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Universitätsplatz 2, 39106 Magdeburg, Germany

∗∗ Process Synthesis and Dynamics, Max Planck Institute for
Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106

Magdeburg, Germany
∗∗∗ Engineering Mathematics, Magdeburg-Stendal University of Applied

Sciences, Breitscheidstraße 2, 39114 Magdeburg, Germany
∗∗∗∗National Research University Moscow Power Engineering

Institute, Krasnokazarmennaya Ulitsa, 14, 111250 Moscow, Russia

Abstract: Continuous particle agglomeration processes are important size-enlargement unit
operations applied in the food, pharmaceutical and agricultural industry. For the improvement
of these processes predictive mathematical models are of utmost importance. A widely applied
modeling framework is the population balance equation, where the agglomeration kinetics are
described by the so-called agglomeration kernel. The identification of functions describing these
kinetics has turned out to be a challenging task. Therefore, this article deals with identifying
such a kernel function by minimizing the L2-residual between experimentally obtained particle
size distributions and simulations. The application of a stochastic gradient descent algorithm
with automatic differentiation for minimization allows for the direct identification of the
high-dimensional matrix representing the discretized kernel function. The comparison between
the simulated and measured size distribution shows that the identified kernel is able to
accurately describe the evolution of the particle size distribution. The algorithm presented in
this contribution can be applied to a variety of similar processes and the identified kernels can
be used in process optimization and automation applications.
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1. INTRODUCTION

Particle agglomeration is a size-enlargement process for
solid particles, based on the aggregation of two or more
particles, forming clusters. One typical technical realiza-
tion is fluidized bed spray agglomeration (FBSA), which is
a unit process widely used in the production of fertilizers,
active pharmaceutical ingredients and various food pow-
ders (Bück and Tsotsas, 2016). During the FBSA process
a particle bed is fluidized in an upwards faced air flow and
the particle surface is wetted by a binder solution. After
particle collision and drying of the binder new particles
are formed (Fig. 1). The primary advantage of FBSA
is the possibility of producing particles with predefined
properties by adjusting certain process conditions. One of
the most important product properties is the characteristic
particle size, since it strongly affects other (mechanical)
properties. Therefore the focus of this contribution lies on
the particle volume v.

The particle production process can be improved in terms
of efficiency and product quality by means of process inten-
sification and automation, and especially process control
(Otto et al., 2021a). For these purposes sound mathemati-
cal models are required, which therefore are an active field
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Fig. 1. Schematic representation of the 4-step wet agglom-
eration process.

of research. In the last decades the population balance
framework has been established as a standard tool to
describe the evolution of particulate systems (Ramkrishna,
2000). Therein, the process of binary agglomeration can
be described by a partial differential equation where the
kinetic rates are described by the so-called agglomeration
kernel β(t, u, u − v). Here, u and (u − v) denote the vol-
umes of particles forming an agglomerate with volume v
and the value of beta describes the number of success-
ful agglomeration events per unit of time and particle.
Previous research has shown that the agglomeration ki-



netics depend on various process conditions (e.g. Strenzke
et al. (2020)), therefore it is notoriously difficult to find
meaningful mathematical descriptions. Some approaches
based on the underlying micro-processes are presented in
Ennis et al. (1991); Hussain et al. (2015), other researches
have attempted to solve the inverse problem of finding
kernel parameters from synthetic or actual measurement
data (Chakraborty et al., 2015; Otto et al., 2021b) using
generic function approaches. Due to the large amount of
micro-processes involved in particle agglomeration which
are themselves difficult to model, the former approach
often results in complex model structures with unknown
parameters. In contrast to this, the latter approach usually
results in simple models with fixed structure and often
a small number of tuning parameters. It is however an
open challenge to find suitable approaches for the kernel
functions.

This issue is circumvented by the non-parametric approach
presented in this contribution. In the discrete version of the
process PDE the kernel function reduces to a matrix, with
the number of elements equal to the number of discretiza-
tion classes squared. A variety of discrete formulations of
the agglomeration PDE can be found in the literature,
e.g. in Kumar et al. (2008); Singh et al. (2015). The
identification of the matrix elements from experimental
data can be formulated as an optimization problem, where
the L2-residual between the measured and a simulated
particle size distribution is minimized as presented in
Ramachandran and Barton (2010); Golovin et al. (2018);
Otto et al. (2021b). In principle, the minimization can be
conducted by applying any gradient descent method. In
contrast to the contributions mentioned above the num-
ber of parameters is quite large if a matrix is identified,
therefore computing the gradients by numerical differenti-
ation becomes infeasible for high numbers of discretization
classes. Alternatively, we use automatic differentiation in
this contribution which is computationally more efficient
and additionally allows for applications in online parame-
ter estimation settings. Furthermore, this approach allows
for other, high-parametric kernel function approaches such
as neural networks. This has been presented in Nielsen
et al. (2020) for general particle processes and the example
of a flocculation/breakage process. In order to illustrate
the effectiveness of the kernel modeling algorithm, it is
applied to a set of synthetic and a set of experimental
particle size distribution measurements. The accuracy of
the identified kernel models is then validated by comparing
simulations against the measured data.

The outline of this contribution is as follows: In section 2
the continuous process model as well as its discretization
are described briefly. The kernel identification algorithm
is presented in section 3, followed by results on synthetic
and experimental data in section 4. A short conclusion and
outlook are given in section 5.

2. PROCESS MODEL

An established framework for the modeling of agglomera-
tion processes is the population balance equation (PBE),
which describes the evolution of the number density dis-
tribution of particles n(t,x) over time t and some in- or
external coordinates x. The focus in this contribution lies

on the particle volume, i.e. x = v, therefore the population
balance is given by

∂n(t, v)

∂t
= ṅf(t, v)− ṅo(t, v) + ṅa(t, v) (1)

as presented in Otto et al. (2021b). The left-hand side of
Eq. (1) represents the accumulation of particles, the terms
on the right-hand side account for the particle feed, outlet
and agglomeration, which are described in more detail in
the following. The particle feed

ṅf(t, v) = Ṅf q0,feed(v) (2)

is computed from the number feed rate Ṅf and the nor-
malized primary particle number density q0,feed(v) which
is assumed to be constant with respect to time and ap-
proximated by a normalized Gaussian function with mean
value vf and standard deviation σf. The particle outlet

ṅo(t, v) = KT (v)n(t, v) (3)

consists of the withdrawal rate K and the separation
function T (v) acting linearly on n. The separation function
is approximated by a cumulative Gaussian function with
mean value vo and standard deviation σo

The agglomeration term is given by the following nonlinear
integral (Hulburt and Katz, 1964; Ramkrishna, 2000):

ṅa(t, v) =
1

2

∫ v

0

β(t, u, v − u)n(t, u)n(t, v − u) du

−
∫ ∞
0

β(t, v, u)n(t, v)n(t, u) du ,

(4)

where β(t, u, v) is the agglomeration kernel, describing the
rate of successful agglomeration events between particles
of volume u and v. Commonly the kernel function is
separated into a time- and a size-dependent part

β(t, u, v) = β0(t)β(u, v), (5)

where β0(t) is the so-called agglomeration efficiency. The
coalescence kernel, β(u, v), is restricted to positive and
symmetric functions due to simple physical considerations.
In this contribution we furthermore assume β0 to be
constant. For a more detailed description of the process
model we refer the reader to Otto et al. (2021b).

Since the desired kernel function is discretized and rep-
resented as a matrix, it is necessary to have a volume-
discrete formulation of the population balance equation.
Here, we apply the finite-volume discretization scheme
developed in Singh et al. (2015), where the continuous
volume range is partitioned into Iv classes and every class
is represented by volume vi. The total number of particles
in class i ∈ (1, ..., Iv) is denoted by Ni(t) and can be
approximated by

Ni(t) ≈ n(t, vi)∆vi (6)

with ∆vi being the width of class i. The discretized version
of the agglomeration term (Eq. (4)) is given by

dNa,i

dt
=

1

2

∑
(j,k)∈Ii

β0βj,kNjNkSi,j,k −Ni

Iv∑
j

β0βi,jNj

(7)
with

Si,j,k =
vj + vk
vi

(8)

Ii = {(j, k) ∈ N× N : vi−1/2 < (vj + vk) ≤ vi+1/2}



for i, j, k ∈ (1, ..., Iv). For further information regarding
the discretization scheme, we refer to Singh et al. (2015).

In the discrete formulation the agglomeration kernel func-
tion β(u, v) reduces to a matrix with I2v elements βi,j ,
which can be identified directly. Since the kernel function
is symmetric, only the lower triangular elements are iden-
tified and then mirrored, resulting in identification Iv(Iv−
1)/2 + 1 variables. The discretization of the feed term and
the outlet term is straightforward and not presented here.

3. KERNEL IDENTIFICATION

The kernel identification algorithm, presented schemati-
cally in Fig. 2, is based on the minimization of the L2-
residual between the measured and the simulated volume
distribution which depends on the kernel function (Ra-
machandran and Barton, 2010; Golovin et al., 2018; Otto
et al., 2021b). Starting at the given initial distribution, the
population balance equation is solved numerically at the
measurement time steps tl and the following loss function
is computed

JL2(p) =
1

2

i=Iv∑
i=1

l=It∑
l=1

(
uli,meas − uli,sim(p)

)2
. (9)

Here p denotes the vector of optimization variables, con-
taining the kernel matrix elements βj,k and the agglomera-
tion efficiency β0. To compare experiments and simulations
we use the diameter based volume distribution u(t, d) for
two reasons. Firstly, the experimental measurements are
provided in this representation and secondly the diameter
range of interest spans less orders of magnitude than the
volume range, which is numerically advantageous.The vol-
ume distribution at diameter di and time t = tl is denoted
by uli = u(tl, di), which is computed by weighting the
volume based number density distribution n(t, v) with the
volume and using the class-wise number conservation, i.e.:

u(t, di) =
π

6
d3in(t, vi)

∆vi
∆di

. (10)

In the case with experimental measurement data u(t, d) is
recovered from the normalized volume density distribution
q3(t, d) and the bed mass m(t) (Otto et al., 2021b).

In a general agglomeration process, there will be volume
classes without a significant amount of particles in it, hence
the respective matrix elements βj,k of the kernel can not
be identified. In order to distinguish these elements we
introduce an additional, sparsity-promoting term to the
cost functional

JL1
(p) =

∑
j,k

|βj,k|, (11)

rendering non-contributing matrix elements zero. The re-
sulting loss function

J =
∑
i,l

(
uli,meas − uli,sim(p)

)2
+ γ

∑
j,k

|βj,k| (12)

with an additional tuning parameter γ is minimized us-
ing the stochastic gradient descent algorithm ”Adam”
(Kingma and Ba, 2017) implemented in python using the
PyTorch library. The Adam algorithm uses parameter-
specific adaption rates α in order to determine size of each
parameter adaption step. Here, we choose different adap-
tion rates for the matrix elements βj,k on the one hand and

the agglomeration efficiency β0 on the other. An advantage
of using a stochastic method is the ability of minimizing
objective functions with inherent stochasticity, in our case
induced by the measurement noise. The discretized ag-
glomeration term in the population balance equation tends
to be stiff. Therefore using a Runge-Kutta 4(5) variable
time step solver is advantageous. Direct backpropagation
through the ODE-solver using automatic differentiation in
backwards mode (Chen et al., 2018) allows to compute the
necessary gradients efficiently, which is especially impor-
tant regarding potential real-time applications.

The matrix elements βj,k are initialized with values, dis-
tributed randomly in the interval [0, 1). The agglomera-
tion rate, β0 is initialized iteratively with suitable values.
The non-negativity of the matrix elements is ensured by
taking their absolute values before solving the population
balance.

4. RESULTS

4.1 Matrix Element Identification from Synthetic Data

The parameter identification algorithm is applied to an
exemplary set of synthetic measurement data, generated
with the Kapur-Kernel presented in Fig. 3 (left) and
additional process parameters presented in Tab. 1. The
parameter estimation algorithm is terminated after 30
epochs due to the small value of the loss function and
small gradient. The identified kernel matrix as well as the
element-wise absolute error compared to the Kapur kernel
are presented in the middle and on the right in Fig. 3.
For volume classes with no or very few particle measured,
here v < 0.1mm and v > 1.5mm, the corresponding matrix
elements are close to zero due to the sparsity promoting
L1-term in the loss function. These regions are omitted in
the graphical representation In regions with a significant
number of particles measured, the difference between the
kernels becomes small, but does not vanish.

The prediction capability of the identified kernel matrix
is visualized and comparing the solution of the population
balance equation to the measurements as presented in Fig.
4 for selected time instants. We see that the differences in

Table 1. Simulation and gradient descent parameters.

Parameter Value Unit

Feed

Ṅf 7.5× 106 s−1

µf 0.2 mm
σf 0.05 mm
Outlet
K 3.6× 10−3 s−1

µo 0.9 mm
σo 0.3 mm
Kernel
β0 3× 10−10 s−1

a 0.5
b 0.1
Discretization
Iv 40
It 61
Gradient descent
α (β0) 1× 10−9

α (βj,k) 1× 10−2

γ 1× 105
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Fig. 2. Schematic presentation of the identification algorithm.
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Fig. 3. Kapur kernel (left), identified matrix (middle) and their absolute difference (right).

the volume distribution nearly vanish, therefore the iden-
tified matrix clearly captures the relevant agglomeration
kinetics. However, it should be clear that the kinetic rate
constants of the nonlinear process can not be identified
uniquely from one experiment alone and might even be
non-unique for multiple experiments. Therefore, from a
practical point of view, the kernel matrix should be iden-
tified from experiments covering the full range of initial
conditions of interest.

4.2 Matrix Element Identification from Experimental Data

In this section the identification of a kernel matrix from
actual experimental data is presented. The volume distri-
bution measurements of a stable, continuous FBSA process
were originally presented as ”reference experiment” in
Strenzke et al. (2020) and contain samples over the course
of two hours under constant process conditions. The sam-
ple times of the original measurements were distributed
non-uniformly. For the present paper the distributions
were interpolated linearly at 61 linearly distributed time
steps, resulting in measurement data every two minutes.
In Otto et al. (2021b) Kapur kernel parameters were iden-
tified using the same data, however, only the dynamical
behavior near the steady state could be described in good
accuracy, i.e. the Kapur kernel model was not able to
predict the measurements over the full two hour time
horizon.

In order to compare the volume-based solution of the
population balance equation with the diameter-based mea-
sured distributions they have to be converted into each
other. Furthermore, we need values for K and T which

change over the course of the experiment and can be re-
covered from the measurements of the volume distribution
in the outlet and the bed mass over time. For the respective
computations we refer the reader again to Otto et al.
(2021b) and the references therein.

The measured volume distribution q3 reaches a bi-modal
steady state with a primary and a product particle peak
after around one hour. Applying the parameter identifica-
tion algorithm yields the kernel presented in Fig. 5 after
43 gradient descent steps which takes around 4 minutes
on a Intel(R) Core(TM) I7-10610U CPU. The compar-
ison between simulated and measured volume distribu-
tion in Fig. 6 shows high accuracy of the particle size
prediction with a slight underestimation in the primary
particle classes. Potential reasons for this could be overly
simplifying model assumptions, such as lumping the spa-
tial coordinates while in reality zone-formation occurs in
the agglomeration chamber or the assumption of a time-
independent kernel matrix.

In this contribution the evolution of the size distribution
over the whole two hour time horizon was considered in
the objective function, resulting in a kernel describing
the dynamics over the same horizon. Note that, for some
practical applications of a kernel identification algorithm,
e.g. in model predictive control applications, a shorter
prediction horizon with less computation time could be
sufficient.



5. CONCLUSION AND OUTLOOK

In this contribution, the optimization-based identification
of an agglomeration kernel for fluidized bed spray ag-
glomeration processes was presented and validated. The
application of automatic differentiation through an ODE-
solver in a gradient descent method allowed the direct
identification of 781 kernel matrix elements representing
the kernel function. With the identified kernel matrices,
the evolution of the particle size distributions could be
predicted with high accuracy, both for synthetic and ex-
perimental measurement data sets.

Future research directions are manifold. Instead of identi-
fying a kernel matrix for one experiment only, the identifi-
cation algorithm can be applied to multiple data sets. By
dividing these into training, test and validation data sets,
the generalizability of the kernel matrix can be assessed.
In this context, the kernel matrix can be replaced by any
function approach (such as neural networks) in order to
identify relationships between relevant process conditions
such as temperature and gas moisture and the kernel. Since
the algorithm is fast and can furthermore be parallelized,

0.5 1 1.5
0

1

2

3

t = 10min

q 3
(x

)

0.5 1 1.5
0

1

2

3

t = 20min

q 3
(x

)

0.5 1 1.5
0

1

2

3

t = 40min

q 3
(x

)

0.5 1 1.5
0

1

2

3

t = 60min

q 3
(x

)

0.5 1 1.5
0

1

2

3

t = 120min

x (mm)

q 3
(x

)

Fig. 4. Comparison between synthetic measurements and
simulated particle size distributions.
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Fig. 5. Identified Matrix kernel for experimental data.

it can be applied parallel to the real process. Finally, the
(online-) kernel identification algorithm can be embedded
in any framework, depending on kernel identification, such
as model based control algorithms.
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Otto, E., Behrens, J., Dürr, R., Palis, S., and Kienle, A.
(2021a). Discrepancy-based control of particle processes.
Journal of Process Control.
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