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Abstract: The requirement for a framework that effectively overcomes the limitation of model-
based and data-driven control strategies by combining both methods continues to grow. In this
study, we propose an approach that learns the model-plant mismatch map and utilizes it based
on the offset-free model predictive control (MPC). Specifically, the mismatch map is learned
via general regression neural network (GRNN) that has been applied in broad range of fields
based on the data from the process, and then the learned mismatch information is provided
to the MPC system. In addition, since the approximated mismatch map via GRNN cannot be
perfect, an additional supplementary disturbance estimator is utilize to ensure the zero-offset
tracking property. Finally, the learned and supplementary disturbance signals are applied to the
target problem and the optimal control problem based on the offset-free MPC framework. The
effectiveness of the proposed combined model-based and data driven framework is demonstrated
by closed-loop simulation. The result shows that the proposed framework can improve the closed-
loop tracking performance by utilizing both the learned mismatch information from GRNN and
the stabilizing property of the supplementary disturbance estimator.

Keywords: Model predictive control, general regression neural network, model-plant mismatch,
offset-free tracking.

1. INTRODUCTION

Model predictive control (MPC) predicts the propagation
of physical system in a horizon with known dynamics of the
system and derive an effective and reliable solution based
on the model Kim et al. (2019); Jeong and Lee (2020);
Kim et al. (2020c). Thus, the closed-loop performance
of MPC is directly related to the accuracy of model
Kim et al. (2018); Jeong (2020). However, since model-
plant mismatch and unmeasured disturbances always exist
in real systems, MPC usually cannot achieve optimal
performance. Machine learning (ML) performs a specific
task such as classification, regression, clustering and policy
learning from the behavior of the real system Oh et al.
(2021); Kim et al. (2020a). Thus, ML does not require any
given model or prior assumption about the system, and
can implicitly manage uncertainties. However, this model-
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free pure learning approach without any prior information
of the system is often limited because it requires a large
amount of data and exploratory behavior can intrinsically
damage the system Kim and Lee (2020); Kim et al. (2020b,
2021).

Since the advantages and limitations of model-based ap-
proach and data-driven approach are complementary to
each other, the combination of MPC and ML is an emerg-
ing area of research. Zhang et al. (2016), Chen et al. (2018),
and Hertneck et al. (2018) derive a reliable policy by
supervised learning from a nominal MPC policy to avoid
the system failure from exploratory policy. Williams et al.
(2017), Gillespie et al. (2018), Kaiser et al. (2018), and
Thuruthel et al. (2018) improve the optimality of MPC
by continuously updating the dynamic model for MPC
with sampled data. Koryakovskiy et al. (2018) improves
the closed-loop performance of MPC by deriving a direct
compensatory control action using reinforcement learning
with the same performance measure of MPC. Terzi et al.
and Manzano et al. Terzi et al. (2019); Manzano et al.
(2020), propose learning-based robust predictive control



frameworks that identify prediction model with bounded
uncertainty utilizing data from the process and design
robust MPC system. Vaupel et al. Vaupel et al. (2020)
improves nonlinear MPC computation by approximating
the optimal control policy via a neural network model and
applying the policy model to initialize the optimal control
system.

This study proposes a framework that performs predictive
control based on a model-based on prior knowledge of the
process, learns model-plant mismatch map from process
data, and applies it for closed-loop reference tracking. The
proposed framework is developed based on the offset-free
MPC that is one of the most popular methods for compen-
sating for the model-plant mismatch in the mode-based
control system design Muske and Badgwell (2002); Pan-
nocchia and Rawlings (2003); Pannocchia and Bemporad
(2007). The disturbance estimator approach, which tracks
the reference trajectory in the presence of plant-model
mismatch or unmeasured nonzero mean disturbances by
augmenting the disturbance model to the plant model
and deriving compensatory disturbance from the estimator
Maeder et al. (2009); Maeder and Morari (2010); Son et al.
(2022), is utilized in the proposed framework. Specifically,
in the proposed framework, the general regression neural
network (GRNN) proposed by Specht (1991) is utilized
to approximate a map for model-plant mismatch in the
controlled variable space using the plant data. Subse-
quently, the learned disturbance value from the approx-
imated mismatch map is applied to the target problem
and the optimal control problem of the offset-free MPC
system. However, since the trained mismatch map cannot
provide a perfect model-plant mismatch information, the
supplementary disturbance estimator is also constructed
to ensure the zero-offset tracking property by introducing
additional supplementary disturbance signal to handle the
transient state and the change in the characteristics of
the process during the operation. By this, the proposed
method can efficiently improve the closed-loop reference
tracking performance of the model-based control system
by utilizing both the learned model-plant mismatch infor-
mation from the GRNN map and the stabilizing property
of the disturbance estimator.

2. PRELIMINARIES

2.1 Linear offset-free model predictive control

We consider the following discrete time-invariant plant
xp(k + 1) = fp(xp(k), u(k))

yp(k) = gp(xp(k))

zp(k) = Hyp(k)

(1)

where xp ∈ Rnxp , u ∈ Rnu , yp ∈ Rny , and zp ∈ Rnz

denote the state, input, output, and controlled variables
of the plant, respectively. Generally, we assume that the
matrix H has full row rank.

The following process constraints are also considered.

u ∈ U , xp ∈ X (2)

U and X are compact polyhedral constraint sets for input
and plant state, respectively.

In linear offset-free MPC, to drive the plant controlled
variables zp to the reference trajectory, a control system

is designed based on the linear time-invariant state-space
model in (3).{

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(3)

where x ∈ Rnx and y ∈ Rny denote the state and output
of the linear system, respectively. The reference signal r(k)
is assumed to converge to a constant r∞ as k → ∞.
Additionally, the linear system in (3) is also assumed to
be controllable and observable.

One of the most commonly used way to accomplish the
zero-offset tracking of the reference trajectory by compen-
sating for the mismatch between the the model in (3) and
plant in (1) is to introduce an additional integrating state,
which is usually called disturbance as follows (Pannocchia
and Rawlings, 2003; Maeder et al., 2009):

x(k + 1) = Ax(k) +Bu(k) +Bdd(k)

d(k + 1) = d(k)

y(k) = Cx(k) + Cdd(k)

(4)

where d ∈ Rnd denotes the disturbance variable, and
Bd ∈ Rnx×nd and Cd ∈ Rny×nd are the matrices describing
the disturbance dynamics.

The estimator for state and disturbance variable can be
constructed as follows:[

x̂(k + 1)

d̂(k + 1)

]
=

[
A Bd
0 I

] [
x̂(k)

d̂(k)

]
+

[
B
0

]
u(k)

+

[
Lx
Ld

]
(−yp(k) + [C Cd]

[
x̂(k)

d̂(k)

]
) (5)

where Lx ∈ Rnx×ny and Ld ∈ Rnd×ny denote the gains for
state and disturbance variable, respectively. Then, proper
gain values are selected to make the estimator dynamics
stable.

Subsequently, the target state x̄ and target input ū values
are derived by solving the following target problem in (6)

based on the estimated state x̂ and disturbance d̂ values
obtained from (5). In the target problem, a desired input
and output pair (ūs, ȳs) and process constraints are also
considered.

min
x̄,ū

||ū− ūs||2Qū
+ ||ȳ − ȳs||2Qȳ

(6a)

s.t.

[
A− I B
HC 0

] [
x̄
ū

]
=

[
−Bdd̂

z̄ −HCdd̂

]
(6b)

ȳ = Cx̄+ Cdd̂ (6c)

ū ∈ U , x̄ ∈ X (6d)

where Qū ∈ Rnu×nu and Qȳ ∈ Rny×ny denote the
weighting matrices.

Then, a finite-horizon optimal control problem in (7) is
solved to obtain the optimal input to drive the controlled
variables to the reference values.

min
ui

φt(xN , x̄) +

N−1∑
i=0

φ(xi, ui, x̄, ū) (7a)

s.t. x0 = x̂, d = d̂ (7b)

xi+1 = Axi +Bui +Bdd (7c)

ui ∈ U , xi+1 ∈ X , xN ∈ XN (7d)

i = 0, . . . , N − 1.



where XN denotes the terminal constraint set, φ(·) is the
single stage cost, and φt(·) is the terminal stage cost,
respectively, as in (8a) and (8b).

φ(xi, ui, x̄, ū) := |xi − x̄|2Qx
+ |ui − ū|2Qu

(8a)

φt(xN , x̄) := |xN − x̄|2QN
x

(8b)

where |v|2Q := v>Qv, Qx ∈ Rnx×nx , and Qu ∈ Rnu×nu

denote the weighting matrices.

3. LEARNING AND UTILIZATION OF MISMATCH
MAP IN OFFSET-FREE MPC

The linear offset-free MPC introduced in Section 2 can ac-
complish zero-steady state offset by compensating for the
model-plant mismatch in proper condition. However, since
this method should gradually estimate the disturbance
variable from the measured prediction error of the output,
considerable delay in estimating of a proper disturbance
value can be occurred. Moreover, since the model-plant
mismatch values are not saved, even in the case where the
system reaches a certain state point that it has reached
already at past, the proper disturbance value at that point
should be gradually estimated again. These limitations
make it difficult for the nominal linear offset-free MPC
scheme to efficiently compensate for the model-plant mis-
match. Therefore, reference tracking performance of the
control system can be considerably degraded during the
operation. To address these limitations, in this section,
an improved offset-free MPC framework that learns the
intrinsic model-plant mismatch map from the process data
and utilizes the information from the learned mismatch
map is developed.

3.1 Learning of model-plant mismatch map

In this study, learning and utilization of a reduced model-
plant mismatch map only on the steady-state manifold
at the controlled variable space is proposed. Since, the
steady-state model-plant mismatch map is a very tiny
part of the entire map, this reduced mismatch map can
be efficiently obtained only using a small amounts of data
and computation.

When a set-point r̄ can be reached at the process, sub-
sequently, (9) and (10) are satisfied at that steady-state
point based on (5).

x̂∞ = (A+ LxC)x̂∞ + (Bd + LxCd)d̂∞
+Bu∞ − Lxyp,∞ (9)

d̂∞ = LdCx̂∞ + (I + LdCd)d̂∞ − Ldyp,∞ (10)

where yp,∞ is the plant output at steady-state point that
satisfies r̄ = Hyp,∞, u∞ is the input, x̂∞ denotes the

system state, and d̂∞ is the disturbance value at steady-
state.

Then, a (x̂∞, d̂∞) pair in (11) can be derived from the
(yp,∞, u∞) pair by rearranging (9) and (10).[
x̂∞
d̂∞

]
=

[
A− I + LxC Bd + LxCd

LdC LdCd

]−1 [
Lx −B
Ld 0

] [
yp,∞
u∞

]
.

(11)

Now, we define the intrinsic relation between r̄ and d̂∞ as
follows:

d̂∞ = fd(r̄). (12)

The function fd : Rnz → Rnd represents the intrinsic
model-plant mismatch. Then, the model-plant mismatch
fd(·) in (12) is approximated via GRNN using the distur-
bance data from the process.

GRNN is a variation of neural network models based on
radial basis function (RBF) for non-parametric regression
proposed in Specht (1991). We can also interpret GRNN as
a normalized RBF network with hidden units centered at
every training sample. In GRNN, the predicted output o(i)
from the input i can be described as a weighted average
value of outputs for the training set as follows:

o(i) =

∑Ns

s=1 osω(i, is)∑Ns

s=1 ω(i, is)
(13)

where Ns denotes the number of training samples, and
ω(i, is) is the weight. Each weight value is an RBF output
that is the exponential of the negatively scaled distance
value between the new pattern and each given training
pattern as in (14)

ω(i, is) = e−(i−is)>(i−is)/2σ2

(14)

where σ denotes the smoothing factor that represents the
width of RBF.

Back-propagation neural networks (BPNNs) commonly
require forward and backward pass training, but in the
case of GRNN, it is a single-pass learning network that
does not requires back-propagation. The only adjusted
parameter is the smoothing factor ρ in GRNN (Sun
et al., 2019). Therefore, GRNN takes significantly less time
to train the network compared to BPNNs. Due to this
significant benefit of rapid training, GRNN is known to be
suitable for on-line training systems that require minimal
computation (Rooki, 2016). However, since GRNN has a
structure that has the same number of nuerons in the
hidden layer identical to the number of training samples,
it has a shortcoming that the size of network can be huge.

3.2 Utilization of model-plant mismatch map

In this section, the framework to utilize the following
learned model-plant mismatch map via GRNN.

d̂` = f̂d(r̄) (15)

where f̂d(·) represents an approximated function of fd(·)
in (12) with GRNN.

Since the mismatch map in (15) is not the entire map but
a reduced map as described in the previous section, this
map does not provide the perfect mismatch information for
the entire system state. Therefore, an additional supple-
mentary disturbance estimator is introduced to exploit the
stabilizing property of the disturbance estimator. At this
revised form of estimator, the supplementary disturbance

variable d̂s is updated considering the disturbance value

d̂` from the mismatch map as in (16).[
x̂(k + 1)

d̂s(k + 1)

]
=

[
A Bd
0 I

] [
x̂(k)

d̂s(k)

]
+

[
B
0

]
u(k) +

[
Bd
0

]
d̂`(k)

+

[
Lx
Ld

]
(−yp(k) + Cx̂(k) + Cd(d̂

`(k) + d̂s(k))) (16)



where x̂`,s is the state value estimated considering the

disturbance values from the map d̂` and supplementary

estimator d̂s.

Then, we can exploit the stabilizing property of the sup-
plementary disturbance estimator in (16). By this, even in

the cases where the learned mismatch map f̂d in (15) is not
perfect or the intrinsic relation between model and plant
has been changed by system transformation or additional
unknown disturbance, the zero steady-state offset can be
accomplished.

Then, the target values for the state x̄ and input ū
values are derived from the revised form of target problem
considering both the disturbance value from the mismatch

map d̂` and the supplementary estimator d̂s as in (17).

min
x̄,ū

||ū− ūs||2Qū
+ ||ȳ − ȳs||2Qȳ

(17a)

s.t.

[
A− I B
HC 0

] [
x̄
ū

]
=

[
−Bd(d̂` + d̂s)

z̄ −HCd(d̂` + d̂s)

]
(17b)

ȳ = Cx̄+ Cd(d̂
` + d̂s) (17c)

ū ∈ U , x̄ ∈ X . (17d)

Now, a finite-horizon optimal control problem is designed
as a state regulation problem based on the derived target
values (x̄, ū) from the target problem (17) to obtain the
optimal input to drive the controlled variable of the system
to the desired reference value considering the disturbance

value from the mismatch map d̂` and the supplementary

estimator d̂s:

min
ui

φt(xN , x̄) +

N−1∑
i=0

φ(xi, ui, x̄, ū) (18a)

s.t. x0 = x̂, d` = d̂`, ds = d̂s (18b)

xi+1 = Axi +Bui +Bd(d
` + ds) (18c)

ui ∈ U , xi+1 ∈ X , xN ∈ Xt (18d)

i = 0, . . . , N − 1.

where φ(·) and φt(·) denote the single stage cost in (8a)
and terminal stage cost in (8b), respectively.

By this, the proposed offset-free MPC framework can
efficiently improve the closed-loop reference tracking per-
formance of the control system compared to the standard
offset-free MPC introduced in Section 2 by enhancing
the accuracy of prediction of future state using both the
information mismatch from the learned mismatch map and
the stabilizing property of the supplementary estimator.

4. NUMERICAL EXAMPLE

In this section, a closed-loop numerical simulation result
is presented to demonstrate the efficacy of the proposed
offset-free MPC framework compared to the standard
method at a control system for reference tracking of
multiple controlled variables where the set-point values
change periodically.

A continuous stirred-tank reactor (CSTR) presented in
Rawlings et al. (2017) where a first-order reaction, A→ B
takes place in the liquid phase, and the temperature of
the reactor is controlled by manipulating of the external
cooling jacket is utilized as a virtual plant.

The control objective of the system is to control the outlet
concentration of the reactant, c, to track the reference
values while regulating the reactor temperature, T , at a
fixed value by manipulating the jacket temperature, Tc
and the outlet flow rate, F . The dynamics of the CSTR is
described below.

dc

dt
=
F0(c0 − c)
πr2h

− k0 exp(− E

RT
)c

dT

dt
=
F0(T0 − T )

πr2h
− ∆H

ρCp
k0 exp(− E

RT
)c

+
2U

rρCp
(Tc − T )

dh

dt
=
F0 − F
πr2

(19)

Then, a state-space model is derived by linearization at
the steady-state:

cs = 0.878 kmol/m3, T s = 324.5 K, hs = 0.659 m

T sc = 300 K, F s = 0.1 m3/min

Subsequently, a discretized control-oriented model in (20)
is derived with sampling instant 1 min.

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)

z(k) = Hy(k)

(20)

Process constraints are also considered in the design of the
control system:

0.83 ≤ c ≤ 0.92, 320 ≤ T ≤ 330, 0.4 ≤ h ≤ 1.2,

295 ≤ Tc ≤ 310, 0.07 ≤ F ≤ 0.13

The terminal state constraint set XN is obtained as the
maximal controlled invariant set of the process.

The set-point values for c and T are set to change peri-
odically for every 15 min along the ranges [0.84, 0.91] and
[321, 329], respectively.

We also implement a process disturbance (i.e., the outlet
concentration from the virtual plant is set as 3% higher
than the average concentration in CSTR, F → 1.03 F )
to increase the model-plant mismatch by introducing an
additional error source.

Fig. 1 illustrates the approximation result of the model-
plant mismatch map fd using GRNN from the 100 data
points of the process. Since the disturbance values at
steady-state points (dss1 ,dss2 ) are dependent on the set-
point values for the controlled variables (cref ,Tref ), the
learned mismatch maps for dss1 and dss2 values are il-
lustrated separately for the set-point pair of controlled
variables. The mismatch maps for dss1 and dss2 learned via
GRNN show proper prediction performance for the model-
plant mismatch.

The graphs on the left in Fig. 2 represent the closed-loop
trajectories of the controlled variables from the developed
and standard offset-free MPC frameworks. Both frame-
works show the zero steady-state offset tracking, but the
developed framework show considerably superior reference
tracking performance compared to the standard method
by utilizing the learned model-plant mismatch information
from the constructed GRNN model illustrated in Fig. 1.
Furthermore, nonetheless the approximated model-plant



Fig. 1. Approximated model-plant mismatch map through GRNN modeling using 100 data points from the process.
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Fig. 2. Controlled variable and estimated disturbance trajectories of the developed and standard offset-free MPC under
set-point change.

mismatch map via GRNN model with 100 data points
does not provide the perfect prediction as shown in Fig. 1,
the closed-loop trajectories of controlled variables from the
developed controller show zero-offset tracking by utilizing
the stabilizing property of the supplementary disturbance
estimator.

The graphs on the right in Fig. 2 show the estimated
value of the disturbance variables from the developed and
standard offset-free MPC schemes. The blue-colored line
represents the combined disturbance value from the devel-
oped framework that is the summation of the black-colored
learned disturbance value and supplementary disturbance
value. The learned disturbance value generally matches the
steady-state disturbance values at each set-points. How-
ever, we can see a small amount of deviations of learned
disturbance value from the proper disturbance value that
is shown by red and blue line (e.g., near 40 and 80 mins).
This implies that the information from the mismatch map
in Fig. 1 is not perfect at the related set-point. In this
case, the supplementary disturbance supports obtaining
the proper combined disturbance values, thus, we can see
that supplementary value at steady-state has non-zero
value near 40 and 80 mins.

5. CONCLUSION

We propose an improved offset-free MPC framework that
learns the intrinsic model-plant mismatch via GRNN from
the estimated steady-state disturbance data and exploits
them in the controller. As shown in the closed-loop sim-
ulation result, we can effectively improve the closed-loop
performance of the model-based controller.

Moreover, since we combined machine learning and model-
based control based on offset-free MPC scheme, we can
exploit its own model-plant mismatch compensating prop-
erty through the supplementary estimator design. There-
fore, developed method can effectively improve the refer-
ence tracking performance without using enormous data,
unlike existing schemes for improving performance of the
model-based controller that update the entire process dy-
namics or directly learning the input signal to compensate
for the mismatch.
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and Caarls, W. (2018). Model-plant mismatch com-
pensation using reinforcement learning. IEEE Robot.
Autom. Lett., 3(3), 2471–2477.

Maeder, U., Borrelli, F., and Morari, M. (2009). Linear
offset-free model predictive control. Automatica, 45(10),

2214–2222.
Maeder, U. and Morari, M. (2010). Offset-free reference

tracking with model predictive control. Automatica,
46(9), 1469–1476.

Manzano, J.M., Limon, D., de la Peña, D.M., and Calliess,
J.P. (2020). Robust learning-based MPC for nonlinear
constrained systems. Automatica, 117, 108948.

Muske, K.R. and Badgwell, T.A. (2002). Disturbance
modeling for offset-free linear model predictive control.
J. Process Control, 12(5), 617–632.

Oh, T.H., Kim, J.W., Son, S.H., Kim, H., Lee, K., and Lee,
J.M. (2021). Automatic control of simulated moving bed
process with deep Q-network. Journal of Chromatogra-
phy A, 1647, 462073.

Pannocchia, G. and Bemporad, A. (2007). Combined
design of disturbance model and observer for offset-free
model predictive control. IEEE Trans. Autom. Control,
52(6), 1048–1053.

Pannocchia, G. and Rawlings, J.B. (2003). Disturbance
models for offset-free model-predictive control. AIChE
J., 49(2), 426–437.

Rawlings, J.B., Mayne, D.Q., and Diehl, M. (2017). Model
predictive control: theory, computation, and design, vol-
ume 2. Nob Hill Publishing Madison, WI.

Rooki, R. (2016). Application of general regression neural
network (GRNN) for indirect measuring pressure loss of
Herschel–Bulkley drilling fluids in oil drilling. Measure-
ment, 85, 184–191.

Son, S.H., Oh, S.K., Park, B.J., Song, M.J., and Lee,
J.M. (2022). Idle speed control with low-complexity
offset-free explicit model predictive control in presence
of system delay. Control Engineering Practice, 119,
104990.

Specht, D.F. (1991). A general regression neural network.
IEEE Trans. Neural Netw., 2(6), 568–576.

Sun, X., Liu, J., Zhu, K., Hu, J., Jiang, X., and Liu,
Y. (2019). Generalized regression neural network as-
sociation with terahertz spectroscopy for quantitative
analysis of benzoic acid additive in wheat flour. Royal
Society open science, 6(7), 190485.

Terzi, E., Fagiano, L., Farina, M., and Scattolini, R.
(2019). Learning-based predictive control for linear
systems: A unitary approach. Automatica, 108, 108473.

Thuruthel, T.G., Falotico, E., Renda, F., and Laschi, C.
(2018). Model-based reinforcement learning for closed-
loop dynamic control of soft robotic manipulators. IEEE
Trans. Robot., 35(1), 124–134.

Vaupel, Y., Hamacher, N.C., Caspari, A., Mhamdi, A.,
Kevrekidis, I.G., and Mitsos, A. (2020). Accelerating
nonlinear model predictive control through machine
learning. J. Process Control, 92, 261–270.

Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg,
J.M., Boots, B., and Theodorou, E.A. (2017). Infor-
mation theoretic MPC for model-based reinforcement
learning. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), 1714–1721. IEEE.

Zhang, T., Kahn, G., Levine, S., and Abbeel, P. (2016).
Learning deep control policies for autonomous aerial
vehicles with MPC-guided policy search. In 2016 IEEE
International Conference on Robotics and Automation
(ICRA), 528–535. IEEE.


