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Abstract. The paper considers the application of consistent measures of dependence of random values (in 
other words, those measures that vanish only under the conditions of stochastic independence of such 
values) to solve the problems of selecting representative indicators characterizing the predictability 
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1. PRELIMINARIES 

In the analysis of biomedical experimental data (Ciarletta et 
al., 2016, Garfinkel et al., 2017, Rangayyan, 2005, 2015) in 
the framework of stochastic studies, the necessity of applying 
measures of dependence of random variables inevitably 
arises. In most cases, the traditional linear correlation is used 
as such a measure. Its application is directly caused by the 
very formulation of the measurement processing problem, 
when such a task is based on the application of traditional 
approaches related to the least-squares method. The main 
advantage of such a measure is its ease of application, which 
implies the possibility of deriving explicit analytical relations 
to determine the required characteristics of the system, and 
building methods of evaluation using sample data, including 
those based on the use of dependent observations. 

However, it is known that linear correlation as a measure of 
dependence is able to become zero even in the presence of a 
deterministic dependence between random values. In 

particular, this is true for the quadratic dependence, 2XY  , 
when X is a Laplacian random value (Rajbman, 1981), as 

well as for an odd transformation in the form XXY 35 3  , 
where the random value X has a uniform distribution within 
the interval  1,1   (Rényi, 1959). 

To eliminate this disadvantage, it is important and necessary 
to use more complex nonlinear measures of dependence in 
the process of stochastic signal processing. The main issue 
considered in this paper is the application of consistent 
measures of dependence. In accordance with the terminology 
of A.N. Kolmogorov, a measure of the dependence ),( YX  

of two random values X and Y is consistent if 0),(  YX  if 

and only when the random variables X and Y are 
stochastically independent. 

The paper is devoted to issues of consistency of measures of 
dependence of random values with application to solving 
problems of selecting representative indicators characterizing 
the predictability (stability) of the behavior of biological 
objects, such as protein units. 

2. A PROBLEM OF SELECTING INFORMATIVE 
INDICATORS TO PREDICT THE STABILITY 

OF PROTEINS FRAGMENTS  

The present paper approach based on involving consistent 
measures of dependence is aimed to be applied within the 
problem of selecting informative indicators to predict the 
stability of short fragments of proteins consisting of five 
amino-acid residues, the pentapeptides, that were earlier 
shown (Nekrasov et al., 2014) to be able to describe 
adequately the three-dimensional protein structure. Such 
proteins units are basic structure elements of protein 
molecules and play important role in forming their structure. 
Studying physical-chemical and functional protein properties 
that are defined by their amino acid sequence is a key 
problem of advanced biology. Predicting a structure that a 
protein will take within its folding process (Fabian and 
Naumann, 2012) is of importance, in particular, to elaborate 
medicinal agents influencing the performance of biological 
systems. Problems of such a kind are characterized by a large 
dimension of indicators spaces, For instance, under studying 
a cell or tissue sample by use of techniques of sequence 
analysis of the genome of new generation it is possible to 
obtain information about the expression of practically all 
protein-coding genes, as well as short and lengthy non-coding 
RNA. Typical size of such data amount is extremely small in 
the comparison with the indicators number. The indicators 
number is of the order of thousands, while the number of 
samples is, in the best case, of the order of hundreds (Petrov 
et al., 2019). 



To increase the efficiency and reliability of data analysis 
results, methods of selecting indicators, revealing regularities 
inherent in data, clustering data in order to form 
homogeneous groups are applied (Petrov et al., 2019). Within 
such a stochastic framework, as a selection criterion, it is 
natural to apply a suitable measure of dependence of an 
indicator with the goal variable. Meanwhile, suitability of 
such a measure of dependence is just to be characterized by 
its ability of proper revealing such dependence between the 
indicator and goal variable. Selecting a corresponding 
measure of dependence meeting the requirements considered 
is not straightforward and assumes applying a specific 
apparatus of the probability theory and based on the A. Rényi 
axioms. 

In 1959, A. Rényi formulated axioms that were found to be 
the most suitable for determining the measure of dependence 
 YX ,  between two random values X and Y, which is 

intended to exhaustively characterize such dependence. These 
axioms are presented below (Rényi, 1959): 

A)  YX ,  is defined for any pair of random values X and 

Y, if none of them is constant with probability 1. 

B)  YX , =  XY , . 

C)   1,0  YX . 

D)   0, YX  only if X and Y are independent. 

E)   1, YX  if there exists a deterministic relationship 

between X and Y , so that either )(XY  , or )(YX 
, where  and are some Borel measurable functions. 

F) If and are some one-to-one Borel measurable 
functions, then    YXYX ,)(),(   . 

G) If the joint probability distribution of X and Y is 
Gaussian, then    YXrYX ,,  , where  YXr ,  is the 

conventional correlation coefficient between X and Y. 

Measures of dependency corresponding to Rényi's axioms, 
with the possible exception of axiom F, will be called 
hereinafter consistent in the sense of Rényi. 

The conventional correlation coefficient  YXr ,  is, of 

course, the best known among the various measures of 
dependence. A more subtle approach to the characterization 
of the dependence of random variables is considered when 
applying the correlation ratio 
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and the maximum correlation coefficient  YXS , , originally 

introduced by H. Gebelein (1941) and investigated in papers 

of O.V. Sarmanov (Sarmanov 1963a,b, Sarmanov and 
Zakharov, 1960), A. Rényi (1959), and others 
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    0)(,0)(  XCYB varvar . 

In the formula above, the upper bound is taken over the sets 
of Borel measurable functions, {B} and {C}, and also, 

 BB ,  CC , while  ,cov  is the covariance symbol. 

However, in the paper of Rényi (1959) it was shown that only 
the maximum correlation coefficient  YXS ,  corresponds to 

the above axioms, whereas the conventional correlation 
coefficient  YXr ,  and correlation ratio  YX ,  do not 

correspond. In particular, the axioms D, E, F have not been 
satisfied for the correlation coefficient, and the axioms D, F 
have not been satisfied for the correlation ratio. 

Despite the existing shortcomings, the measure of 
dependence such as the conventional correlation coefficient is 
widely applicable for certain biomedical purposes, especially 
when solving protein research problems (Yanchun Tao et al., 
2018, Yuqing Wu et al., 2018), but within the framework of 
solving another type of problems, for example, predicting the 
stability of short protein areas, the use of conventional 
correlation may be unacceptable in the view of the above 
disadvantages. 

In accordance to preceding sections considerations, a 
measure of dependence to be applied within selecting 
informative indicators to predict the stability of short proteins 
fragments is to be consistent in the Kolmogorov sense at 
least, but at the same time, it is very advisable that the 
measure would be consistent in the Rényi sense as well due 
to the necessity to take its values in the unit interval only, 
since such a normalization can be a reliable characteristic of 
the selection. In turn, the reliability takes its values in the unit 
interval. From another hand side, such a consistent in the 
Rényi sense measure of dependence is to admit its suitable 
estimation by use of sample date.  

3. BUILDING CONSISTENT IN THE RÉNYI SENSE 

MEASURES OF DEPENDENCE 

In turn, it must be emphasized that Kolmogorov consistent 
measures of dependence will not necessarily be consistent by 
Rényi based measures. First of all, this refers to the 
correspondence between the axioms of C and G according to 
Rényi. This Section presents an approach to building 
measures of dependence in accordance with the above 
mentioned Rényi axioms. In particular, the approach includes 
the implementation of the following three steps. 

1) for any measure of dependence XY  between random 

values X and Y, it is necessary to calculate this measure for 
two-dimensional Gaussian density depending on the 
correlation coefficient  YXr , . 



2) Represent the resulting expression as a function of the 
correlation coefficient module  

   YXr
XY

, , (1) 

and invert this function. 

3) The resulting expression 

  XYXY



1 , (2) 

 (as a function of the initial measure of dependence XY ) 

defines a measure of dependence between two random values 
X and Y, satisfying the Rényi’s axioms C and N. 

In particular, for the maximum correlation coefficient 
 YXS , , the corresponding function 

     ),), ),( YXrYXr YXSXY
  

is the identical transformation. It should be noted that the 
calculation of the maximum correlation coefficient is 
associated with the need to apply a complex iterative method 
for determining the first eigenvalue and the pair of the first 
eigenfunctions (corresponding to this first eigenvalue) of the 
stochastic kernel 
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Along with maximum correlation based on the comparison of 
the moment characteristics and the unconditional joint 
probability distributions of the pair of random values under 
consideration, a wide class of measures of dependence is 
formed by using the direct matching of unconditional 
marginal and joint probability distribution of random 
variables. Such a class is known as measures of divergence of 
probability distributions. Among such measures is the 
Kullback-Leibler divergence, 
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perhaps the most widely known and used, while directly 
leading to mutual information as per Shannon. 

4. NORMALIZED MUTUAL INFORMATION OF THE 
TSALLIS DIVERGENCE OF THE ORDER ½ 

In addition to the Kullback-Leibler divergence, which leads 
to the definition of mutual information according to Shannon, 
many more general approaches in defining the divergence 
measure of two probability distributions are known. In 
particular, the Tsallis divergence of the order α has the form 
(Tsallis, 2009) 
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From a computational point of view, especially when 
performing calculations using sample data, Tsallis divergence 
is more preferable than the Kullbak-Leibler divergence, since 
the latter includes a "logarithm of integral", which is 
generally recognized to be much more complex in 
comparison with the Tsallis divergence, where there is no 
logarithm at all. 

Since at 1   gfDT
  tends to Kullback-Leibler 

divergence, the latter can be considered as a special case of 
the Tsallis divergence of the order 1. It is obvious that 

    2
1  fgDgfD TT . 

Then, for 2n  and xypf  , yx ppg   from the 

expression (3) directly ensues mutual information of the 
order ½ of random values X and Y, having the form 
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where the mathematical expectation is taken over ),( yxpxy . 

In addition, using the method mentioned in Section 3, 
including expressions (1), (2), we get 
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The behavior of the measure of dependence  YXT ,2/1 , 

represented by expression (5), as a function of the Tsallis 

mutual information of the order ½  YXIT ,2/1 , is shown in 

Fig. 1.  



 
Figure 1. The behavior of the measure of dependence	ߡଵ/ଶ
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presented in (5) as a function of 1/2ܫ
ܶ ሺܺ, ܻሻ. 

 

 

 

In turn, estimation of  YXIT ,2/1  (4) on the basis of sample 

data can be performed by direct application of Sklar’s 
theorem (Sklar, 1959) to the decomposition of the joint 
density of the probability distribution using their copula 
function. In particular, for the probability distribution density 

),( yxpxy  of random values X and Y with the corresponding 

marginal probability distribution densities )(xpx , )( yp y  the 

following expansion is justified: 

   )()()(),(),( ypxpyPxPcyxp yxyxxy  , (6) 

where 





x

xx dzzpxP )()( , 



y

yy dzzpyP )()(  

are marginal probability distribution functions of random 
values X and Y, while  )(),( yPxPc yx  is the copula density 

function. 

In accordance with the presentation of formula (6), 
expression (4) takes the form 
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Representation (7) allows us to apply the method of 
estimating mutual information according to Shannon (Zeng 
and Durrani, 2011). At the same time, the case of the Tsallis 
mutual information of order ½ (4) in the frame of this context 
becomes much simpler, since in the case of mutual 
information according to Shannon, the copula density 
function based on the expansion formula (6), similar to the 
above, includes the logarithm of the copula density function: 

    )(),(ln)(),( yPxPcyPxPc yxyx . 

At the same time, the application of the estimation method 
using the copula density function avoids the difficulties that 
always accompany the division operation. 

Summarizing all these justifications, one should conclude 
that just normalized Tsallis mutual information of order ½ 
defined by (5) is the measure of dependence meeting the 
requirements of the described problem of selecting 
informative indicators to predict the stability of short proteins 
fragments. 

5. EXAMPLE: ZERO CORRELATION UNDER 

STOCHASTIC DEPENDENCE 

As mentioned in Section 1, there are many examples where 
the use of conventional correlation methods in building 
models has not yielded satisfactory results. Among such 
systems, we can distinguish those in which the dependence 
between the input and output variables is described by the 
probability distribution density 

 

  )()(1)()(),(; xyxpypxyp xyxyyx   , (8a) 

with marginal probability distribution densities )( ypy  and 

)(xpx , as well as functions )(yy  and )(xx , satisfying the 

conditions 

 0)()(  dyyyp yy  , 0)()(  dxxxp xx  , (8b) 

where the parameter λ ensures that the condition is fulfilled: 

 0)()(1  xy xy  . (8c) 

Density (8) belongs to the class of probability distributions 
by O.V. Sarmanov (Balakrishnan and Lai, 2009, Sarmanov, 
1967). 

For probability distribution density (8), both the correlation 
coefficient  YXr , , and the correlation ratio  YX ,  are 

identically zero if the functions )()( yyp yy   or )()( xxp xx   

are even. 

In particular, to the class of distributions of O.V. Sarmanov 
(8) refers to the following density: 
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The maximum correlation coefficient for it is as follows: 
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Despite its scalar nature, the magnitudes of the parameter λ 
significantly affect the shape of the probability distribution 
density (9). Fig. 2 shows the shape of the probability 
distribution density (9) for different values of the parameter 
 .ߣ
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Figure 2. The density form of the probable distribution (9) for 
different values of the parameter λ . 

 

For probability distribution density (9), both the correlation 
coefficient  YXr , , and the correlation ratio  YX ,  are 

identically zero. 

In turn, in Fig. 3, the dependence of the values  YXT ,2/1  (5) 

on the parameter λ of the probability distribution density (9) 
is presented in comparison with the values of the maximum 
correlation  YXS ,  coefficient (dotted line). 



 

Figure 3. Comparison of quantities 1/2ߡ
ܶ ሺܺ, ܻሻ and ܵሺܺ, ܻሻ for various values of the parameter λ in the probability distribution density (9).. 

6. CONCLUSIONS 

The paper has been concerned with issues of application of 
consistent measures of dependence, taking into account the 
ability of their application within stochastic signal 
processing, since it always assumes applying a measure of 
dependence, while conventional ones, based on the linear 
correlation, may lead to unacceptable results due to the 
possibility of vanishing even under the availability of 
deterministic dependence between random values. A 
procedure that enables one to construct corresponding 
consistent in the Rényi sense measure of dependence from a 
consistent in the Kolmogorov sense measure of dependence 
has been proposed. 

In the paper, a consistent in the Kolmogorov sense measure 
of dependence was referred as consistent in the Rényi sense, 
if such a measure meets all Rényi axioms (Rényi, 1959). In 
particular, such a consistent in the Rényi sense measure of 
dependence has been constructed by us of Tsallis divergence 
of the order ½, which has been proposed to be applied within 
the problem of selecting informative indicators to predict the 
stability of short fragments of proteins. 
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