand,t=40000.

In addition to satisfying the total power demand from
the power consumer, it can be observed from Fig. 3 that
the control strategy satisfies the economic objectives from
Subsection 3.1, which is to maximise the WTG power
Pwtg, while minimising the use of the GTG (0 ≤ Pgtg

during low average wind speed and SOCbat when Pwtg +
Pbat ≤ Ptotal,demand, otherwise Pgtg ≈ 0).

Remark 4. With a hierarchical approach for an offshore
hybrid power system, the GTG usage (≈ 92600 MW when
used in a hybrid power system configuration) is lowered
by 57.4% compared to the case where the GTG is scaled
up to satisfy the power demand alone (≈ 161363 MW).

4.4 Simulation Comparisons

Furthermore, an interesting comparison would be to look
at the hierarchical controller for different prediction hori-
zons and see how the controller distributes and controls
the power accordingly. Thus, to compare the performance
of different prediction horizons, the open-loop power and
battery state of charge SOCbat references (the WTG
power and the battery power are omitted for simplicity)
of the HLC-ENMPC with different prediction horizons
(thlc,prediction = 3000 s, 5000 s, and 7000 s) are plotted
in Fig. 4.
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Fig. 4. Time profiles of the open-loop total power Ptotal,
GTG power Pgtg, and battery state of charge SOCbat

references from the HLC-ENMPC with different pre-
diction horizons (decreasing from 7000 s to 3000 s),
given current wind speed vwind.

Fig. 4 shows that the reduced horizon controllers
(thlc,prediction = 3000 s and 5000 s) do not satisfy the
total power demand. At the time of particular interest
(t = 40000 s), the battery state of charge SOCbat is
increasing with the prediction horizon. This increase in
SOCbat depends on how much time in advance the HLC-

ENMPC considers the power demand and the average
wind speed at t = 40000 s.

The associated average computational cost of the HLC-
ENMPC and the battery SOC at t = 40000 s for different
prediction horizons can be found in Table 2. Table 2 shows
that all but prediction horizon = 500 s are significantly
more than the required computational time for the LLC
(≤ 1 s), where the battery SOC is increasing with the
prediction horizon.

5. CONCLUDING REMARK

The fast dynamics in the GTG and battery system act
as an upper constraint on the computational cost of the
actuating controller. If a single ENMPC was used to
control the OHPSs, issues due to computational delay
would occur as the controller would need tprediction ≤ 7000
to satisfy the total power demand by utilising wind and
power demand forecasts. However, as Table 2 and Fig. 4
illustrate, it is not feasible to only have a single ENMPC
versus a hierarchical structure as none of the ENMPCs in
Table 2 is wholly solved in 1 s. The maximum prediction
horizon corresponding to a sample time of 1 s is 500 s,
significantly lower than 7000 s. Hence, this simple case
study showcases the advantage of a hierarchical control
structure.

A long prediction horizon and intelligent operation of the
battery are required in this case study to satisfy the total
power demand from the power consumer. This type of
operation is required when the case study will be extended
to general OEHs, which require a reliable power source
in the absence of sufficient GTG power and uncertain
renewable generation with energy storage.

However, the results are only valid when the forecasts
are perfect regarding the wind and the exogenous power
demand. What is gained through a hierarchical controller
depends on the forecasts’ accuracy, where performance
will decrease if the forecasts are unreliable. The impact
of uncertain forecasts is, however, out of scope for this
work.

In conclusion, a hierarchical control strategy for control-
ling an OHPS has been proposed to reduce offshore GHG
emissions. The advantage of this strategy is an improved
scheduling performance due to a long prediction horizon at
a relatively low computational cost compared to a single
ENMPC with a lower prediction horizon. A simulation
study shows how the controller distributes the power such
that the total power demand from the power consumer is
satisfied at all times, given the wind forecast for that day.

6. FUTURE WORK

This control strategy assumes knowledge of the weather
and power demand with their fluctuations. This assump-



tion is not valid in practice, as the weather/power fluc-
tuations are random. Thus, future work should enhance
the current controller to handle unknown noise in the
weather forecasts and power demand predictions. The final
controller must include noise in its formulation to provide
a reliable power supply and handling for an eventual OEH
application. A way to address noise in an MPC can be
robust (Bemporad and Morari, 1999) or stochastic MPC
(Mesbah, 2016), depending on the type of noise.

The authors have not considered operational difficulties
with offshore wind or batteries. Thus, future work should
address the more realistic case, where each system is scaled
to a facility at the NCS, and grid stability is considered.
Although an offshore hybrid power system does not yet
exist, one can take inspiration from the Tampen area in
Norway with Hywind Tampen and the Gullfaks and Snorre
platforms. Hywind Tampen is a floating offshore wind farm
scheduled to provide around 35% of the power demand
from Snorre and Gullfaks (Whitfield, 2020).
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